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Abstract

Most scientific applications have high degrees of par-
allelism and thread-level parallel execution appears to
be a natural choice for executing these applications
on systems composed of SMT processors. Unfortu-
nately, contention for shared resources limits the per-
formance advantages of multithreading on current SMT
processors, thus leading to marginal utilization of mul-
tiple hardware threads and even slowdown due to multi-
threading. We show, through a rigorous evaluation with
hardware monitoring counters on a real multi-SMT sys-
tem, that in traditionally scalable parallel applications
conflicting resource requirements are – due to the high
degree of resource sharing – accountable for deeply sub-
optimal performance. Motivated by this observation, we
investigate the use of alternative forms of multithreaded
execution, including adaptive thread throttling and spec-
ulative runahead execution, to make better use of the re-
sources of SMT processors. Alongside the evaluation,
we propose new methods to integrate these techniques
into the same binary to maximize performance on multi-
SMT systems. Our study shows that combining adaptive
throttling and speculative precomputation with regular
thread-level parallelization leads to significant perfor-
mance improvements in parallel codes which suffer from
inter-thread interference and contention on SMTs.

1 Introduction

Simultaneous multithreaded processors [17] con-
tinue to gain popularity in both mainstream and high-
performance computing markets. These processors
were introduced in academic studies [11, 17] and later

adopted as a core design technology for mainstream
processors from Intel, IBM and other vendors [9, 16].
SMTs provide an incremental path to improve the per-
formance of conventional superscalar processors by con-
verting thread-level parallelism to instruction-level par-
allelism, with only marginal increases in cost, area and
power consumption.

The first contribution of this paper is an evaluation
of parallel application execution on a real SMT-based
multiprocessor, consisting of Intel Hyperthreaded pro-
cessors. We attain detailed performance measurements
from hardware event counters and use them to gain in-
sight into parallel application execution on this architec-
ture. One goal of our analysis is to identify architectural
bottlenecks of real, commercially available SMT proces-
sors, that reduce the scalability of parallel applications.

Scientific applications typically exhibit a high degree
of exploitable thread-level parallelism. SMTs seem to
be a first-class choice for the execution of these appli-
cations. However, our results show that co-executing
threads on SMT processors can often lead to limited
performance gains, or even cause a slowdown, due to
resource conflicts resulting from the high degree of re-
source sharing that characterizes the SMT architecture.
We consider the effects of resource sharing on many
resources within the processor by collecting data from
hardware event counters. We specifically consider how
resource sharing affects the number of L2 and L3 cache
accesses and misses, bus accesses, data TLB misses,
stall cycles and execution time.

The second contribution of this paper is the investi-
gation of alternative forms of multithreaded execution,
both previously proposed and new ones, in an effort
to overcome the poor performance of SMT processors
at executing scientific applications. We consider adap-



tive thread throttling and speculative runahead execu-
tion. Although these techniques have been used in ear-
lier work as tools to enhance SMT performance, they
have been explored in different contexts (i.e. for speed-
ing up sequential desktop workloads and selecting loop
schedules). Most importantly, effective integration of
these techniques with regular thread-level parallel ex-
ecution in the same code has not been explored be-
fore. We propose methods to integrate adaptive throt-
tling and speculative runahead execution with regular
thread-level parallelization using the OpenMP [12] pro-
gramming paradigm and we show that combining these
techniques results in significant performance improve-
ments.

The study presented in this paper is a first step in de-
riving algorithms for selecting the best mode (or modes)
of multithreaded execution for any given program. It is
also the first study to investigate whether multiple mul-
tithreaded execution modes can be combined effectively
in a synergistic manner to maximize performance on
multi-SMT systems.

The rest of this paper is organized as follows. In
Section 2, we briefly review related work on SMT pro-
cessors and place our contributions in context. In Sec-
tion 3 we provide an overview of the experimental set-
ting. In Section 4 we discuss and evaluate the execution
of a broad set of parallel applications on a multi-SMT
system. Section 5 describes the adaptive thread throt-
tling mechanism we implemented for multi-SMT sys-
tems and provides an analysis of its performance. Sec-
tion 6 goes over our speculative runahead execution ap-
proach, its integration with thread-level parallelization
and its performance. Finally, in Section 7, we summa-
rize our conclusions.

2 Related Work

There is a significant body of work on hardware and
software optimizations for SMT processors. We cover a
small fraction of this work here, due to space limitations.

Of particular relevance to the work presented in this
paper is related work on the performance trade-offs of
SMTs for scientific and technical workloads. Earlier re-
sults from both research prototypes and real products
indicate that SMTs are well suited for running mul-
tiprogram workloads in server environments, but are
less effective at running standalone parallel applications
[16, 17]. Therefore, many users consider SMTs pri-
marily as throughput-oriented processors and most of
the related research is oriented towards improving job
scheduling rather than improving individual application

performance on SMT processors [14]. One notable ex-
ception is the work of the Intel compiler group on ex-
ploiting Hyperthreading1 technology for improving par-
allel execution speed in multimedia applications [15].

Although a standalone SMT processor by itself may
not be the best choice for running a single parallel pro-
gram, an SMT execution engine built around a super-
scalar core still provides the potential for significant
performance improvements compared to conventional
superscalar designs. Therefore, using SMT execution
cores in place of superscalar execution cores is a cost-
effective option for building chip multiprocessors with a
clustered multicore design, such as the IBM Power5 [9,
10]. Our work is highly relevant to hybrid CMP/SMT
processors as well, although our results are obtained
from a somewhat less aggressive SMP system with Hy-
perthreaded processors.

SMTs are capable of accelerating sequential code via
the use of hardware threads for speculative assisted exe-
cution mechanisms. Popular assisted execution mecha-
nisms include speculative precomputation for prefetch-
ing of memory accesses and slipstreaming for control
and value prediction [2, 6, 13, 18]. Assisted execution
mechanisms using threads have been investigated almost
exclusively in the context of sequential, pointer-chasing
codes. One of the contributions of this paper is that
it shows that speculative precomputation using a spare
thread can occasionally be an effective alternative to
thread-level parallel execution of scientific applications
on SMTs. Furthermore, to the best of our knowledge,
this paper is the first to integrate speculative precompu-
tation with thread-level parallel execution in the same
code, achieving a combined performance benefit.

Throttling concurrency is a simple and effective
means for controlling execution and contention for
shared resources on SMTs and CMPs. Throttling based
on timing measurements of loops has been investi-
gated in the context of parallel loop scheduling for
OpenMP [20]. In this work, we evaluate timing-based
thread throttling as an alternative to improve the perfor-
mance of scientific applications on multi-SMT systems.

3 Experimental Setup

We experimented on a Dell PowerEdge server with
four Hyperthreaded Intel Xeon MP processors each run-
ning at 1.4GHz. Table 1 summarizes the hardware char-
acteristics of our experimental platform with memory

1Hyperthreading is a term coined by Intel and refers to the SMT
technology used in Intel Pentium 4 processors since 2002.
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Processors 4 Intel Xeon HTs, 1.4 GHz,
2 execution contexts per processor

L1 Cache 8KB shared, 4-way assoc. DCACHE.
12KB shared execution trace ICACHE

L2 Cache 256 KB shared, unified, 8-way assoc.
L3 Cache 512 KB shared, unified, 8-way assoc.
D-TLB 64 entries, shared, fully assoc.
I-TLB 2x64 entries, partitioned, fully assoc.
DRAM 1 GB
Bus 400 MHz

Table 1. Hardware configuration of the
multi-SMT experimental platform.

hierarchy resources classified as shared or partitioned
between the two hyperthreads of a single processor.

To evaluate multi-SMT system performance for par-
allel workloads, we used the OpenMP versions of seven
of the NAS Parallel Benchmarks (version 3.1) [8]. We
compiled the benchmarks using the Intel FORTRAN
compiler version 7.1. We ran all of the NAS bench-
marks with the problem size set to class A, which is large
enough to yield realistic results, while ensuring that each
application’s data set fits entirely in memory.

The operating system was Linux (kernel version
2.4.25), which treats the two hyperthreads on each pro-
cessor as two logical and equivalent processors. We
ran experiments in six configurations: we executed the
applications on 1, 2 and 4 physical processors, using
either 1 or 2 hyperthreads per processor. We strictly
bound threads to logical processors, using the Linux
sched setaffinity() system call. We collected
both timing data and – using Intel’s VTune Performance
Analyzer [7] – data from hardware event counters that
provide deeper insight into the performance of the pro-
cessors.

4 Experimental Results

In this section we present the results from the
evaluation of the relative performance of the bench-
marks with the configurations discussed in Sec-
tion 3. The different binding schemes are labeled
as (num_processors, num_threads), where
num_processors stands for the number of physi-
cal processors onto which the threads are bound and
num_threads for the total number of threads used for
execution. We report timings and results obtained from
monitoring several performance metrics, using hardware
performance counters. We present a bottom-up evalua-

tion starting from individual performance metrics that
pin-point potential performance bottlenecks due to re-
sources sharing on SMT processors and proceeding to
the overall performance of the codes. Whenever metrics
are normalized, the normalization is with respect to the
value attained for the specific metric during the sequen-
tial execution, unless explicitly stated otherwise.

4.1 Cache Performance

The L2 cache of Intel’s Hyperthreaded processor is
shared between the two hyperthreads. The first metric
we studied, the number of L2 cache misses observed un-
der each configuration, is depicted in Figure 1. In most
cases, the number of cache misses goes up, sometimes
dramatically, when two threads instead of one thread are
spawned on each physical processor. BT, FT and LU-HP
demonstrate this pathology to a large extent. If the work-
ing sets of both co-executing threads do not fit together
in the L2 cache, then cross-thread cache-line eviction
significantly increases the number of misses. The av-
erage increase in the number of L2 misses when two
threads are used on each processor, taken across the en-
tire suite of benchmarks and all executions on 1, 2 and 4
processors, is 33%. In particular, in BT L2 cache misses
increase by 69% on average and in FT L2 cache misses
increase by 82% on average.

CG and UA, when executed with two threads on one
processor, are exceptions to the dominant trend in L2
misses. These applications benefit from data sharing
through the shared L2 cache. However, this benefit is
not persistent through the parallel executions on 2 and
4 processors, since it is counterweighted by coherence
misses due to invalidations. We believe that the reduc-
tion of L2 cache misses in SP when two threads are ac-
tivated on 4 processors is likely attributed to the same
trade-off between the benefit of data sharing through the
L2 and the penalty of coherence misses, although we
have yet to verify this observation.

When only one thread per SMT is used, the cumula-
tive number of cache misses per processor goes down in
a few cases when the benchmarks are executed in par-
allel. In these cases the benchmarks are able to bene-
fit from the additional cache space provided by multi-
ple processors. The effect is most pronounced in CG
and somewhat in UA. However, in most cases the cu-
mulative number of L2 misses remains about the same
or even goes up, because of cache coherence protocol
invalidations.

The number of L2 accesses (shown in Figure 2), a
direct indicator of L1 cache misses, goes up from one
thread to two threads per processor by 42% on average.
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Figure 1. Normalized number of L2 cache
misses of the benchmarks.
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Figure 2. Normalized number of L2 cache
accesses of the benchmarks.

In fact, in all cases, running two threads on a single pro-
cessor resulted in an increase in the number of L2 ac-
cesses. BT, LU-HP and UA are the three benchmarks
most prone to L1 cache contention.

Inter-thread interference does not seem to signifi-
cantly affect the performance of the L3 cache (the re-
sults are omitted here due to space limitations, however
the reader can refer to an extended version of this pa-
per [3]). The notable exceptions are again BT and FT. In
general, L3 misses do not seem closely correlated with
either the number of threads used per processor or the
number of processors used. The L3 cache is twice the
size of the L2 cache and this alleviates, to some extent,
the problem of inter-thread conflicts. Furthermore, since
most of the memory accesses are filtered in the L1 and
L2 caches, sharing the L3 cache does not significantly
affect the performance of these benchmarks. In the three
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Figure 3. Normalized number of data TLB
misses of the benchmarks per billion in-
structions executed.

benchmarks in which L2 suffers from inter-thread con-
flicts (BT, FT and UA), the L3 cache seems to exhibit a
similar behavior, albeit at a much smaller scale for BT
and UA. FT remains pathological and is a primary target
for the multithreaded execution techniques we introduce
later in this paper.

4.2 Data TLB Misses

The results observed for the number of data TLB
misses per instruction show that intra-processor multi-
threading has a strongly adverse effect on the data TLB
performance of SMTs (shown in Figure 3). The num-
ber of misses goes up by at least a factor of five when
the configuration is changed from one thread to two
threads on a single processor, and by factors of more
than twenty in several cases. Overall, the rate of data
TLB misses increases by an average of 925% from one
thread to two threads per processor. The poor data TLB
performance is explained in part by the fact that the data
TLB of the Intel Hyperthreaded Pentium 4 is shared and
relatively small (64 entries). Interestingly enough, al-
though the processor uses a partitioned instruction TLB
with 64 entries per thread, the data TLB has been cho-
sen to be smaller and shared. It is often the case that
co-executing threads work on different portions of the
virtual address space, and therefore cannot share data
TLB entries. This, in turn, results in an effective halving
of the data TLB area per thread when both contexts of
the SMT are activated.
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benchmarks normalized by the total num-
ber of cycles.

4.3 Stall Cycles

SMT architectures share the vast majority of their re-
sources, including functional units and all levels of the
memory hierarchy. Stall cycle rate is a metric indicating
how much time each application spends waiting, with-
out making further progress, for either functional units
or any level of the memory hierarchy to return a result.
A relative change in stall cycles when using two threads
instead of one thread per processor is an indirect indica-
tion of thread contention for all shared resources in the
processor.

As shown in Figure 4, for nearly every benchmark
and number of processors tested, the stall cycle rate (cal-
culated over the total number of execution cycles) goes
up dramatically when the configuration is changed from
one to two threads per processor. There is an average in-
crease in the number of stall cycles of 3.1 times when the
second context of each SMT is used to run an additional
application thread.

We have used an indirect experimental method to
confirm the intuition that the lack of resource replica-
tion should be blamed for the suboptimal performance
when two threads run simultaneously on each processor.
We executed the same experiments on a simulated chip
multiprocessor (CMP) architecture with 4 dual-core pro-
cessors, using the Simics simulation environment [4]. In
contrast to our real SMT processor, the CMP we mod-
eled only shares the two outermost levels of the cache
hierarchy and none of the functional units. This reduces
the possible sources of stall cycles due to inter-thread
interference, because on the CMP their number can be
affected only by cross-thread interference in the L2 and
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Figure 5. Normalized execution time of the
benchmarks on the SMT multiprocessor.

L3 caches. On our simulated CMP machine, stall cy-
cles were much more stable and relatively immune to
changes in the number of threads per processor as well
as to thread placement. The number of stall cycles only
increased by an average of 3% on the CMP machine
when the second hardware context was activated. These
results provide evidence that the vast majority of stall
cycles on the SMT machine were caused by the con-
flicting requirements of co-executing threads for internal
processor resources.

4.4 Execution Time

Execution time is the ultimate performance metric.
Although the results we obtained from hardware perfor-
mance counters indicate several flaws of hyperthreading,
it is important to observe whether these flaws translate
into severe performance penalties. Figure 5 summarizes
the normalized execution times of the benchmarks.

Not surprisingly, on the SMT architecture, execu-
tion time is always improved by running a fixed num-
ber of threads on as many different processors as there
are threads, instead of co-executing two threads on each
processor. This is because running threads on separate
physical processors eliminates the effects of inter-thread
interference on the shared resources. Interestingly, it is
not always clear whether it is better to use one thread or
two threads per processor. For example, in CG, LU-HP
and UA, using the second thread is beneficial, whereas
FT always suffers a slowdown when a second thread is
used on each processor.

One more interesting phenomenon is that for a given
application, it may be the case that neither one thread
nor two threads per processor is always the most effec-
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tive choice. In SP, for example, using two threads per
processor is more effective in the 1 and 2-processor ex-
ecutions, but less effective for 4-processor executions.

When two threads run together on a single proces-
sor, there is an average speedup of merely 7% (taken
across all benchmarks running on 1, 2 and 4 processors),
compared to running with one thread per processor. The
CG benchmark enjoys the best gains from two threads
per processor with an average speedup of 25%. UA is
a close second with 22%. There are two benchmarks
which, on average, see a slowdown with the use of the
second hyperthread, namely BT (4%) and FT (35%).
In the rest of the paper we focus on these two bench-
marks, and use them as motivating examples for intro-
ducing adaptive and more flexible multithreaded execu-
tion mechanisms to utilize SMTs in parallel programs.

5 Adaptive Thread Throttling

Based on our observations about the execution of
parallel applications on SMT architectures, we imple-
mented a means by which each application can adap-
tively choose the optimal number of threads to use per
physical processor. The mechanism exploits the fact
that under some circumstances two threads per proces-
sor will execute more effectively and other times only
one will, due to contention. A similar adaptive execution
mechanism was used in [20] to select the optimal num-
ber of threads and the best scheduler for each parallel
loop, using code injected by an OpenMP compiler. Our
implementation of this mechanism differs in that it is
based on a compiler-independent runtime library which
can be used via a preprocessor.

Our runtime library is called at the beginning and end
of each parallel region so that a decision can be made for
the optimal number of threads to use for this region. In
scientific codes, parallel regions typically delimit phases
of the code with different execution properties and per-
formance characteristics. Controlling concurrency at the
entry points of parallel regions is therefore an effective
means to also control the performance of the code. Fur-
thermore, since in most scientific applications parallel
regions are executed many times across different itera-
tions of outermost loops, the first few executions of each
parallel section can be used to come to a conclusion on
the optimal concurrency. In our experiments, we used
three iterations for this purpose. We ignore the first iter-
ation to account for cache warmup effects. Then the li-
brary tries both one thread per processor and two threads
per processor, for one iteration each, and compares their
execution times. Whichever number of threads results in

the lower execution time is used in the future whenever
this loop is encountered.

The major advantage of adaptive throttling is that
it can achieve runtime performance optimization with-
out modifications to the parallelization and execution
strategies of applications. Adaptive thread control is an
easy feature to implement in any thread management li-
brary. With proper engineering, it can be used transpar-
ently and effortlessly in any shared-memory program-
ming model. One disadvantage of adaptive throttling is
that it leaves idle hardware threads, which could be used
for the purpose of accelerating the code running on the
non-idle hardware threads. We explore this option via
speculative runahead execution in Section 6. Another
disadvantage is that it is applied effectively only in ap-
plications with a uniform iterative structure (e.g. itera-
tive PDE solvers running over multiple time steps), but
is not as effective in adaptive and irregular applications
that do not have the same structure.

5.1 Results from Adaptive Thread Throttling

We tested our adaptive thread throttling mechanism,
using the NAS Parallel Benchmarks, and the OpenMP
codes MM5 and COBRA. MM5 [5] is a mesoscale
weather prediction model. COBRA [1] is a matrix
pseudospectrum computation code. We ran each of the
benchmarks with one and two threads per processor on
1, 2, 3 and 4 processors, with the number of threads per
processor fixed throughout the execution of each bench-
mark, to obtain a baseline for comparison against adap-
tive throttling. Following, we activated adaptive thread
throttling and repeated the experiments.

The results, presented in Figure 6, show that adaptive
thread control fares well compared to a static execution
scheme selected from an oracle. When compared to the
optimal static number of threads for each case, the adap-
tive mechanism is only 3.0% slower on average. In com-
parison, adaptation achieves a 10.7% average speedup
over the worse static number of threads for each bench-
mark. The average speedup observed over all cases of
executions with a fixed number of threads is 3.9%. A
closer look at the results reveals that in 17 out of the to-
tal 36 experiments, adaptive throttling outperforms both
static executions (with one thread and two threads per
processor). Adaptive thread control consistently yields
the best performance in COBRA on any number of pro-
cessors and achieves a speedup improvement in several
other cases as well.

Two applications for which adaptive throttling does
not perform well are MG and FT. The main reason is
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Figure 6. Relative performance of adaptive and static one/two threads per physical processor
execution strategies. The execution times have been normalized with respect to the sequential
execution time of each experiment.

that neither has a sufficient number of loops to amor-
tize the startup costs of searching for the best number
of threads. MG performs only 4 and FT only 6 itera-
tions. With the 3 iteration initialization phase needed by
adaptive throttling, the applications use the intelligently
selected number of threads for only 1 and 3 iterations
respectively.

One question that arises from these experiments is
how the adaptive throttling mechanism performs against
a static execution with an oracle which knows how many
threads to use on a loop by loop basis, rather than in the
entire program. To answer this question, we conducted
additional experiments with BT, which suffers an aver-
age 4% slowdown when the second hardware context

is used. BT and FT are the two benchmarks in which
there seems to be no benefit from using the second hy-
perthread on each processor. We recorded the number of
threads used for each section by the adaptive approach
and hardcoded it in the application.

When the best number of threads for each parallel
section is given from an oracle, BT enjoys a speedup of
1.8% from the occasional use of the second hyperthread
per processor in a selected set of parallel loops. The
adaptive throttling mechanism converges to the optimal
number of threads for each parallel section, but yields an
average slowdown of 1.1% compared to static execution
with one hyperthread used per processor. This indicates
that the adaptive mechanism performs comparably, but
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still pays some measurable overhead to converge to the
best degree of multithreading across the code.

Another drawback of adaptive throttling is related
to potential side-effects in the memory performance of
applications. Memory performance, both within and
across loops, is often the target of extensive optimiza-
tions by programmers. However, inter-loop memory op-
timizations are based on the assumption of a constant
number of threads used for the execution of all loops.
Adaptive, per-loop selection of the number of threads
may result in shuffling of data touched by each thread
across loops, thus having an adverse effect on locality.

Such drawbacks necessitate the consideration of
other options for utilizing simultaneous multithreading
to improve performance.

6 Integrating TLP with Speculative Pre-
computation

The earlier discussion revealed that some programs
are highly sensitive to contention for shared resources
on SMT processors. The most characteristic example is
FT, in which using the second thread on an SMT yields a
slowdown of 35% on average. The main computational
kernel of FT is composed of three FFTs (along the x,
y and z dimensions), each of which walks two arrays
(named x and xout in the code) with very long strides
(equal to 256× 128 elements, or 32K in the tested prob-
lem size). The long strides cause an excessive amount
of cache and TLB misses, as well as high contention for
memory bandwidth. In memory-intensive codes such as
FT, simultaneous multithreading intensifies the effect of
the aforementioned bottlenecks.

Speculative precomputation (SPR for short) is a
memory latency reduction technique proposed for SMTs
and CMPs [2]. SPR uses either microarchitectural or
software support to employ an otherwise idle thread
for precomputing addresses of critical memory accesses
and prefetching the data touched from these accesses
into the cache, anticipating that the data will arrive early
enough to be used from a sibling computation thread
without suffering cache misses. Critical accesses are
those responsible for a large number of cache misses in
the outermost levels (typically L2 and L3) of the cache.

SPR is a resource-conserving approach to leverage
multithreading on a single chip, since the speculative
thread works in synergy and to the benefit of the non-
speculative thread. It has been used successfully to
speed up sequential codes dominated by pointer chas-
ing [2, 18] but no emphasis has been placed on using
SPR in scientific applications, partially because mem-

ory access patterns in these codes are often highly pre-
dictable. We argue that SPR, using a spare hardware
context, has value in scientific codes with long streams
of long-strided memory accesses as well, not necessar-
ily because of better prediction abilities, but because
of being less resource-consuming than in-place sequen-
tial prefetching, without sacrificing timeliness. As such,
SPR can also be an effective alternative to TLP for loops
in which TLP causes excessive contention for shared re-
sources. To evaluate this hypothesis, we applied SPR
in FT in loops in which the performance proved to be
highly problematic when the loops were parallelized us-
ing multiple threads within an SMT.

To use SPR, we had to devise a method that would
allow assisted runahead execution within an SMT,
while still enabling loop-level parallel execution across
SMTs. We used the nested parallel execution fea-
tures of OpenMP. We organized the code of each one-
dimensional FFT in two parallel sections, one execut-
ing the main FFT loops with multiple threads bound
to different SMTs and the other executing speculative
precomputation threads also bound to different SMTs,
in the contexts left unused by the main computation
threads. Effectively, the program uses two levels of het-
erogeneous parallelism to merge precomputation with
regular multithreaded code.

We have identified critical memory accesses using
an execution-driven cache simulator derived from Val-
grind. We ran a stripped-down binary of FT with only
two iterations of the PDE solver. We identified that more
than 95% of the L2 and L3 cache misses in FT occur
in three routines of the code (cffts1, cffts2 and
cffts3, corresponding to FFT’s in the x, y and z di-
rection respectively), and on just two elements, x and
xout, corresponding to the input and output vectors of
each FFT. Note that x and xout point to the same vec-
tor in cffts2 and cffts3 but to different vectors in
cffts1. Interestingly enough, we found that the domi-
nating misses are in most applications the same, regard-
less of the problem size, the data input and the number
of processors/threads used to execute them. This indi-
cates that a profile-driven approach for identifying criti-
cal loads is quite effective. More details of our precom-
putation code generation scheme are given in [3, 19].

Figure 7 summarizes the performance results of the
three execution strategies. Adapt+prec corresponds
to experiments in which parallel execution across pro-
cessors (using selectively one or two hyperthreads per
processor during initialization and lhs update) is com-
bined with SPR within processors for the three main
FFT routines. This hybrid execution method is com-
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Figure 7. Impact of using selective speculative precomputation in conjunction with thread-level
parallelism in NAS FT.

pared against thread-level parallel execution with 1 or
2 hyperthreads per processor. In the thread-level paral-
lel execution we have activated the software prefetching
functionality offered by the Intel compiler. Moreover,
the hardware prefetcher of Intel processors was active
throughout all the experiments.

In the three memory-bound loops, our SPR code
eliminates 25–43% of the L2 cache misses in FT (Fig-
ure 7(b)). This translates to 9%–22% faster execution
than the parallel one with one hyperthread per proces-
sor (Figure 7(a)), as opposed to an average slowdown of
35% incurred in executions in which two hyperthreads
split the parallel computation on each processor. The
speedup over the sequential execution time of FT is im-
proved from 2.5 to 3.0 on 4 processors. It is important to
note that this speedup arises mostly but not solely from
the use of SPR. Figure 7(c) gives a breakdown of exe-
cution time between the four primary subroutines of FT,
obtained during execution on 4 processors. The subrou-
tine evolve executes the lhs update code of the PDE
solver. Two of the three FFT routines (cffts1 and
cffts2 along the x, and y dimensions) benefit signifi-
cantly from prefetching and enjoy speedups of 18% and
25% respectively, while the third FFT routine (cffts3
along the z direction) obtains little benefit. On the other
hand, the routine evolve benefits from regular paral-
lelization with two hyperthreads per processor, with a
speedup of almost 20%.

In conclusion, mixed-mode multithreaded execution
yields superior performance in a code in which thread-
level parallelization within an SMT suffers from con-
flicts due to simultaneous multithreading. Several sci-
entific applications exhibit such behavior, therefore the
proposed adaptive multithreaded execution mechanisms

are expected to play an important role in scaling these
applications on SMT-based multiprocessors.

7 Conclusions

This paper has illustrated the limitations of simulta-
neous multithreading processors when running scientific
applications, using physical experimentation on a real
multi-SMT system and several performance metrics ob-
tained from hardware event counters.

Motivated by these limitations, we proposed the use
of two software mechanisms for improving the perfor-
mance of parallel codes running on multiple SMT pro-
cessors. First, with adaptive thread throttling, the num-
ber of threads used on each SMT is regulated per paral-
lel section, so that code phases that do not benefit from
SMT execution are adaptively sequentialized. Secondly,
we proposed a mechanism to merge speculative precom-
putation with conventional thread-level parallel execu-
tion in OpenMP and we have shown that this mechanism
can be used to significantly improve performance in par-
allel codes with long streams of long-strided memory
accesses. Combined with selective thread throttling, our
hybrid execution mechanism achieved a 9%–22% per-
formance improvement from the use of the second hy-
perthread on each processor in FT, a code which proved
to be particularly difficult to scale otherwise within an
SMT.

Our study has shown that significant performance
gains can be achieved through the integration of mul-
tiple forms of multithreading on SMT-based multipro-
cessors. In the future we intend to derive new static and
dynamic techniques to automate the use of polymorphic
multithreading in parallel programs.
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