
PACMAN: A PerformAnce Counters MANager for
Intel Hyperthreaded Processors

Matthew Curtis-Maury, Dimitrios S. Nikolopoulos
Department of Computer Science

Virginia Tech
{mfcurt, dsn}@cs.vt.edu

Christos D. Antonopoulos
Department of Computer Science
The College of William and Mary

cda@cs.wm.edu

1 Introduction

Performance monitor counters (PMCs) are registers
within a processor which can be programmed to count
the occurrences of particular processor events, such as
L2 cache misses, stall cycles, etc. Due to the insight that
they provide into the execution of an application on a
given architecture, hardware performance counters are
seeing increasing popularity in both the research [1] and
industrial communities [3].

Despite the pervasiveness of Intel Hyperthreaded
processors [5], the support for collection of hardware
performance counters on this architecture is limited.
Tools designed to work on single-threaded processors
fail to provide sufficient functionality when ported over.
The difficulty stems from the sharing of the performance
monitoring unit (PMU) between the two execution con-
texts on Hyperthreaded Pentium 4 processors. Per-
fctr [6], the standard interface to Pentium 4 performance
counters for Linux, overcomes this problem by disal-
lowing the use of the second execution context on each
processor when collecting events inper-thread mode1.
PAPI [1], being built on top of unaltered Perfctr, suffers
from the same problems. Intel’s VTune Performance
Analyzer [4] provides thread-local event counter statis-
tics offline, however it does not provide functionality for
online and accurate event counter collection. It is im-
portant that applications be able to use all available con-
texts while still exploiting the full set of hardware event
counting features at runtime.

In order to use performance counters for online adap-
tation of applications, it is necessary to be able to re-
trieve per-thread counter values from within the target
application during its execution. Beyond this, it is also

1In per-thread mode event counters are recorded separately for
each thread, whereas inglobal mode counters are recorded for the sys-
tem as a whole with all threads included.

necessary to have fine-grain access to counter values to
support monitoring of short-lived regions of code. In
the following section, we discuss how we enabled such
functionality in PACMAN (available for download at
http://people.cs.vt.edu/˜ mfcurt).

2 PACMAN Implementation

An Intel Hyperthreaded processor has 18 PMC reg-
isters that are shared between the two co-executing
threads. Each register can record a single event. Should
two threads on the same processor attempt to use the
same register, the resulting behavior is incorrect. PAC-
MAN prevents overlapping of PMC register usage be-
tween co-executing threads by introducing a logical par-
titioning of the registers when events are recorded in
per-thread collection mode. Within each processor, half
of the PMCs are provisioned to each execution con-
text. Intel has divided the registers into four sets and
any given event can only be recorded within its desig-
nated set. We create our partition such that each set
of registers is divided evenly between the two threads.
There are also configuration registers associated with the
PMCs which we have partitioned similarly. During per-
formance counter initialization each thread is configured
to use the partition for the execution context on which it
is currently executing. To prevent a thread from migrat-
ing away from the execution context for which its PMCs
were set up, PACMAN appropriately binds threads to
execution contexts.

Low-level access to the performance monitor coun-
ters is still performed using the interface provided by
Perfctr, after removing internal checks from Perfctr that
enforce usage of only the first execution context on each
processor. In addition to the extended support for Hy-
perthreaded processors, PACMAN retains the full func-
tionality already present in Perfctr. This includes the use



of performance counters with only a single thread per
processor using all 18 available PMCs, as well as global
mode collection. Although global collection does allow
events to be collected on both execution contexts, even
in Perfctr, there are two shortcomings of this approach
for online use. First, event counts summarize collective
performance of all executing applications, not just the
one to be monitored. Second, the granularity of moni-
tored regions must be very coarse (on the order of hun-
dreds of milliseconds at least) since results are stored in
the operating system and are only periodically updated
between consecutive time quanta. These were motivat-
ing factors in the development of PACMAN.

The process of initializing Pentium 4 performance
counters can be cumbersome. One hurdle to using per-
formance monitor counters is the creation of the bit-
masks written to specific registers as part of the configu-
ration process. Although Perfctr does abstract away the
manual process of loading the registers, it must be given
the exact contents for each desired register. These values
specify what events to record, but they also provide addi-
tional constraints on recording, and creating the desired
bitmasks can be a very complicated process. Further, for
any event to be recorded, a configuration register must
be specified and correctly initialized, however, only cer-
tain configuration registers are legal for a given event.
PACMAN simplifies the initialization process by having
predefined values for any desired event which allow the
user to specify an event to be recorded by an intuitive
name, such as STALLCYCLES, and handles the low-
level details internally. Another difficulty is that, due
to sharing of the PMU, a given PMC register cannot be
allocated to both co-executing threads. However, since
registers are allocated in PACMAN according to the par-
titioning scheme described above, this problem is over-
come as well. In these ways, PACMAN greatly reduces
the difficulty of configuring PMC registers.

3 Example Use

In [2], we describe an online technique to use perfor-
mance counters collected at runtime to predict the per-
formance of recurring execution phases of parallel appli-
cations, were they to be run on a different number of pro-
cessors and/or threads on an SMT-based SMP. Runtime
prediction is essential for fast performance and power
adaptation of multithreaded codes, since it overcomes
the runtime overhead of direct search approaches.

In our scheme, sets of counters are collected during
the first two executions of each phase of a parallel pro-
gram with threads executing on all execution contexts

of all processors. Offline calculated coefficients created
using multiple linear regression with input from a train-
ing set are applied to each event count to predict the IPC
when the same phase is executed with different config-
urations of processors and threads per processor. Our
results show that the average IPC prediction accuracy is
above 85%.

Once IPC predictions for different execution scenar-
ios have been made, it is possible to adapt the number
of threads and processors used in future executions of
each phase according to some optimization metric, such
as execution time, energy, or a combination of the two.
This runtime adaptation scheme results in large gains
in both execution time and energy consumption over a
range of parallel benchmarks on multi-Hyperthreaded
SMPs. Such adaptation would not be feasible without
runtime access to performance counters at a fine gran-
ularity on a thread by thread basis and without the ex-
clusion of events incurred by external noise from other
applications or system activity.

Acknowledgments

This research is supported by the National Science
Foundation (Grants CCR-0346867 and ACI-0312980),
the U.S. Department of Energy (Grant DE-FG02-
05ER2568) and an equipment grant from the College of
William and Mary.

References

[1] S. Browne, J. Dongarra, N. Garner, K. London, and
P. Mucci. A Scalable Cross-Platform Infrastructure for
Application Performance Tuning Using Hardware Coun-
ters. InProc. of Supercomputing 2000 (SC’00), Dallas,
TX, November 2000.

[2] M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and
D. Nikolopoulos. Online Power-Performance Adaptation
of Multithreaded Programs using Hardware Event-Based
Prediction. InProc. of the 20th International Conference
on Supercomputing, Queensland, Australia, June 2006.

[3] S. Eranian. The Perfmon2 Interface Specification. Tech-
nical Report HPL-2004-200R1, HP Labs, February 2005.

[4] Intel Inc. Intel VTune Performance Analyser.
http://www.intel.com/software/products/vtune, 2003.

[5] D. Koufaty and D. Marr. Hyperthreading Technology in
the Netburst Microarchitecture.IEEE Micro, 23(2):56–65,
March 2003.

[6] M. Pettersson. A Linux/x86 Performance Counters Driver.
http://user.it.uu.se/˜ mikpe/linux/perfctr/.


