
1

Prediction-based Power-Performance Adaptation of
Multithreaded Scientific Codes

Matthew Curtis-Maury, Filip Blagojevic, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos

Abstract— Computing has recently reached an inflection point
with the introduction of multi-core processors. On-chip thread-
level parallelism is doubling approximately every other year.
Concurrency lends itself naturally to allowing a program to trade
performance for power savings by regulating the number of active
cores, however in several domains users are unwilling to sacrifice
performance to save power. We present a prediction model for
identifying energy-efficient operating points of concurrency in
well-tuned multithreaded scientific applications, and a runtime
system which uses live program analysis to optimize applications
dynamically. We describe a dynamic, phase-aware performance
prediction model that combines multivariate regression tech-
niques with runtime analysis of data collected from hardware
event counters to locate optimal operating points of concurrency.
Using our model, we develop a prediction-driven, phase-aware
runtime optimization scheme that throttles concurrency sothat
power consumption can be reduced and performance can be
set at the knee of the scalability curve of each program phase.
The use of prediction reduces the overhead of searching the
optimization space while achieving near-optimal performance
and power savings. A thorough evaluation of our approach shows
a reduction in power consumption of 10.8% simultaneous with
an improvement in performance of 17.9%, resulting in energy
savings of 26.7%.

Index Terms— Modeling and prediction, Application-aware
adaptation, Energy-aware systems

I. I NTRODUCTION

Microprocessors crossed an inflection point with the intro-
duction of multi-core architectures. Clock rates and instruction-
level parallelism have been replaced by the number of execution
cores as the key metric that characterizes the performance and
drives the marketability of a computer system. Moore’s law is
now interpreted as “the number of cores on a microprocessor is
expected to double every one to two years”, and hardware vendors
race to pack more cores on a single chip [23], [28].

In the new landscape of highly parallel microprocessors and
system architectures, system software appears to be largely un-
prepared for the transition. The programming effort required for
parallelizing and optimizing code practically remains an unre-
solved issue, even among research communities that have been
investigating this problem for decades. At the same time, power
dissipation is now a major consideration for system software
optimization on parallel architectures [12]–[15]. The introduction
of many simple cores on a microprocessor has been largely
motivated by the poor power-efficiency of microarchitectural
components that attempt to improve performance at the cost
of hardware complexity and reliability [4]. Concurrency not
only improves power efficiency, but also helps system software

Matthew Curtis-Maury, Filip Blagojevic, and Dimitrios S. Nikolopoulos are
with the Center for High End Computing Systems at Virginia Tech.

Christos D. Antonopoulos is with the Department of Computerand Com-
munications Engineering at the University of Thessaly.

steer power and performance simultaneously. The conventional
wisdom holds that when concurrency is increased, performance is
improved, but with an associated increase in power consumption.
Conversely, when concurrency is decreased, power consumption
is reduced, at a cost for performance.

While there are many situations where it is desirable to trade
performance for reduced power consumption, in the domain of
high-performance scientific computing, performance remains the
primary target. Applications written for high-end computing sys-
tems create a challenge for energy-aware system software, which
needs to identify opportunities to reduce power consumption with
a non-negative impact on performance. For example, dynamic
voltage and frequency scaling (DVFS) is a well-known technique
for reducing the dynamic power consumption of a micropro-
cessor in applications with extensive idle time. In well-tuned,
heavily optimized scientific applications, reduced idle periods
and memory latencies may limit the degree to which DVFS can
be exploited for energy savings. On the other hand, there are
certain cases where inherent program characteristics –such as
limited algorithmic concurrency, fine computational granularity,
and frequent synchronization– and architectural properties –such
as capacity limitations of shared resources– limit the scalability
and the maximum degree of exploitable concurrency in an appli-
cation, resulting in an observed performanceloss through the use
of more parallelism. In these cases, power and performance can
be simultaneously improved bythrottling concurrency.

To motivate the work presented in this paper, Figure 1
shows a breakdown of the parallel execution time of three
applications from the NAS Benchmarks Suite [20] into phases.
The breakdowns were obtained during execution of the bench-
marks on a quad-processor server with Intel Xeon proces-
sors using Hyperthreading technology. Each chart depicts the
(processors,Hyperthreads/processor) configuration that mini-
mizes the execution time of each phase. The fastest configuration
is identified experimentally by executing each target phasein all
possible hardware configurations of the system. LU-HP-B, SP-A
and MG-B execute optimally with at least one Hyperthread per
processor deactivated, thus saving power while simultaneously
improving performance, during 95%, 84% and 81% of their
parallel execution times respectively. LU-HP-B and SP-A execute
with at least one entire processor deactivated during 40% ormore
of the optimal execution time.

Despite its appeal, concurrency throttling is an opportunity
which may present itself to varying degrees across programs,
across phases of the same program, or even across inputs to the
same program. Identifying concurrency throttling opportunities
statically is hard, because it requires fine-grain analysisof the
dynamic behavior of parallel code across and within parallel
execution phases. Besides the problem of identification andquan-
tification of the opportunities, applying concurrency throttling
directly in applications requires exposure of the programmer to

2

(4,2)

(4,1)

(3,2)

(3,1)

(2,2)

(2,1)

(1,2)

(1,1)

 0 0.2 0.4 0.6 0.8 1

(p
ro

ce
ss

or
s,

th
re

ad
s)

 fo
r

m
in

. p
ha

se
 e

xe
cu

tio
n

tim
e

ratio of execution time

NAS LU-HP Class B

opportunities for power savings
hardware configuration for min. execution time

(4,2)

(4,1)

(3,2)

(3,1)

(2,2)

(2,1)

(1,2)

(1,1)

 0 0.2 0.4 0.6 0.8 1

(p
ro

ce
ss

or
s,

th
re

ad
s)

 fo
r

m
in

. p
ha

se
 e

xe
cu

tio
n

tim
e

ratio of execution time

NAS SP Class A

opportunities for power savings
hardware configuration for min. execution time

(4,2)

(4,1)

(3,2)

(3,1)

(2,2)

(2,1)

(1,2)

(1,1)

 0 0.2 0.4 0.6 0.8 1

(p
ro

ce
ss

or
s,

th
re

ad
s)

 fo
r

m
in

. p
ha

se
 e

xe
cu

tio
n

tim
e

ratio of execution time

NAS MG Class B

opportunities for power savings
hardware configuration for min. execution time

Fig. 1. Breakdown of parallel execution time of three applications from the NAS Benchmarks Suite, on a four-processor server with Intel Hyperthreading
processors. Each phase is represented with a gray rectangle. The length of the phase and the hardware configuration (#processors, #hyperthreads/processor)
that minimize the execution time of the phase correspond to the width and height of each rectangle respectively.

architectural details, such as the number and physical layout of
processors, which is widely considered as one of the factorsthat
make parallel programming exceptionally difficult [11]. Given
the complexity along with the inherent drawbacks of delegating
concurrency throttling decisions to the user or to a static analysis
tool, runtime systems appear to be ideal candidates for the iden-
tification and exploitation of concurrency throttling opportunities.

This paper presents theAdaptive Concurrency Throttling Op-
timization Runtimesystem (called ACTOR), which seeks the
optimal operating point of concurrency in multithreaded pro-
grams, at the granularity of program phases. In contrast to
concurrency throttling schemes based on live empirical search of
operating points, ACTOR relies on a novel dynamic, phase-aware
performance prediction (DPAPP) model. The model predicts the
optimal operating point of concurrency on different configurations
of processors, cores, and threads, here on referred to simply as
hardware configurations, through the statistical analysis of hard-
ware event rates. To the best of our knowledge, our methodology
is the first to provide a performance prediction of changing con-
currency levels and thread placement to an application at runtime.
The key contribution of the DPAPP model is that it enables
drastic reduction of the overhead associated with searching the
optimization space for concurrency throttling.

We use a multivariate regression process for selecting critical
hardware events and for training the DPAPP model in assessing
the scalability of a program phase across different hardware con-
figurations. The DPAPP training process derives distinct predic-
tors for thread-level, core-level, and processor-level parallelism,
to account for the presence of multidimensional parallelism and
variance in the impact of resource sharing between threads
within and across chip boundaries. We use the DPAPP model
to steer our runtime concurrency throttler, which succeedsin
identifying phases where power consumption can be conserved
while sustaining or improving performance. ACTOR operatesby
controlling the execution of the application, with the firstfew
iterations of the dominant phases of the application executed
under specific hardware configurations while selected hardware
event counters are sampled. After the sampling period, DPAPP
is invoked to predict phase performance across configurations
and the remaining executions of each phase are executed with
the decided upon optimal configuration. We demonstrate the
effectiveness of ACTOR using the NAS Parallel Benchmark suite
on a multiprocessor with multiple SMT processors.

The rest of this paper is organized as follows. In Section II,
we discuss background and related work. Section III introduces

our model for dynamic, phase-aware performance predictionof
parallel applications. Section IV presents our control scheme for
dynamic, power-aware and performance-aware concurrency adap-
tation of multithreaded codes. We present a detailed discussion
of our experimental methodology and results in Section V. We
conclude this paper in Section VI.

II. RELATED WORK

Substantial previous research has been performed on optimizing
the execution of programs using feedback from hardware event
counters (HECs), however it has predominantly been offline,
profile-guided in nature. For example, NUMA multiprocessor
page placement using hardware assistance [32], CPO from IBM
which includes management of variable page-size systems [5],
and case studies of specific applications [2]. In contrast, little
work has been done on runtime optimization utilizing hardware
counters as the program executes. Existing examples include
HEC-based SMT job schedulers [34] and the ADORE runtime
optimization system [31]. Our work falls into the category of on-
line dynamic optimization with feedback from hardware counters,
however it targets energy consumption in addition to performance.

Performance prediction of parallel programs has been studied in
great depth, however the majority of research is targeted atoffline
prediction. Work most similar to ours includes offline research on
partial execution-based prediction [40] and statistical simulation
of superscalar processors using IPC predictions based on very
short code samples [10]. Minimizing design space evaluation
time for processor development has spurred much research on
predicting the performance effects of altering various microarchi-
tectural parameters, including regression-based [29] andmachine
learning-based approaches [18], [21]. One important distinction
with previous work is that once we perform training, the model
can be applied to any desired applications, whereas many other
approaches perform training and prediction for a single applica-
tion [18], [21], [29]. To the best of our knowledge, no prior work
has consideredonlinepredictors of parallel execution performance
on shared-memory architectures, using runtime input on IPCand
hardware event counters.

High-performance, power-aware computing has recently be-
come an important topic of research. Efforts range from power-
scalable and power-efficient clusters [12], [13] to runtimesystems
providing support for dynamic frequency and voltage scaling for
parallel applications [14], [25]. Our work is most closely related
to the latter, as both attempt to identify opportunities at runtime to
achieve power savings without sacrificing performance. Ourwork

3

differs in that we target shared-memory rather than distributed
memory multiprocessors. It should be pointed out that DVFS and
concurrency throttling are not necessarily at odds with each other
as they may be applied in a synergistic fashion to achieve still
greater energy-efficiency [30].

Concurrency throttling has been previously applied for opti-
mization of multithreaded codes on shared memory multipro-
cessors. Specifically, concurrency throttling can enable adaptive
execution in multiprogramming environments [1], [38], [41]. Fur-
ther, standalone programs can benefit from concurrency throttling
across different phases with potentially different execution and
scalability characteristics [17], [42]. In most cases, concurrency
throttling is applied in a given phase by the programmer, the
runtime system, the hardware, or the compiler. Balasubramonian,
et al. [3] have considered hardware-based approaches to balance
communication and parallelism by throttling the use of clusters
on clustered microprocessors. Compiler-based control is generally
performed using a simple threshold-based strategy and the parallel
code region is either sequentialized or run with a programmer-
specified fixed number of threads [17], [22], [39]. Programmers
have long had the ability to manually specify concurrency levels,
however few runtime systems provide the functionality to auto-
nomically manage these decisions from within. Our work provides
such a system, offering fully autonomic concurrency throttling
based on performance predictions of each configuration.

Recent work has considered applying concurrency throttling
and DVFS on single chip multiprocessors, with decisions utilizing
search algorithms of the configuration space [30]. This research
shares many motivations with our work, however the suggested
solutions to the problem differ significantly. First, we do not
explore the potential of DVFS, but rather introduce a solution that
works on architectures independently of their support for DVFS.
Second, our approach is implemented on a real system, ratherthan
simulated, verifying that our technique works in practice with all
overheads considered. Third, we utilize performance prediction
rather than empirical searches of the configuration space toreduce
the number of test executions necessary to perform adaptation.
Further, we show that the overhead of search based techniques
hinders the performance of short-lived codes, particularly when
compared to prediction. Additionally, our approach targets multi-
processor systems where the combined energy consumption ofthe
processors plays a much larger role than in uniprocessor systems
such as that evaluated in [30].

Springer, et al. [37] propose an approach to identify the
number of nodes in a cluster and DVFS level to use to meet
a user-specified energy budget. The authors target clusters, where
application scalability is considerably better than on SMPs, and
thus they do not attempt toimproveperformance through adap-
tation. On the other hand, we exploit poor scalability on SMPs
to improve both the power and performance of an application
simultaneously. Additionally, their approach requires multiple
offline executions of the target application, whereas we perform
all application-specific analysis with minimal overhead during
live executions. However, the two approaches could be applied
together to determine the optimal concurrency to use per node.

III. D YNAMIC PHASE-AWARE PERFORMANCEPREDICTION

The goal of dynamic phase-aware performance prediction
(DPAPP for short) is to predict the performance of a multi-
threaded, compute-intensive region of code in a program –which

we hereafter refer to as aphase– across varying configurations of
the processing units on a parallel architecture [6]. We use the
term processing unitsas an umbrella term covering hardware
threads, processor cores, or entire processors. As a base hardware
substrate, we consider shared-memory multiprocessors with three
distinct types of processing units, namely multi-core processors,
cores within processors, and threads within cores. We referto each
of these types of processing units as adimension of parallelism
in the system. The dimensions of parallelism that we consider
are representative of current commercial multiprocessors[23],
[28]. Our DPAPP technique considers phases that are identified as
parallel loops, as these structures encapsulate the bulk ofparallel
code in real scientific applications. Specifically, for the purposes
of this work we define phases to be OpenMP parallel regions.

Our DPAPP model works by predicting the cumulativeuseful
Instructions Per Cycle (uIPC) of multithreaded phases.uIPC is
defined as the sum of IPCs of the threads used to execute a phase,
excluding instructions and cycles expended for synchronization
and parallelization. Ignoring parallelization and synchronization
overheads makesuIPC inversely proportional to the execution
time of a fixed number of instructions on a given hardware
configuration. Note that althoughuIPC ignores instructions for
triggering and synchronizing threads, it still considers the effects
of interference between threads on shared hardware resources
during concurrent execution. The objective of DPAPP is to
identify phases where concurrency can be reduced during the
execution of useful application computation, with a non-negative
impact on performance.

A. DPAPP Outline

DPAPP makes distinct predictions of the optimal number of
processing units to use at each dimension of parallelism in the
system. For ease of presentation, we first describe the operation
of DPAPP for a given dimension of parallelismd. We defer
the discussion of how DPAPP predicts across dimensions of
parallelism until Section III-E.

DPAPP takes input from live samples of hardware event
counters. HECs are sampled at the beginning and end of each
phase, while the phase is executed on the configuration that
activates all processing units at dimensiond. The set of hardware
events sampled are specific tod and are selected using a formal
statistical process, according to their contribution touIPC. We
refer to these events ascritical events. Samples of critical event
rates are fed to a model that estimatesuIPC per phase, per
configuration, for all feasible configurations of processing units at
dimensiond. Intuitively, DPAPP attempts to predict how the rate
of retirement of useful instructions,uIPC, will change in a phase
when the number of processing units used to execute the phase
changes. To make this prediction, DPAPP uses a multivariate
regression model, which correlates observed event rates ona
sampled configuration and observeduIPC values on all feasible
hardware configurations during training runs. The model outputs
a set of scaling factors foruIPC and the critical hardware events,
for each feasible hardware configuration. These outputs areused
as constant coefficients during production runs, to predictoptimal
operating points of concurrency for each phase in the code. We
describe the model in more detail in Section III-B and the process
for training the model in Section III-C. The process for selecting
critical events is discussed in Section III-D.

4

The objective of DPAPP is to produce performance predictions
and adapt the code dynamically, as the program executes. Re-
call that a primary motivation behind DPAPP is the avoidance
of the overhead of experimentally searching through hardware
configurations to find optimal operating points for phases inthe
program. To minimize the prediction overhead and to achieve
effective code adaptation as early as possible during execution,
DPAPP samples HECs for a minimal number of phase traversals.
Following phase traversals used for sampling hardware event
rates, the runtime system selects the predicted optimal operating
point of concurrency for each phase. By contrast, an exhaustive
search algorithm would have to test

∏D

d=1
pd phase traversals,

wherepd is the number of processing units in dimensiond and
D the number of dimensions of parallelism. A heuristic search
algorithm would also have

∏D

d=1
pd worst-case complexity.

B. uIPC Prediction Model

The DPAPP predictor estimates theuIPC of a phase on a
target configurationt (denoted asuIPC(t)) using input from
execution of the phase on a sampled test configurations. The
input from the sampled execution includes the actualuIPC of the
sampled configuration (uIPC(s)) and a set ofn hardware event
per cycle rates, (e1(s), ..., en(s)). Each event rateei(s), i = 1 . . . n

is the number of occurrences of eventi divided by the number
of elapsed clock cycles during the execution of the phase in test
configurations. Although in theory, the DPAPP predictor can use
any feasible configuration as a sample configuration, we heuristi-
cally chose to use the configuration where all processing units at
the given dimension of parallelism are active. Intuitively, uIPC

and the event rates sampled in this configuration encapsulate the
cumulative impact of hardware components on scaling.

We model uIPC(t) of the target configuration, as a linear
function of uIPC(s) of the source configuration, as:

uIPC(t) = uIPC(s) · α(t, e1(s), ..., en(s)) + β(t) (1)

for a set ofn critical hardware events, which may function either
as enhancers, or as impediments of scalability. The selection of the
events in this set is discussed further in Section III-D. Notice that
both the scaling factorα and the constant termβ of the linear
function are specific to and dependent on the target hardware
configurationt. In other words, each target configurationt exerts
its own scaling impact onuIPC(s), which can be positive or
negative. To gauge how individual critical events affect scalability,
the linear scaling factor is in turn modeled as a linear combination
of hardware event rates observed during the sampled configuration
s as follows:

α(t, e1(s), ..., en(s)) =

n∑

i=1

(xi(t) · ei(s) + yi(t)) + z(t) (2)

The linear model of event rates stems from the empirical
observation that a change in the configuration used to execute a
program phase will result in changes – either upwards or down-
wards – of critical hardware event rates, reflecting the contention
or effective hardware utilization at each level of parallelism.
These event rates are related – positively or negatively – with the
uIPC, and this relationship can be accurately represented using
a linear model [26], [33]. We capture this relation in Equation 2

with positive or negative event coefficients respectively.Our
model attempts to estimate these coefficients using multivariate
regression, discussed further in Section III-C. The advantage of
such anempirical modelis that it is hardware agnostic, that is,
it can be re-trained for arbitrary architectures without requiring
detailed user-provided domain knowledge about the processor.

Combining equations 1 and 2, the estimateduIPC for a target
configurationt can be calculated as:

uIPC(t) = uIPC(s) ·

n∑

i=1

(xi(t) · ei(s)) + uIPC(s) · γ(t) + β(t)

(3)
whereγ(t) is defined as

∑n

i=1
(yi(t))+z(t). Accurate estimation

of uIPC for a target configurationt is thus dependent on the
proper approximation of the coefficientsxi(t), γ(t), and the
constantβ(t). Note that the coefficients scale both the event rates
anduIPC of the sampled configurations.

uIPC(t) values for all possible configurations are used di-
rectly for prediction of the optimal operating concurrencyfor
each phase, at the given dimension of parallelism. We truncate
uIPC predictions that exceed the cumulative maximum capacity
(uIPCmax) of all processing units at the given dimension of
parallelism, touIPCmax, which is derived experimentally for any
given processor using microbenchmarks. Furthermore, we assume
that there is no super-linear speedup across configurationsof a
phase, although this case does appear in real codes. In practice,
phases with super-linear speedup have their optimal operating
point of concurrency at the maximum number of processing units
and offer no opportunity for concurrency throttling.

C. Offline Training and Estimation of Coefficients

We use multivariate linear regression on the multithreaded
phases of a set of training benchmarks to determine the values of
the coefficients in Equation 1. Although more advanced machine
learning techniques could be deployed for prediction, the number
of cycles invested in making predictions at runtime is a primary
concern for DPAPP, therefore we opt for the simplest linear
prediction model. Specifically, training benchmarks are executed
under all feasible hardware configurations, at all dimensions of
parallelism, while recording per-phaseuIPC and the critical
hardware events used for prediction (see Section III-D). The
training benchmarks are selected empirically so as to include
phases with variance in three characteristics: scalability ranging
from poor to perfect; granularity of parallel computation,ranging
from fine to coarse; and ratio of computation to memory accesses,
ranging from low to high. Through this process, patterns in
the effects of event rates on scalability are learned statistically,
resulting in high accuracy when applied online.

Our multivariate regression analysis uses the events collected
under the selected sample configurations multiplied by theuIPC

of the sampled configuration, i.e.ei(s) · uIPC(s), and the actual
uIPC alone (uIPC(s)) as independent variables, to predict
the uIPC(t) of each target configurationt as the dependent
variable. We use the product ofei and uIPC of the sampled
configuration for coefficient derivation because our model uses
multiplicative effects of events on the observeduIPC rather
than additive ones, in accordance with Equation 3. This process
estimates the necessary coefficients for each event in function
α(t). Regression analysis is performed separately to predictuIPC

5

for each target configurationt, therefore we derive independent
sets of coefficients and independent scaling factors for each target
configuration. For a system withpd units in dimensiond of
parallelism,1, . . . , D, multivariate regression analysis derives a
total of

∑D

i=1
pd sets of coefficients.

D. Rigorous Event Set Selection foruIPC Prediction

The accuracy of DPAPP is heavily dependent upon the selection
of an effective set of critical events for predicting performance and
scalability along each dimension of parallelism. The events should
accurately reflect, in a statistical sense, performance andscala-
bility bottlenecks in the system. We have previously considered
empirical selection of events that represent known performance-
critical components of microprocessors [6]. In this paper,we
present a rigorous statistical technique, which automatesthe
event selection process and makes it reproducible and generally
applicable to any target architecture.

Modern processors generally provide very large sets of events
that can be recorded, of which multiple can typically be recorded
at the same time. For example, Intel Pentium 4’s provide 40 events
which can be further differentiated by specifying bitmasksto each
event, and up to 18 events can be recorded at once. The IBM
Power5 provides 500 events and permits up to 6 to be recorded
simultaneously. The number of legal sets of events that can be
recorded simultaneously on these architectures is far too large for
it to be feasible to exhaustively test each set of events as input for
prediction. Moreover, while the most effective predictionpossible
would likely result from the use of all (or at least most) available
events, there is an architectural limit on how many events can be
recorded simultaneously.

Rather than exhaustively looking at each possible combination
of events, our predictor training tool independently looksat the
contribution of each event touIPC. To gauge each event’s
significance, we initially use multivariate regression on data from
the set of training benchmarks to predictuIPC(t) for each target
configuration, using all events that are available for monitoring
on the processor. We modeluIPC as in Equation 3, with the
exception that we use a set ofN events whereN >> n.

Following the initial uIPC modeling phase, we prune all
events that have zero or negligible occurrence rates. We then
consider the contribution of each event to the resultinguIPC(t)

prediction, as a percentage ofuIPC(t). The contribution of each
event is calculated by multiplying the event rate by its coefficient
and byuIPC(s) and dividing the result byuIPC(t). We average
the contributions of each event across all feasible configurations
and all phases in the training runs, and rank the events in
descending order of contribution. The actual number of events
selected for prediction (n) is processor-dependent. We setn to be
the maximum number of events that the hardware performance
monitor of the processor can count simultaneously, withouttime-
multiplexing of event registers. This selection criterionminimizes
the overhead of monitoring hardware events for prediction.

E. Prediction on Architectures with Multiple Dimensions ofPar-
allelism

On architectures with multiple dimensions of parallelism,re-
source sharing varies considerably across dimensions. Forex-
ample, physical processors in an SMP share only the off-chip
interconnection network and DRAM. Cores within a processor

typically share an on-chip interconnection network and theouter-
most levels of the on-chip cache. Threads on a single core share
most resources of the execution core, including pipelines,branch
predictors, TLB, and L1 cache. Contention for these shared
resources is largely responsible for performance and scalability.

To capture the implications of multidimensional parallelism,
DPAPP uses a distinct set of critical events and derives a distinct
set of scaling factors for each dimension of parallelism in the
system. DPAPP repeats the processes outlined in Section III-B
and Section III-D, to obtain prediction event sets and coefficients
for each dimension of parallelism. At actuation time, DPAPP
makes predictions along each of the dimensions of parallelism and
combines these predictions to yield a power-efficient concurrency
operating point for each phase in the program.

F. Predictor Optimization

The accuracy of DPAPP is significantly improved by clas-
sifying code phases according to their observeduIPC during
the execution of the sampled configuration. The justification for
such an extension is twofold. First, grouping phases based on
uIPC allows training and prediction to occur separately for
phases with different scalability slopes. As such, the division
between buckets is selected such that it divides different degrees
of scalability. Second, it is intuitive that the effects of events will
vary depending on the original instruction throughput of each
phase. Dividing the phases into buckets and creating separate α(t)

scaling functions for each class of phases gives the predictor the
opportunity to make more fine-grain and accurate predictions.
At runtime, the observeduIPC on the sample configuration
determines which set of coefficients will be used for prediction.
We use this optimization in our implementation of DPAPP.

IV. CONCURRENCYCONTROL FORPERFORMANCE AND

POWER OPTIMIZATION

In this section we present our phase-aware concurrency throt-
tling algorithm for a 2-layer shared-memory multiprocessor, such
as a multi-chip multi-processor with multi-core processors. We
then discuss the power and energy reduction potential of the
algorithm and extensions to the algorithm that take accountfor
inter-phase interference.

A. ACTOR Runtime System

Scientific codes are dominated by iterative execution of phases
and ACTOR exploits this property to sample hardware event
rates in the first few phase traversals and set the concurrency of
each phase to the predicted optimal operating point, early during
execution of the program. The live search of the optimization
space for operating points of concurrency can also be performed
by timing phases at different configurations and running search
heuristics such as greedy hill-climbing [7], [30] or simulated
annealing [27]. However, as the number of feasible hardware
configurations increases with the introduction of more cores and
threads per processor, direct search methods may spend most
of the execution time sampling suboptimal configurations, rather
than optimizing the program. This disadvantage manifests itself
in codes where dominant multithreaded phases are traversedonly
a few times. Even if direct search methods are used for off-line
auto-tuning by repetitive executions of the entire program[11],
searching the optimization space for any input on any feasible

6

1: {Input : phase identifier, sampling rate}
2: {Output : predicted optimal operating concurrency,cmax}
3: {Assumes2-dimensional multiprocessor withP0·P1 processors.}
4: {Each tuple{p0, p1} represents a hardware configuration.}
5: S ← sampling rate; cmax ← {P0, P1}; uIPCmax ← 0;
6: for all i, 1 ≤ i ≤ S do
7: cmax,i ← {P0,

i

S
· P1};

8: sampleuIPC(cmax,i);
9: sample event rates ofcmax,i;

10: uIPCmax,i ← uIPC(cmax,i);
11: for all j, 1 ≤ j ≤ P0 do
12: c← {j, i

S
· P1};

13: predictuIPC(c);
14: if uIPC(c) > uIPCmax,i then
15: uIPCmax,i ← uIPC(c); cmax,i ← c;
16: end if
17: end for
18: if (uIPCmax,i > uIPCmax) then
19: cmax ← cmax,i; uIPCmax ← uIPCmax,i;
20: end if
21: end for

Fig. 2. The concurrency throttling algorithm within ACTOR for an archi-
tecture with 2-dimensional parallelism.

Application

Runtime

System
DPAPP

Predictor

Decision

Enforcer

Self-Adapting

Application

Coefficients

Hardware

HECs

library calls

HEC management

HEC collection

HEC

values

Config.

Decision

ACTOR

Fig. 3. The overall structure of the ACTOR runtime system.

configuration of processing units may be prohibitive. ACTOR
prunes the search space for concurrency optimization to a constant
number of samples.

Figure 2 illustrates a DPAPP-driven concurrency throttling
algorithm in ACTOR for a multiprocessor with two dimensions
of parallelism. The DPAPP-based concurrency throttling algo-
rithm has two parameters, the sampling rate and the dimension
of parallelism along which the initial samples are taken. The
sampling rate,S, corresponds to the number of times each
phase needs to be executed before deriving a prediction for
the optimal operating point and is used to control the sampling
overhead. In our prototype, we use a sample rate ofS = 2 taken
along the innermost dimension of parallelism, i.e. threadswithin
a processor, which provides the minimum number of samples
needed to capture the effects of using more than one core or thread
per processor. The second parameter is fixed at the training phase
of the DPAPP predictor, during which all possible orderingsof
dimensions of parallelism can be tested. The algorithm in Figure 2
generalizes to more than two dimensions by repeating the loop
in lines (11)–(17) for each dimension beyond the second.

The structure of the ACTOR system is given in Figure 3. The
controller is dynamic, in the sense that it adapts the program as
it executes, with no prior knowledge of program characteristics.
Currently, ACTOR requires simple, formulaic instrumentation in

Timestep

Sample 1 Sample S… Decided Optimal Configuration

1 S S+1 N0

Make Prediction

…

Fig. 4. Sampling, prediction, and execution timeline for each phase.

the application, however we plan to instead embed all functional-
ity within the threading substrate. ACTOR estimates optimal op-
erating points of concurrency using samples of critical hardware
event rates from live executions of program phases. Specifically,
the library controls the firstS phase traversals to execute on the
desired sample configurations and collect event rates, as shown in
Figure 4. At the end of the sampling period, collected event rates
are used by DPAPP to predict theuIPC of each phase on alter-
native configurations. Once predictions for a phase are obtained,
all subsequent traversals of a phase are executed at the predicted
optimal operating point of concurrency. ACTOR enforces con-
figuration decisions through the Linux processor affinity system
call, sched setaffinity(), and threading library specific calls for
changing concurrency levels, such asomp set num threads()

in OpenMP. The library executes at user-level and so does not
require administrator privileges. The overhead of using ACTOR
in terms of the time spent not executing application code is
approximately five hundred thousand cycles per program phase
(250 microseconds on a 2 GHz processor), which is negligible
for any realistic application.

While both concurrency throttling and DVFS target improved
energy-efficiency, concurrency throttling has the advantage that
it will often improve performance, whereas DVFS sacrifices
performance to reduce power consumption. Further, DVFS relies
on program phases with high memory access rates to avoid
degrading performance significantly, while concurrency throttling
may be applied in other cases as well. In general, however, the two
approaches are likely to be highly synergistic and can be applied
together to achieve even greater energy-efficiency. For example,
DVFS could be applied using existing approaches to cores kept
active by concurrency throttling. More sophisticated techniques
could be devised to optimize both DVFS and concurrency, how-
ever such a solution is beyond the scope of this work.

Certain assumptions are necessary to implement our concur-
rency throttling system and we outline those in the following.
First, we rely on the capability of the runtime system to change
the number of threads used to execute a phase of parallel codeat
runtime. This capability is available in OpenMP, at the granularity
of parallel loops and parallel regions. However, changing the num-
ber of threads at runtime may not be possible in some applications
due to data initialization which depends on the number of threads
used. This pattern is uncommon and is trivial to modify. Second,
the phases of an application must be executed at leastS times, to
allow for sampling. Finally, the execution properties of each phase
between executions must remain relatively stable. In practice, this
is the case in both regular and irregular codes.

While we have specifically designed ACTOR for use with
iterative scientific applications, the approach may apply to other
categories of applications as well. The basic principle of ACTOR
can be used with any definition of a phase where concurrency

7

can be dynamically adjusted. For example, in non-iterative,
synchronization-intensive, or heterogenous multithreaded codes,
if an existing phase identification technique can be employed to
identify repetitive behavior where concurrency is modifiable, then
our approach can be applied. For server workloads the application
may be treated as one large phase and a limited timeframe can
be monitored to decide concurrency for the entire application.

B. Energy Savings Possibilities

Energy savings using adaptive concurrency throttling come
through two avenues. First, by reducing execution time, be-
cause the energy consumed is reduced proportionally. Second,
through the deactivation of processing units, which reduces power
consumption. The power consumption of a processing unit is
dependent upon its level of utilization, as clock-gating limits the
power dissipation of functional units when they are idle. Further,
a processor can be transitioned to a lower power mode when it
is not being used. For example, on Intel Pentium 4 processors,
the hlt instruction transitions the processor to a low power mode,
where power consumption is reduced from approximately 9W
when idle to 2W when halted. While we do not manually control
the transitioning between power states of the processors from
within the runtime system, the operating system does so when
the processor remains inactive for some time period. We have
experimentally verified that in Linux 2.6 kernels, processors are
actually transitioned to the halted state during 90% of the time
during which they have been left idle. Manually transitioning
processors would result in minimal additional power savings, so
we do not consider this direction further in this work.

C. Cross-Phase Decision Making

The processes of prediction, decision making, and adaptation
are not performed at whole-program granularity, rather, each
phase of an application is analyzed independently. This allows
phases with different execution properties in the same application
to execute with their own, locally optimal hardware configu-
rations. Since many programs have behavior that varies across
phases [36], overall performance can be improved compared to
using a single configuration for the entire program. However, a
non-negligible performance penalty may be paid as a result of
changing the hardware configuration across adjacent phasesat
runtime. This performance penalty stems primarily from migra-
tion of working sets of threads between caches [24]. To avoid
negative inter-phase interference, we consider variants of our
adaptation scheme that are aware of this interference.

We have developed two schemes for cross-phase adaptation.
The first of these schemes simply finds the configuration that is
best for the majority of the application’s phases and applies this
to all phases, regardless of their locally optimal configuration.
This scheme avoids cache interference entirely, at the expense
of using a single configuration for all phases and missing fine-
grain optimization opportunities. The second approach is an
extension to the first, where phases are allowed to temporarily
replace the global optimal configuration with their local optimal
configuration, only if IPC improvement beyond a preset threshold
is predicted by using the local decision. Using this technique,
interference will only be tolerated when the phase in question is
expected to make up for it in performance gain through the use
of an alternative configuration.

V. EVALUATION

In this section we perform an evaluation of both the perfor-
mance prediction model and the adaptive concurrency throttling
technique presented in previous sections. In the next subsection
we present the experimental setup that we used in our evaluation.
Following, we present the results of event selection for prediction
and the resulting accuracy of the predictor. Finally, we compare
the power and performance results of ACTOR with those attained
by online techniques based on empirical search and by offline
techniques using predetermined concurrency.

A. Experimental Setup

We performed all of our experimental evaluations on a Dell
PowerEdge 6650 server equipped with four Intel Hyperthreaded
Xeon processors with 1GB of main memory. Each processor is a
1.4 GHz, 2-way SMT equipped with an 8-KB L1 data cache, a
12-KB trace cache, a 256-KB L2 cache, and a 512-KB L3 cache.
The operating system on the server is Linux kernel version 2.6.15.

Experiments were performed with 10 benchmarks that are
representative of scientific and engineering applicationstypically
requiring high performance. Nine of the benchmarks originate
from the OpenMP version of the NASA Advanced Supercom-
puting Parallel Benchmarks suite, version 3.1 [20]. We use three
different problem sizes, available in the NAS distribution(W, A,
B). MM5 is an OpenMP implementation of a mesoscale weather
prediction model [16]. The benchmarks include a wide variety of
program properties, in particular, widely varyinguIPC scalability
across execution phases. Therefore, they are challenging targets
for prediction. The benchmark suite includes several benchmarks
with a small number of iterations (CG, FT, IS, MG), in which
empirical search strategies may suffer due to a large percentage
of total execution time being spent in exploration, as well as
benchmarks with a large number of iterations (BT, LU, LU-HP,
SP, UA, MM5), where search strategies stand to have their search
overheads better amortized. Results for FT are not includedfor
class size B, because its working set does not fit in the available
memory of our hardware platform.

Table I lists the benchmarks along with some pertinent infor-
mation about their structure. The number of iterations, phases, and
percentage of time spent in parallel regions shown are for class
size A. The table also outlines the percentage of execution time
during which at least one processor can be deactivated with non-
negative impact on performance (i.e. the program runs optimally
with at most 3 processors) and percentage of execution time
during which one Hyperthread per processor can be deactivated
with non-negative impact on performance (i.e. the program run
optimally with at most one Hyperthread per processor), averaged
over all three class sizes. This information is taken from static
executions on all feasible hardware configurations.

B. Performance Prediction Evaluation

In order to evaluate our performance prediction model, we
selected two benchmarks for training, specifically UA (compiled
to class size A) and MM5. These benchmarks were selected
because the phases they contain have widely varying execution
properties, including IPC, scalability, and locality. Further, they
contain enough phases, specifically 119, to serve as a standalone
training set. These applications were used in the event selection
process as well as the predictor training. Predictions weremade

8

Benchmark BT CG FT IS LU LU-HP MG SP UA MM5
Iterations 200 15 6 10 250 250 4 400 200 180
Phases 5 5 5 1 3 11 6 9 49 70

% Time in Phases 99.5 91.6 91.2 79.7 99.9 99.7 86.3 99.6 99.8 95.5
% Time Disable CPU 1.9 33.3 0.1 100.0 0.0 15.1 6.0 35.1 59.3 7.7
% Time Disable SMT 99.1 66.6 93.0 100.0 0.0 50.8 53.5 32.9 33.1 70.0

TABLE I

THE SET OF BENCHMARKS WE USED TO EVALUATE ONLINE PERFORMANCE PREDICTORS FOR POWER-PERFORMANCE ADAPTATION, ALONG WITH THEIR

MAIN PHASE CHARACTERISTICS. UA AND MM5 WERE SELECTED FOR USE IN PREDICTOR TRAINING.

for the remaining benchmarks, i.e. all remaining NAS benchmarks
with class sizes W, A, and B. Sample configurations of one and
two threads active on all four processors were selected as input
to predict for configurations with fewer processors active.As a
result, predictions were made for a total of six configurations.

1) Event Selection:Selection of an effective set of events
to use for performance prediction requires data for all of the
available hardware counters on each of the test configurations
for all of the training benchmark phases. Further, theuIPC

values of all phases on each hardware configuration are necessary
as well. There are 40 events on Pentium 4 processors that
can be recorded using only a single register each, with further
differentiation within each event through the use of bitmask
parameters specifying, for example, to record L2 cache misses,
hits, or accesses. There is also an event to count memory accesses
which requires two counter registers. We select one bitmaskfor
each event representing the hardware parameter most likelyto
have the largest effect on performance, leaving 41 events to
consider. Of these, 13 had rates near zero, and were thus removed
as described in section III-D. The performance monitoring unit
of the Pentium 4 with Hyperthreading technology shares the 18
counter registers between the two co-executing threads, leaving
9 counters available for each thread. The 28 events that survived
pruning provide a total of 99,372 possible architecturallylegal
sets of events that can be recorded on the 9 performance counter
registers per thread.

Regression analysis was performed on the data from each
phase to find the events that contributed the most to the resulting
IPC prediction. Table II displays the set of events that was
selected for prediction from each sampled configuration on our
platform. In this discussion, configuration(nproc, nthr/proc)

denotes a configuration withnproc processors andnthr/proc

threads per processor. It should be pointed out that events with
large contributions have been excluded due to conflicts withmore
dominant events. That is, the inclusion of one highly contributing
event often eliminates other contributing events that interfere with
it. All that can be done in these cases is to select the event with the
largest contribution and ignore the conflicting events. Specifically,
three of the top five events on this architecture cannot be included
because they conflict with the top two events. This suggests that
on architectures where there are no dependencies between events,
our prediction approach will likely achieve higher accuracy.

2) Prediction Accuracy:We perform our evaluation of the
accuracy of the online performance predictor using eight ofour
ten benchmarks, excluding the two benchmarks used for training
the predictor. We consider the absolute prediction error and the
configuration prediction error for each benchmark. We calculate
the absolute prediction error as|uIPCpred−uIPCobs|/uIPCobs,

Predictor (4,2)→(*,2) (4,1)→(*,1)
Event0 Cycles Active Cycles Active
Event1 L2 Cache Misses L2 Cache Misses
Event2 Branches Retired Branches Retired
Event3 UOP Queue Writes TC Deliver Mode
Event4 Mem. Access Canceled Mem. Access Canceled
Event5 SP SIMD UOPs DP SIMD UOPs
Event6 Memory Accesses (1) Machine Clears
Event7 Memory Accesses (2) Stall Cycles
Event8 Instructions Retired Instructions Retired

TABLE II

THE INTEL PENTIUM 4 HARDWARE EVENTS SELECTED FOR PREDICTION

FROM EACH SAMPLED CONFIGURATION. THE SECOND AND THIRD

COLUMNS SHOW THE EVENTS FOR PREDICTING CONFIGURATIONS WITH2

AND 1 HYPERTHREADS ACTIVATED PER PROCESSOR RESPECTIVELY.

whereuIPCobs is the observed IPC of useful instructions. The
average prediction error for each phase is taken across all target
configuration predictions. Configuration prediction accuracy illus-
trates how often the predictor identifies thelocal static optimal
configuration, which is defined as follows: We execute the bench-
marks with each of the eight possible hardware configurations
statically, i.e. with no concurrency throttling between phases.
For each phase, we designate as optimal the one configuration
that minimizes the execution time of the phase. We should note
that the litmus test for our predictor is notuIPC prediction
accuracy but configuration prediction accuracy. As long as the
predictor consistently predicts the optimal configurationcorrectly,
a potentially highuIPC prediction error can be disregarded.

As discussed in Section III-F, we utilize phase classification
before making predictions. Specifically, we divided phasesinto
buckets withuIPC greater than or equal to 1.0 and those less
than 1.0 during the sampled configuration. This division is not
arbitrary, rather, it provides an approximate value to separate
phases with low scalability characteristics versus those that scale
well, on our experimental platform. During prediction, each phase
uses the coefficients derived from theuIPC bucket corresponding
to its observeduIPC during the sampled configuration.

The uIPC prediction accuracy can be seen in the leftmost
graph of Figure 5. This graph gives the cumulative distribution
function of prediction error, that is, the percent of phasesthat
experience error below each threshold with threshold samples
taken every 5%. The median absolute prediction error is 12.6%.
We note that 24% of all predictions have less than 5% error and
43% of all predictions have less than 10% error. On the other
hand, only 4% of the predictions show error larger than 50%.
Although our performance prediction model is purposefullysim-
ple to minimize the overhead of applying it at runtime, its results

9

Absolute Prediction Accuracy

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
Prediction Error (%)

%
 P

h
as

es

Configuration Prediction Accuracy

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8
Rank of Selected Configuration

%
 P

h
as

es

Performance Loss due to Misprediction

-1

0

1

2

3

4

5

6

BT CG FT IS LU LU-HP MG SP AVG

Benchmark

P
er

fo
rm

an
ce

 L
o

ss
 (

%
)

Fig. 5. The left chart illustrates the CDF of prediction error. The middle chart illustrates the percent of phases for which each rank of configuration was
selected. The rank of the selected configuration is taken from the list of configurations sorted by their IPCs on static executions of each phase. A value of 1
indicates that the optimal configuration was selected. The right chart shows the performance loss (>0) or gain (<0) resulting from configuration misprediction.

compare favorably with other reported statistical techniques for
predicting IPC [9]. The high accuracy of the model stems fromthe
use of statistically selected event rates, which allows predictions
to be made based on detailed knowledge of the utilization of
specific critical processor resources where programs spendmost
of their execution cycles. Trends in the relationship between
the usage of these resources and the resulting scalability are
learned offline through statistical analysis of the training set, so
an accurate model is achieved because the training phase captures
a wide range of scalability-event correlation patterns.

In terms of prediction of the optimal configuration for each
phase, the middle chart of Figure 5 shows the percent of phases
for which each possible ranking of configuration was selected.
This value is calculated by sorting the configurations by IPC
for each phase and identifying which entry was selected by
the predictor. For example, a value of 1 indicates that the best
configuration was selected and 2 indicates that the second best
configuration was selected, etc. This graph shows that in 64%of
phases the single best configuration is identified by the predictor.
An additional 19% of phases have the second best possible config-
uration selected. This evaluation shows that optimal configuration
identification occurs at a higher rate than might be expectedfrom
the error rate reported. The observed success rate can be partially
attributed to the fact that the predictors tend to consistently over-
predict or under-predictuIPC by similar margins across configu-
rations for any given target phase. Therefore, theuIPC prediction
error does not prevent correct ranking of configurations.

As a result of the high configuration prediction accuracy, the
performance loss in mispredicted regions is usually quite low. The
rightmost chart of Figure 5 shows the weighted performance loss
observed for each benchmark during mispredicted phases. This
value is calculated as

∑NB

i=1
wi · Di, whereNB is the number

of mispredicted regions in benchmarkB, wi is the weight of
each mispredicted region expressed as the percentage of thetotal
parallel execution time ofB that the specific region accounts
for, andDi is the absolute performance penalty suffered by the
mispredicted regioni. The average penalty across benchmarks
is only 1.2%. The explanation for the negative performance loss
(performance gain) of LU-HP is that by not changing configu-
rations to the optimal in all cases, the cache effects of altering
configurations are reduced. These results show that our model
is capable of identifying the optimal configuration most of the
time and when it does not it still manages to find a competitive
configuration to use, with minimal performance penalty.

C. Adaptive Concurrency Control Evaluation

To measure the power consumption of the benchmarks under
various hardware configurations we utilize a power measurement
methodology based on hardware event counters [19] that has
proven to be highly accurate. This methodology works by first
partitioning the processor into components and then determining
the maximum power consumption of each component based on
the die area it consumes. The runtime power consumption of each
component is the maximum power adjusted by an activity factor.
The latter is estimated by looking at corresponding hardware
event counters. This amount is added to a non-gated clock power
associated with each component, that grows non-linearly with
activity. The power consumptions of all components are summed
along with a constant base idle power. Additionally, we monitor
the number of cycles during which the processor is halted and
only charge an associated halted power in these cases. It should
be noted that we focus only on processor power consumption.
For the well-tuned scientific applications that we considerin this
paper processor power is the dominant portion of the total system
power consumption [35].

1) Motivating Examples:Figure 6 depicts the execution times
and energy consumption of each benchmark under class size A
for each static configuration. Static configurations use a single
configuration for the entire execution. These graphs show that on
our experimental platform, very little additional performance gain
is seen through adding additional processors once two processors
are active. Particularly interesting is the IS benchmark, which sees
its best performance using a single thread on only one processor.
Further, sometimes there is a large gain through using the second
execution context on each processor and sometimes a substantial
loss. For these reasons, adaptation of the number of processors
and execution contexts stands to improve both execution time and
power consumption. It can be observed that while performance
levels out, the energy consumption increases at rather steep rates
with more processors.

The reader may note that the observed scalability bottlenecks
are an artifact of hardware bottlenecks, such as limited memory
bandwidth. While this statement is correct, it also reflectsa
property of a large number of real systems, including state-
of-the-art platforms that outdate our experimental system. For
example, we performed experiments with the NAS benchmarks on
a newly released quad-core Intel processor (Q6600) which have
shown that applications still tend not to scale well on even the
latest hardware. In particular, several of the benchmarks fail to
scale beyond two cores, with maximum speedups saturating well

10

BT Class A

0
50

100
150
200
250
300
350
400
450

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0

5000

10000

15000

20000

25000

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

CG Class A

0

2

4

6

8

10

12

14

16

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0

100

200

300

400

500

600

700

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

FT Class A

0

5

10

15

20

25

30

35

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0

500

1000

1500

2000

2500

3000

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

IS Class A

0

2

4

6

8

10

12

14

16

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0

200

400

600

800

1000

1200

1400

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

LU Class A

0

100

200

300

400

500

600

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0

5000

10000

15000

20000

25000

30000

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

LU-HP Class A

0

100

200

300

400

500

600

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)
0

5000

10000

15000

20000

25000

30000

35000

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

MG Class A

0
2
4
6
8

10
12
14
16
18
20

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0
100
200
300
400
500
600
700
800
900

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

SP Class A

0

50

100

150

200

250

300

350

400

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0

5000

10000

15000

20000

25000

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

Fig. 6. The execution times and energy consumption of each static configuration.

IS Class B

0
2

4
6

8
10

1 2 3 4
Cores Active

E
xe

cu
tio

n
tim

e
(s

ec
s)

LU Class B

0
10

0
20

0
30

0
40

0
50

0
60

0

1 2 3 4
Cores Active

E
xe

cu
tio

n
tim

e
(s

ec
s)

MG Class B

0
5

10
15

20

1 2 3 4
Cores Active

E
xe

cu
tio

n
tim

e
(s

ec
s)

SP Class B

0
10

0
20

0
30

0
40

0

1 2 3 4
Cores Active

E
xe

cu
tio

n
tim

e
(s

ec
s)

Fig. 7. Scalability characteristics of 4 of the NAS benchmarks on a state-of-the-art quad-core Intel processor (Q6600).

below 2 (see Figure 7). As a result, opportunities for concurrency
throttling still exist even in the newest hardware platforms.

As further evidence of the importance of phase-level adap-
tation, Figure 8 displays the IPCs for each phase of the LU-
HP benchmark at class size B under each static configuration
normalized by the IPC of (1,1). It is evident from the chart that a
single application can have optimal configurations varyinggreatly
between phases. LU-HP in particular experiences five different
optimal configurations across different phases. Therefore, using
a technique to execute each phase at its local optimal operating
point stands to improve performance. In cases where the optimal
configuration occurs on fewer than the available number of pro-
cessing elements, power savings can occur during the execution
of these phases. The goal of our adaptation approach is to exploit
these properties with noa priori knowledge of the codes and
achieve both power and performance benefits.

2) Offline Adaptation Strategies:Before discussing the online
adaptive strategies and their results, we focus on two offline ap-
proaches to adaptation. The first of these,static optimal, uses the
single program-wide static configuration that results in the lowest
execution time. The static optimal configuration for an entire
program differs in general from the static optimal configurations
of phases in a program. The second approach isphase optimaland
uses the local static optimal configuration, not considering cross-
phase effects, as defined earlier. Due to interference occurring by
changing the configurations inphase optimal, the mean execution
time of the benchmarks is 1.0% higher thanstatic optimal. For this
reason, we limit our following evaluation to comparing adaptive
strategies tostatic optimal.

The two offline approaches that we consider have the disad-
vantage that the optimal configuration may change with different
input sizes. For example, IS executes statically optimallyon
(3,1) for class size W, but (1,1) and (2,1) for class sizes A and
B respectively. For individual phases, the optimal configuration
varies by problem size as well. Specifically, only 52.5% of
the program phases in our benchmarks experience the same

IPC per Phase in LU-HP (Class B)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 3 4 5 6 7 8 9 10 11
Region Number

N
o

rm
al

iz
ed

 IP
C

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Fig. 8. IPCs for each phase of the LU-HP benchmark under each static
configuration, normalized by the IPC on (1,1). The configuration with the
highest IPC for each phase is flagged with a striped bar.

optimal configuration regardless of input size. This means that
use of these static techniques requires offline analysis that is
specific to the application and the input size. By contrast, the
online adaptive approaches adapt autonomically at runtimefor the
current application execution and require no application/input-size
specific offline analysis.

3) Empirical Search-based Strategies:For purposes of com-
parison, we have implemented two alternative dynamic adaptation
strategies based on empirical search of the configuration space at
runtime. The first of these is the most straightforward form of
adaptation, exhaustive search, where each possible configuration
is tested and the one that provides the lowest execution timeis
selected for each phase. The second empirical search technique
that we implemented is a heuristic search algorithm, which we
have previously devised to reduce the overhead of exhaustive
search [7]. This algorithm works by applying a hill-climbing
heuristic search to find the optimal number of processing elements
to use at each dimension of parallelism, one dimension at a time.
The algorithm begins by executing the phase on all available
processors with all Hyperthreads active. Then, the number of
processors is successively reduced until an increase in execution
time is observed. The lowest number of processors that results in

11

BT

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

CG

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

FT

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

IS

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

LU

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

Exhaustive Search Hill Climbing PPACC Static Optimal

LU-HP

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

MG

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

SP

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

Average

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

Fig. 9. Performance of the adaptation strategies in terms ofexecution time (first group of bars), power (second group of bars), and energy (third group of
bars) normalized with respect to the (4,2) static configuration for each benchmark, averaged over all class sizes.

a decrease in execution time is used for the corresponding phase.
This process is then repeated on the decided upon number of
processors to determine the number of Hyperthreads to use on
each processor.

Figure 9 illustrates the normalized arithmetic means of three
metrics: execution time, average power consumption duringex-
ecution, and energy consumption. These metrics are derived
for each benchmark under different execution strategies. Each
metric is first normalized to the corresponding metric of the
(4,2) configuration for the specific benchmark, which exploits all
available execution contexts on our experimental platform. We
then calculate the means of the metrics for each benchmark.

The average execution time of all benchmarks over all problem
sizes using exhaustive search was reduced by 10.9% comparedto
statically using all available processors and execution contexts
on the system. Power is reduced by 9.7% as well, resulting in
a 19.5% reduction in total energy consumption. However, this
approach incurs high overhead in the exploration phase, dueto its
testing of each configuration. Exhaustive search needs to execute
8 iterations of each phase to reach a decision. This overhead
shows up when the results are compared to using the optimal
static number of threads for the entire program execution, where
exhaustive search is outperformed by 16.1% overall and by 31.6%
in benchmarks with a small number of iterations (MG, CG, FT,
IS). However, for applications with many iterations (BT, SP,
LU, LU-HP), exhaustive search is able to come within 1.1%
of the static optimal in terms of performance, while reducing
power consumption by 3.3%, because the search overhead can be
amortized over a large number of iterations.

Using hill-climbing reduces the number of required test itera-
tions for each phase to 5 in the worst case for our experimental
platform and only 3 in the best case. This overhead reduction
allows the hill-climbing algorithm to achieve improved perfor-

mance compared to exhaustive search because a larger percentage
of the iterations will be executed with the decided upon optimal
configuration, rather than testing additional suboptimal configura-
tions. Specifically, compared to exhaustive search, hill-climbing
achieves a 1.6% improvement in execution time overall and a
3.9% improvement for applications with few iterations, with a
minor 0.5% increase in execution time for the applications with
many iterations. The slight performance drop in applications with
many iterations can be attributed to occasionally selecting slightly
worse configurations than exhaustive search. Power consumption
is reduced by 1.7% and energy consumption by 3.6% on average,
compared to exhaustive search. Compared tostatic optimal, hill-
climbing reduces the performance loss to 26.5% for applications
with a small number of iterations, and to 13.9% overall. These
results show that hill-climbing is able to reach good configura-
tion decisions, while requiring fewer exploration iterations, thus
introducing less overhead. However, the search overhead isstill
a factor for applications with few iterations.

Occasionally, power consumption actuallyincreasesthrough
the use of adaptation. This result is counter-intuitive since adap-
tation always maintains or reduces the number of processorsand
Hyperthreads used. In the large majority of phases, specifically
79%, deactivating Hyperthreading does reduce power. However,
in certain cases the use of Hyperthreading causes severe de-
structive interference in the cache between co-executing threads,
which can increase stall time and therefore reduce dynamic power
consumption [8]. Deactivating Hyperthreading in these cases
increases power consumption by reducing stall time, however
energy is reduced due to the reduction in execution time.

4) Performance Prediction-based Adaptation:Through the use
of performance prediction, the number of iterations required for
adaptation can be further reduced using the algorithm presented in
Section IV, to only two iterations in the case of our experimental

12

Average

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Time Power Energy
Evaluation Metric

R
at

io
Phase-Local Cross-Phase Cross-Phase (15% tolerence)

Fig. 10. Execution time, power, and energy effects of utilizing the three
different prediction based adaptation strategies, with all numbers normalized
with respect to the (4,2) execution.

platform. Further, performance prediction reduces the effects due
to changing configurations during the exploration process that can
lead to suboptimal decisions by the direct-search strategies. On the
downside,uIPC predictions need significantly more processor
cycles than direct comparisons of the execution times of phases.

We first compare a strategy whereby the predicted optimal
configuration for each phase is used, to strategies that consider
cross-phase analysis to make decisions. The best strategy is
selected for use with ACTOR and is compared to the offline and
direct-search approaches already presented. First, we evaluate our
approaches to minimize the harmful effects of using the local
optimal configuration for each phase, which occur if changes
in the configuration of adjacent phases result in redistribution
of working sets between caches [24]. Our experimental results,
shown in Figure 10, indicate that simply attempting to avoid
cache interference is not inherently effective. Using an approach
whereby the configuration selected as the best for the majority of
execution time (i.e. the dominant configuration) is enforced for all
phases causes a slowdown of 1.5% compared to the local optimal
approach, with an additional 0.9% energy consumption. This
happens because in many cases the benefits of executing a phase
with its local optimal configuration outweigh the performance loss
suffered as a result of cross-phase interference.

Based on these results, we developed an intermediate adapta-
tion scheme that uses a global dominant policy for most phases,
excluding those expected to see substantial performance gains by
using their own local optimal. In particular, using this approach
the global decision is enforced unless a given phase expectsat
least a 15% performance gain, which we experimentally verified
to be enough to outweigh the cache effects of changing config-
urations. When compared to phase-local adaptation, cross-phase
decision making allowing for exceptions attains a 1.3% average
performance improvement. An increase in power consumption
of 2% is also observed, however the energy consumption is un-
changed, making this policy the best prediction-based adaptation
strategy. These results show that concurrency throttling modules
must consider the effects of changing configurations acrossphases
along with the local predictions for each phase.

Using cross-phase decisions while allowing exceptions results
in an average 17.9% performance improvement over statically
using all available execution contexts, further improvingperfor-
mance upon exhaustive search by 8.3% and upon hill-climbingby
6.8%. Additionally, the average performance loss comparedto the
statically optimal configuration is reduced to only 2.5% overall
and 1.3% for applications with many iterations, showing that a
flexible cross-phase decision policy is able to make performance-

effective decisions. More importantly, the results for applica-
tions with a small number of iterations are within 3.7% of the
statically optimal configuration, compared to 31.6% and 26.5%
for exhaustive search and hill-climbing respectively, because of
the significantly reduced exploration overhead. Our experimental
platform has only eight feasible hardware configurations and the
performance advantage of ACTOR over the empirical search
approaches is expected to grow in the future as the available
number of processors, cores, and threads in a system rises.

The power-related results for ACTOR are just as substantial
as those for performance. Energy consumption is the product
of power consumption and execution time, and concurrency
throttling attempts to reduce both, decreasing energy consumption
by a still larger margin. We observe 10.8% and 26.7% reductions
in power and energy consumption, respectively, compared tousing
all execution contexts. When compared to using the static optimal
configuration, a 2.9% average reduction in power is seen and
a 0.9% reduction in energy. This result may seem surprising,
however it can be explained by the fact that the static optimal
uses only a single configuration for the entire program execution,
rather than further decreasing the number of active processors for
individual phases below the global optimal level.

ACTOR also sees a 1.1% reduction and a 0.8% increase
in power consumption compared to exhaustive search and hill-
climbing respectively. Further tracing of this result shows that
ACTOR executes the benchmarks with an average of 3.13 pro-
cessors, while exhaustive search executes with 3.20 and hill-
climbing with 3.02 processors. However, ACTOR reduces total
energy consumption by 10.2% and 6.3% respectively because of
its performance advantages. These results indicate that prediction-
based adaptation is able to make effective decisions, both in terms
of improving execution time and reducing energy consumption.

Overall, prediction-based adaptation outperforms or matches
the performance of direct-search based adaptation on all fronts.
Additionally, it does not require application/input-sizespecific
offline analysis, while still achieving results very close to the
static optimal for performance and better results for powerand
energy. Performance prediction-based adaptation as utilized in
ACTOR thus proves to be an effective strategy for improving the
performance and energy consumption of parallel applications.

VI. CONCLUSIONS

The performance and power characteristics of applications
on emerging systems demand the consideration of throttling
concurrency. In this paper, we have presented a novel approach to
adaptive concurrency throttling that uses information collected at
runtime to predict the performance of an application acrossvari-
ous hardware configurations. By applying multivariate regression
analysis to hardware event rates, DPAPP is able to characterize
the performance and scalability of a given program phase. Our
predictor allows for the online identification of performance- and
energy-effective concurrency levels and thread placements, while
keeping the overhead at manageable levels. Over a range of
multithreaded scientific benchmarks, the predictor was shown to
be quite effective at locating the optimal configuration foreach
phase, due to a low median error of 12.6%.

We also describe ACTOR, a new prediction-based adaptive
concurrency throttling system, which we show to outperform
adaptation strategies based on empirical searches of the config-
uration space due to reduced exploration overhead. We further

13

optimize the system by introducing cross-phase awareness into
the decision making process, thereby allowing it to consider
potential cache effects of changing configurations betweenphases.
Adaptive concurrency throttling is shown to be significantly
more effective than simply using all available execution contexts
for all phases, with improvements of 17.9% in performance,
10.8% in power, and 26.7% in energy consumption. The use
of ACTOR yields performance results comparable to offline-
derived application/input-size specific decisions, without requiring
additional application/input-size specific offline analysis.

ACKNOWLEDGMENT

This research is supported by the National Science Foundation
(grants CCF-0346867, CCF-0715051, CNS-0521381), the U.S.
Department of Energy (grants DE-FG02-06ER25751, DE-FG02-
05ER25689) and Virginia Tech.

REFERENCES

[1] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler
Activations: Effective Kernel Support for the User-Level Management
of Parallelism. ACM Transactions on Computer Systems, 10(1):53–79,
February 1992.

[2] U. Andersson and P. Mucci. Analysis and Optimization of Yee Bench
using Hardware Performance Counters. InProc. of the ParCo 2005
Conference, September 2005.

[3] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi. Dynamically
Managing the Communication-Parallelism Trade-off in Future Clustered
Processors. InProc. of the 30th International Symposium on Computer
Architecture, June 2003.

[4] Shekhar Y. Borkar. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and Degradation.
IEEE Micro, 25(6):10–16, September 2005.

[5] C. Cascaval, E. Duesterwald, P. Sweeney, and R. Wisniewski. Multiple
Page Size Modeling and Optimization. InProc. of the 14th Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
September 2005.

[6] M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. Nikolopoulos.
Online Power-Performance Adaptation of Multithreaded Programs using
Hardware Event-Based Prediction. InProc. of the 20th ACM Interna-
tional Conference on Supercomputing, June 2006.

[7] M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. Nikolopoulos.
Online Strategies for High-Performance Power-Aware Thread Execution
on Emerging Multiprocessors. InProc. of the Second Workshop on High-
Performance Power-Aware Computing, April 2006.

[8] M. Curtis-Maury, T. Wang, C. Antonopoulos, and D. Nikolopoulos.
Integrating Multiple Forms of Multithreaded Execution on amulti-SMT
System: A Study with Scientific Workloads. InProc. of the IEEE
International Conference on the Quantitative Evaluation of Systems,
September 2005.

[9] L. Eeckhout and K. De Bosschere. Statistical Simulationof Superscalar
Architectures using Commercial Workloads. InProc. of the Fourth
Workshop on Computer Architecture Evaluation using Commercial
Workloads, January 2001.

[10] L. Eeckhout, S. Nussbaum, J. Smith, and K. De Bosschere.Statistical
Simulation: Adding Efficiency to the Computer Designer’s Toolbox.
IEEE Micro, 23(5), September 2003.

[11] Krste Asanovic et at. The landscape of parallel computing research:
A view from berkeley. Technical report ucb/eecs-2006-183,EECS
Department, University of California at Berkeley, December 2006.

[12] N. Adiga et.al. An Overview of the BlueGene/L Supercomputer. InProc.
of the IEEE/ACM Supercomputing’2002: High Performance Networking
and Computing Conference, November 2002.

[13] W. Feng and C. Hsu. The Origin and Evolution of Green Destiny. In
Proc. of IEEE Cool Chips VII: An International Symposium on Low
Power and High Speed Chips, April 2004.

[14] V. Freeh, F. Pan, D. Lowenthal, N. Kappiah, R. Springer,B. Roun-
tree, and M. Femal. Analyzing the Energy-Time Tradeoff in High-
Performance Computing Applications.Transactions on Parallel and
Distributed Systems, 18(6):835–848, June 2007.

[15] R. Ge, X. Feng, and K. Cameron. Improvement of Power-Performance
Efficiency for High-End Computing. InProc. of the 19th International
Parallel and Distributed Processing Symposium, April 2005.

[16] G. A. Grell, J. Dudhia, and D. R. Stauffer. A Descriptionof the
Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR
Technical Note NCAR/TN-398 + STR, National Center For Atmospheric
Research (NCAR), June 1995.

[17] M. Hall and M. Martonosi. Adaptive Parallelism in Compiler-
Parallelized Code. August 1997.

[18] E. Ipek, S. McKee, B. de Supinski, M. Schulz, and R. Caruana. Effi-
ciently Exploring Architectural Design Spaces via Predictive Modeling.
In Proc. of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, June 2006.

[19] C. Isci and M. Martonosi. Runtime Power Monitoring in High-
End Processors: Methodology and Empirical Data. InProc. of the
26th ACM/IEEE Annual International Symposium on Microarchitecture,
November 2003.

[20] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS
Parallel Benchmarks and its Performance. Technical reportnas-99-011,
NASA Ames Research Center, October 1999.

[21] P. Joseph, K. Vaswani, and M. Thazhuthaveetil. Efficiently Exploring
Architectural Design Spaces via Predictive Modeling. InProc. of the
39th International Symposium on Microarchitecture, December 2006.

[22] C. Jung, D. Lim, J. Lee, and S. Han. Adaptive Execution Techniques for
SMT Multiprocessor Architectures. InProc. of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, June
2005.

[23] R. Kalla, B. Sinharoy, and J. Tendler. IBM POWER5 Chip: ADual-Core
Multithreaded Processor.IEEE Micro, 24(2):40–47, March 2004.

[24] M. Kandemir, W. Zhang, and M. Karakoy. Runtime Code Parallelization
on Chip Multiprocessors. InProc. of the 2003 Design, Automation, and
Test in Europe Conference, Munich, Germany, March 2003.

[25] N. Kappiah, V. Freeh, and D. Lowenthal. Just In Time Dynamic Voltage
Scaling: Exploiting Inter-Node Slack to Save Energy in MPI Programs.
In Proc. of IEEE/ACM Supercomputing’2005: High Performance Com-
puting, Networking Storage, and Analysis Conference, November 2005.

[26] T.S. Karkhanis and J.E. Smith. A First-Order Superscalar Processor
Model. In Proc. of the 31st International Symposium on Computer
Architecture, June 2004.

[27] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimizationby Simulated
Annealing. Science, 220(4598):671–680, 1983.

[28] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way
Multithreaded Sparc Processor.IEEE MICRO, 25(2):21–29, March/April
2005.

[29] B. Lee and D. Brooks. Accurate and Efficient Regression Modelling
for Microarchitectural Performance and Power Prediction.In Proc.
of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, June 2006.

[30] J. Li and J. Martı́nez. Dynamic Power-Performance Adaptation of
Parallel Computation on Chip Multiprocessors. InProc. of the 12th
International Symposium on High-Performance Computer Architecture,
February 2006.

[31] J. Lu, H. Chen, P. Yew, and W. Hsu. Design and Implementation of a
Lightweight Dynamic Optimization System.The Journal of Instruction-
Level Parallelism, 6:1–24, 2004.

[32] J. Marathe and F. Mueller. Hardwware Profile-Guided Automatic Page
Placement for ccNUMA Systems. InProc. of the 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
90–99, March 2006.

[33] T. Moseley, J. Kim, D. Connors, and D. Grunwald. Methodsfor Mod-
eling Resource Contention on Simultaneous Multithreaded Processors.
In Proc. of the 2005 International Conference on Computer Design,
October 2005.

[34] A. Settle, J. Kihm, A. Janiszewski, and D. Connors. Architectural
Support for Enhanced SMT Job Scheduling. InProc. of the 13th
International Conference on Parallel Architectures and Compilation
Techniques (PACT’04), September 2004.

[35] S. Sharma, C. Hsu, and W. Feng. Making a Case for a Green500 List. In
Proc. of the Workshop on High-Performance, Power-Aware Computing,
April 2006.

[36] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Large Scale Program Behavior. InProc. of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, October 2002.

[37] R. Springer, D. Lowenthal, B. Rountree, and V. Freeh. Minimizing
Execution Time in MPI Programs on an Energy-Contstrained, Power-
Scalable Cluster. InProc. of the 11th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, March 2006.

14

[38] A. Tucker and A. Gupta. Process Control and Scheduling Issues for
Multiprogrammed Shared-Memory Multiprocessors. InProc. of the 12th
ACM Symposium on Operating Systems Principles, December 1989.

[39] M. Voss and R. Eigenmann. Reducing Parallel Overheads through
Dynamic Serialization. InProc. of the 13th International Parallel
Processing Symposium and Symposium on Parallel and Distributed
Processing, pages 88–92, April 1999.

[40] L. Yang, X. Ma, and F. Mueller. Cross-Platform Performance Prediction
of Parallel Applications using Partial Execution. InProc. of the
IEEE/ACM Supercomputing’2005: High Performance Networking and
Computing Conference, November 2005.

[41] K. Yue and D. Lilja. An Effective Processor Allocation Strategy for
Multiprogrammed Shared-Memory Multiprocessors.IEEE Transactions
on Parallel and Distributed Systems, 8(12):1246–1258, December 1997.

[42] Y. Zhang and M. Voss. Runtime Empirical Selection of Loop Schedulers
on Hyperthreaded SMPs. InProc. of the IEEE International Parallel
and Distributed Processing Symposium, April 2005.

Matthew Curtis-Maury Matthew Curtis-Maury is
currently a Ph.D. candidate in the Department of
Computer Science at Virginia Tech. He received a
B.S. degree from Wake Forest University in 2003
and an M.S. degree from The College of William
& Mary in 2005, both in Computer Science. His
research interests include energy-aware computing
in the high performance computing domain and
performance prediction of parallel applications. He
is a student member of the IEEE Computer Society
and the ACM.

Filip Blagojevic Filip Blagojevic is currently a
Ph.D. candidate at the Computer Science Depart-
ment at Virginia Tech. He received an MS degree in
Computer Science from The College of William &
Mary in 2005, and a BS degree in Mathematics from
the University of Belgrade in 2002. His research
interests include process scheduling for emerging
heterogeneous accelerator-based architectures, per-
formance modeling and prediction, and power aware
computing.

Christos D. AntonopoulosDr. Christos Antonopou-
los received his Diploma in Computer Engineering
& Informatics, MSc and PhD from the Computer
Engineering & Informatics Department of the Uni-
versity of Patras, Greece. Following, he spent 2 years
in the U.S. as a Post-Doctoral Research Associate at
the College of William & Mary. He currently serves
as Visiting Faculty at the Computer and Commu-
nications Engineering Department of the University
of Thessaly in Volos, Greece. His research interests
include high performance computing architectures,

hybrid architectures based on SMT or CMP processors, systemsoftware,
continuous performance-driven run-time optimizations, memory management,
and power management with software techniques. He has been actively
involved in many national, EU and US research projects.

Dimitrios S. Nikolopoulos Dimitrios S. Nikolopou-
los received the B.Eng. degree (Diploma in Engi-
neering) from the University of Patras in 1996, and
the Ph.D. degree in Computer Engineering from the
University of Patras in 2000. He currently serves as
an Associate Professor of Computer Science at the
Virginia Polytechnic Institute and State University
(Virginia Tech) and director of the Parallel Emerging
Architectures Research Lab (PEARL). Nikolopoulos
conducts research on dense parallel computer archi-
tectures and their hardware/software interface. He is

a member of the IEEE Computer Society, ACM, and the TechnicalChamber
of Greece.

