Prediction-based Power-Performance Adaptation of
Multithreaded Scientific Codes

Matthew Curtis-Maury, Filip Blagojevic, Christos D. Antopoulos, and Dimitrios S. Nikolopoulos

Abstract— Computing has recently reached an inflection point
with the introduction of multi-core processors. On-chip thread-
level parallelism is doubling approximately every other yar.
Concurrency lends itself naturally to allowing a program to trade
performance for power savings by regulating the number of ative
cores, however in several domains users are unwilling to sefice
performance to save power. We present a prediction model for
identifying energy-efficient operating points of concurrency in
well-tuned multithreaded scientific applications, and a runtime
system which uses live program analysis to optimize applit@ns
dynamically. We describe a dynamic, phase-aware performare
prediction model that combines multivariate regression teh-
nigues with runtime analysis of data collected from hardwae
event counters to locate optimal operating points of concuency.
Using our model, we develop a prediction-driven, phase-awa
runtime optimization scheme that throttles concurrency sothat

power consumption can be reduced and performance can be

set at the knee of the scalability curve of each program phase

The use of prediction reduces the overhead of searching the

optimization space while achieving near-optimal performace
and power savings. A thorough evaluation of our approach shwes
a reduction in power consumption of 10.8% simultaneous with
an improvement in performance of 17.9%, resulting in energy
savings of 26.7%.

Index Terms— Modeling and prediction, Application-aware
adaptation, Energy-aware systems

. INTRODUCTION

steer power and performance simultaneously. The convaitio
wisdom holds that when concurrency is increased, perfoceds
improved, but with an associated increase in power consompt
Conversely, when concurrency is decreased, power congumpt
is reduced, at a cost for performance.

While there are many situations where it is desirable toerad
performance for reduced power consumption, in the domain of
high-performance scientific computing, performance remahe
primary target. Applications written for high-end commgisys-
tems create a challenge for energy-aware system softwdriehw
needs to identify opportunities to reduce power consumptith
a non-negative impact on performance. For example, dynamic
voltage and frequency scaling (DVFS) is a well-known teghsi
for reducing the dynamic power consumption of a micropro-
cessor in applications with extensive idle time. In welted,
heavily optimized scientific applications, reduced idleriqes
and memory latencies may limit the degree to which DVFS can
be exploited for energy savings. On the other hand, there are
certain cases where inherent program characteristicsh—-asc
limited algorithmic concurrency, fine computational grkamity,
and frequent synchronization— and architectural progertisuch
as capacity limitations of shared resources— limit the edmlity
and the maximum degree of exploitable concurrency in ani-appl
cation, resulting in an observed performanassthrough the use
of more parallelism. In these cases, power and performance can
be simultaneously improved Wyrottling concurrency.

Microprocessors crossed an inflection point with the intro- To motivate the work presented in this paper, Figure 1

duction of multi-core architectures. Clock rates and instion-

shows a breakdown of the parallel execution time of three

level parallelism have been replaced by the number of ei@tut applications from the NAS Benchmarks Suite [20] into phases
cores as the key metric that characterizes the performande &he breakdowns were obtained during execution of the bench-
drives the marketability of a computer system. Moore’s lav imarks on a quad-processor server with Intel Xeon proces-
now interpreted as “the number of cores on a microprocessorsors using Hyperthreading technology. Each chart depiogs t
expected to double every one to two years”, and hardwareorend(processors, Hyperthreads /processor) configuration that mini-

race to pack more cores on a single chip [23], [28].

mizes the execution time of each phase. The fastest cortiigura

In the new landscape of highly parallel microprocessors aisl identified experimentally by executing each target phiasal

system architectures, system software appears to be yaogel
prepared for the transition. The programming effort regdifor

possible hardware configurations of the system. LU-HP-BASP
and MG-B execute optimally with at least one Hyperthread per

parallelizing and optimizing code practically remains amras processor deactivated, thus saving power while simultasigo
solved issue, even among research communities that have bieeproving performance, during 95%, 84% and 81% of their
investigating this problem for decades. At the same timeyguo parallel execution times respectively. LU-HP-B and SP-Aare
dissipation is now a major consideration for system soféwawith at least one entire processor deactivated during 40%ae
optimization on parallel architectures [12]-[15]. Theratuction of the optimal execution time.

of many simple cores on a microprocessor has been largelyDespite its appeal, concurrency throttling is an oppottuni
motivated by the poor power-efficiency of microarchiteatur which may present itself to varying degrees across programs
components that attempt to improve performance at the cesfross phases of the same program, or even across inputs to th
of hardware complexity and reliability [4]. Concurrency tnosame program. ldentifying concurrency throttling oppoities
only improves power efficiency, but also helps system saftwastatically is hard, because it requires fine-grain analggishe
dynamic behavior of parallel code across and within pdralle
execution phases. Besides the problem of identificationgaiaah-
tification of the opportunities, applying concurrency titling
directly in applications requires exposure of the programio

Matthew Curtis-Maury, Filip Blagojevic, and Dimitrios Sikélopoulos are
with the Center for High End Computing Systems at Virginiafie

Christos D. Antonopoulos is with the Department of Compuated Com-
munications Engineering at the University of Thessaly.

NAS LU-HP Class B NAS SP Class A NAS MG Class B

opportunities for power savings opportunities for power savings opportunities for power savings
hardware configuration for min. execution time B hardware configuration for min. execution time B hardware configuration for min. execution time ===

“2) “2)

@ @
@2 @2)
@ 1)
@2) [@2)
@y @y

a2 a2

(processors threads) for min. phase execution time
(processors threads) for min. phase execution time

wy wy

o 02 04 06 08 1 o 02 04 06 08 1 o 02 04 06 08 1
ratio of execution time ratio of execution time ratio of execution time

Fig. 1. Breakdown of parallel execution time of three amliuns from the NAS Benchmarks Suite, on a four-processoresavith Intel Hyperthreading
processors. Each phase is represented with a gray rectaftfggelength of the phase and the hardware configuration ¢épeors, #hyperthreads/processor)
that minimize the execution time of the phase correspondhéontidth and height of each rectangle respectively.

architectural details, such as the number and physicalutagb our model for dynamic, phase-aware performance prediation
processors, which is widely considered as one of the fattats parallel applications. Section IV presents our controlesob for
make parallel programming exceptionally difficult [11]. vh dynamic, power-aware and performance-aware concurresiag-a
the complexity along with the inherent drawbacks of delegat tation of multithreaded codes. We present a detailed désons
concurrency throttling decisions to the user or to a stat@lysis of our experimental methodology and results in Section V. We
tool, runtime systems appear to be ideal candidates fordime-i conclude this paper in Section VI.
tification and exploitation of concurrency throttling opamities.

This paper presents th&daptive Concurrency Throttling Op- Il. RELATED WORK

timization Runtimesystem (called ACTOR), which seeks the gypstantial previous research has been performed on ajigni
optimal operating point of concurrency in multithreaded-pr the execution of programs using feedback from hardware teven
grams, at the granularity of program phases. In contrast ¢gynters (HECs), however it has predominantly been offline,
concurrency throttling schemes based on live empiricaickeaf profile-guided in nature. For example, NUMA multiprocessor
operating points, ACTOR relies on a novel dynamic, phasaraw page placement using hardware assistance [32], CPO from IBM
performance prediction (DPAPP) model. The model predioés t\yhich includes management of variable page-size systeins [5
optimal operating point of concurrency on different conf'mjiqns and case studies of specific applications [2]. In contrate |
of processors, cores, and threads, here on referred tosia®pl \york has been done on runtime optimization utilizing hardwa
hardware configurationsthrough the statistical analysis of hard-qunters as the program executes. Existing examples iclud
ware event rates. To the best of our knowledge, our methgglologec_pased SMT job schedulers [34] and the ADORE runtime
is the first to provide a performance prediction qf c_hangiog-c optimization system [31]. Our work falls into the categofiyon-
currency levels and thread placement to an applicationrdime. ine dynamic optimization with feedback from hardware ceus,
The key contribution of the DPAPP model is that it enablegoyever it targets energy consumption in addition to pentace.
drastic reduction of the overhead associated with seaycthia Performance prediction of parallel programs has beenetlidi
optimization space for concurrency throttling. great depth, however the majority of research is targetedflaie
We use a multivariate regression process for selectingeakit prediction. Work most similar to ours includes offline ressaon
hardware events and for training the DPAPP model in assgssjiartial execution-based prediction [40] and statisti¢adutation
the scalability of a program phase across different harévean- of superscalar processors using IPC predictions based nn ve
figurations. The DPAPP training process derives distinetjer short code samples [10]. Minimizing design space evalnatio
tors for thread-level, core-level, and processor-levelapelism, time for processor development has spurred much research on
to account for the presence of multidimensional paraielend predicting the performance effects of altering various nogechi-
variance in the impact of resource sharing between threaggtural parameters, including regression-based [29]raachine
within and across chip boundaries. We use the DPAPP modghrning-based approaches [18], [21]. One important rdiitn
to steer our runtime concurrency throttler, which succeeds with previous work is that once we perform training, the mode
identifying phases where power consumption can be condervgan be applied to any desired applications, whereas margr oth
while sustaining or improving performance. ACTOR operdigs approaches perform training and prediction for a singleliegp
controlling the execution of the application, with the fifev tion [18], [21], [29]. To the best of our knowledge, no priobwk
iterations of the dominant phases of the application exgtuthas considerednlinepredictors of parallel execution performance
under specific hardware configurations while selected harelw on shared-memory architectures, using runtime input ondR€
event counters are sampled. After the sampling period, DPARardware event counters.
is invoked to predict phase performance across configustio High-performance, power-aware computing has recently be-
and the remaining executions of each phase are executed wigine an important topic of research. Efforts range from pewe
the decided upon optimal configuration. We demonstrate tBgalable and power-efficient clusters [12], [13] to runtisystems
effectiveness of ACTOR using the NAS Parallel BenChmal‘kESUiproviding support for dynamic frequency and voltage scafior
on a multiprocessor with multiple SMT processors. parallel applications [14], [25]. Our work is most closeBlated
The rest of this paper is organized as follows. In Section ip the latter, as both attempt to identify opportunitiesteitime to
we discuss background and related work. Section Il inteedu achieve power savings without sacrificing performance. Wank

differs in that we target shared-memory rather than distedd we hereafter refer to asghase- across varying configurations of
memory multiprocessors. It should be pointed out that DVR& athe processing units on a parallel architecture [6]. We e t
concurrency throttling are not necessarily at odds wittheatber term processing unitsas an umbrella term covering hardware
as they may be applied in a synergistic fashion to achieVe sthreads, processor cores, or entire processors. As a behedra
greater energy-efficiency [30]. substrate, we consider shared-memory multiprocessolstii¢e
Concurrency throttling has been previously applied fori-optdistinct types of processing units, namely multi-core pssors,
mization of multithreaded codes on shared memory multipraores within processors, and threads within cores. We tefeach
cessors. Specifically, concurrency throttling can enablaptive of these types of processing units aglimension of parallelism
execution in multiprogramming environments [1], [38], [4Eur- in the system. The dimensions of parallelism that we comside
ther, standalone programs can benefit from concurrencytling are representative of current commercial multiproces$28j,
across different phases with potentially different exesutand [28]. Our DPAPP technique considers phases that are icehaf
scalability characteristics [17], [42]. In most cases, @omency parallel loops, as these structures encapsulate the bylkraflel
throttling is applied in a given phase by the programmer, treode in real scientific applications. Specifically, for thagoses
runtime system, the hardware, or the compiler. Balasubréano of this work we define phases to be OpenMP parallel regions.
et al. [3] have considered hardware-based approaches dndeal Our DPAPP model works by predicting the cumulativeeful
communication and parallelism by throttling the use of ®us Instructions Per Cycleu(PC) of multithreaded phasesl PC is
on clustered microprocessors. Compiler-based contraieally defined as the sum of IPCs of the threads used to execute g phase
performed using a simple threshold-based strategy anddtadigl excluding instructions and cycles expended for synchatitn
code region is either sequentialized or run with a programmeand parallelization. Ignoring parallelization and syrmtization
specified fixed number of threads [17], [22], [39]. Programene overheads makesIPC inversely proportional to the execution
have long had the ability to manually specify concurrensele, time of a fixed number of instructions on a given hardware
however few runtime systems provide the functionality téoau configuration. Note that althoughl/ PC ignores instructions for
nomically manage these decisions from within. Our work ftes triggering and synchronizing threads, it still considdre effects
such a system, offering fully autonomic concurrency thirgdt of interference between threads on shared hardware resourc
based on performance predictions of each configuration. during concurrent execution. The objective of DPAPP is to
Recent work has considered applying concurrency thrgttlindentify phases where concurrency can be reduced during the
and DVFS on single chip multiprocessors, with decisionizing execution of useful application computation, with a nogateve
search algorithms of the configuration space [30]. Thisasde impact on performance.
shares many motivations with our work, however the suggeste
solutions to the problem differ significantly. First, we dotn
explore the potential of DVFS, but rather introduce a soluthat A. DPAPP Outline
works on architectures independently of their support fofFS.
Second, our approach is implemented on a real system, tthtier
simulated, verifying that our technique works in practici¢hwall
overheads considered. Third, we utilize performance ptixti

DPAPP makes distinct predictions of the optimal number of
processing units to use at each dimension of parallelisnhén t
system. For ease of presentation, we first describe the topera

1) ' of DPAPP for a given dimension of parallelisth We defer
rather than empirical searches of the configuration spatedtice 1o discussion of how DPAPP predicts across dimensions of
the number of test executions necessary to perform adamatiparallelism until Section 1lI-E.

Further, we show that the overhead of search based techmiqueDPAPP takes input from live samples of hardware event

hinders the performance of short-lived codes, particylarhen counters. HECs are sampled at the beginning and end of each

compared to pred|ct|(;]n. Ad}:}lltlonall!)y, O(Lj” approach tasgemtlt:h fphase, while the phase is executed on the configuration that
processor syTtems w erﬁlt € com I meh energy consumptio of, - ates all processing units at dimensibrrhe set of hardware
processors plays a much larger role than In UNIprocesseersEs ¢ o g sampled are specific doand are selected using a formal

sugh as that evalluatgc; in [30]. h ident hstatistical process, according to their contributionutbPC'. We
pringer, et al. [37] propose an approach to identify t fofer to these events asitical events Samples of critical event

number of nodes in a cluster and DVFS level to use to Megles are fed to a model that estimatesPC per phase, per
a user-specified energy budget. The authors target clysthese configuration, for all feasible configurations of procegsimits at

ahppllcstlondscalablhty IS c9n3|derably fbetter thanhon iﬁ/lé’gd dimensiond. Intuitively, DPAPP attempts to predict how the rate
thus they do not attempt tprove performance through adap- ¢ o tirement of useful instructions,/ PC, will change in a phase

tation. On the other hand, we exploit poor scalability on SMPwhen the number of processing units used to execute the phase

tc_> improve both the_power and _performance of an appl'cat'%anges. To make this prediction, DPAPP uses a multivariate
smultaneously. Additionally, their gpproach requires ltple regression model, which correlates observed event rates on
offline qxec_uﬂons OT .the targeF apP“Cat'?'?' whereas Wéquer sampled configuration and observedPC values on all feasible
gll appllcatllon-speuflc analysis with minimal overheadridg hardware configurations during training runs. The modepotst
live executions. H(_)wever, the_ two approaches could be G@D“a set of scaling factors far/ PC and the critical hardware events,
together to determine the optimal concurrency to use peenod for each feasible hardware configuration. These outputsisee
as constant coefficients during production runs, to preafitimal

l1l. DYNAMIC PHASE-AWARE PERFORMANCEPREDICTION gperating points of concurrency for each phase in the code. W

The goal of dynamic phase-aware performance predicti@escribe the model in more detail in Section 11I-B and thecpes
(DPAPP for short) is to predict the performance of a multifor training the model in Section III-C. The process for séigg
threaded, compute-intensive region of code in a programicktwh critical events is discussed in Section IlI-D.

The objective of DPAPP is to produce performance predistiomvith positive or negative event coefficients respectiveBur
and adapt the code dynamically, as the program executes. Rmdel attempts to estimate these coefficients using mritibea
call that a primary motivation behind DPAPP is the avoidanaegression, discussed further in Section 1lI-C. The adgatof
of the overhead of experimentally searching through hardwasuch anempirical modelis that it is hardware agnostic, that is,
configurations to find optimal operating points for phaseshie it can be re-trained for arbitrary architectures withouguing
program. To minimize the prediction overhead and to achiewetailed user-provided domain knowledge about the process
effective code adaptation as early as possible during ¢éoecu Combining equations 1 and 2, the estimatdd®C for a target
DPAPP samples HECs for a minimal number of phase traversatenfigurationt can be calculated as:

Following phase traversals used for sampling hardware teven

rates, the runtime system selects the predicted optimaktpg n

point of concurrency for each phase. By contrast, an exhaustul PC(t) = ul PC(s) - Z(xi(t) ~e;(8)) +ulPC(s) - ~(t) + B(¢t)
search algorithm would have to teHdDzlpd phase traversals, i=1

where p, is the number of processing units in dimensidand . . n . (3)
D the number of dimensions of parallelism. A heuristic seardffherey(t) is defined a$ _;_, (vi(1)) + (). Accurate estimation

algorithm would also haveﬂf,lpd worst-case complexity. of uIPC for a target configuratiort is thus dependent on the
- proper approximation of the coefficients;(t), v(¢t), and the

o constant3(t). Note that the coefficients scale both the event rates
B. wIPC Prediction Model andu«I PC of the sampled configuration

The DPAPP predictor estimates thd PC’' of a phase on a ul PC(t) values for all possible configurations are used di-
target configuration: (denoted asuTPC(t)) using input from rectly for prediction of the optimal operating concurrentoyr
execution of the phase on a sampled test configuratiofhe €ach phase, at the given dimension of parallelism. We ttenca
input from the sampled execution includes the actuaC of the ulPC predictions that exceed the cumulative maximum capacity
sampled configurationu{ PC(s)) and a set of: hardware event (u/PCmaz) Of all processing units at the given dimension of
per cycle rates e (s), ..., en(s)). Each event rate;(s),i = 1...n parallelism, toul PCmaz, Which is derived experimentally for any
is the number of occurrences of eventlivided by the number given processor using microbenchmarks. Furthermore, wenas
of elapsed clock cycles during the execution of the phasesh tthat there is no super-linear speedup across configuratibres
configurations. Although in theory, the DPAPP predictor can us@hase, although this case does appear in real codes. Incpract
any feasible configuration as a sample configuration, weigteur Phases with super-linear speedup have their optimal dpgrat
cally chose to use the configuration where all processintsuati POInt of concurrency at the maximum number of processingsuni
the given dimension of parallelism are active. Intuitively Pc @nd offer no opportunity for concurrency throttling.
and the event rates sampled in this configuration encapstiiat

cumulative impact of hardware components on scaling. C. Offline Training and Estimation of Coefficients

¢ W?. mocf::le?ggC(t)fc::} the target C(f)_nflgutr_atlon, 'as a linear We use multivariate linear regression on the multithreaded
unction ofu (5) of the source configuration, as: phases of a set of training benchmarks to determine the vaitie
the coefficients in Equation 1. Although more advanced nrechi
uIPC(t) = ul PC(s) - a(t,e1(s), ..., en(s)) + B(t) (1) learning techniques could be deployed for prediction, thealer
-] . _of cycles invested in making predictions at runtime is a piiyn
for a set ofn critical hardware events, which may function eitheggncern for DPAPP, therefore we opt for the simplest linear
as enhancers, or as impediments of scalability. The sefeofithe e giction model. Specifically, training benchmarks arecested
events in this set is discussed further in Section llI-D.idthat |,,der all feasible hardware configurations, at all dimemsiof
both _the scaling fg_ctorx and the constant term of the linear parallelism, while recording per-phasel/ PC and the critical
function are specific to and dependent on the target hardwjgdware events used for prediction (see Section Ill-D)e Th
configurationt. In other words, each target configuratioeXerts training benchmarks are selected empirically so as to delu
its own scaling impact onu./ PC(s), which can be positive or phases with variance in three characteristics: scalgliinging
nega_tlve. To gauge how_ln_dlwdual critical events_ affeetlabn!t_y, from poor to perfect; granularity of parallel computatisanging
the linear scaling factor is in turn mod_eled as alinear cmm@n from fine to coarse; and ratio of computation to memory acsss
of hardware event rates observed during the sampled coafigar ranging from low to high. Through this process, patterns in

s as follows: the effects of event rates on scalability are learned $itzlty,
resulting in high accuracy when applied online.
n Our multivariate regression analysis uses the eventsatetle
a(t,ei(s), ...,en(s)) = Z(l’i(t) -ei(s) +wi(t) +2(t) (2) under the selected sample configuratiamultiplied by theu! PC
i=1 of the sampled configuration, i.e;(s) - uI PC(s), and the actual

The linear model of event rates stems from the empiricall PC alone (IPC(s)) as independent variablesto predict
observation that a change in the configuration used to exexutthe w/PC(t) of each target configuratiom as the dependent
program phase will result in changes — either upwards or dowwariable We use the product of; and «/PC of the sampled
wards — of critical hardware event rates, reflecting the eotibn configuration for coefficient derivation because our modsdsu
or effective hardware utilization at each level of parédlel. multiplicative effects of events on the observedPC rather
These event rates are related — positively or negativelytk thie than additive ones, in accordance with Equation 3. This gssc
ul PC, and this relationship can be accurately represented usiestimates the necessary coefficients for each event inifunct
a linear model [26], [33]. We capture this relation in Eqoat2 «(t). Regression analysis is performed separately to predieC

for each target configuration therefore we derive independenttypically share an on-chip interconnection network anddhter-
sets of coefficients and independent scaling factors fdn &rget most levels of the on-chip cache. Threads on a single cone sha
configuration. For a system with,; units in dimensiond of most resources of the execution core, including pipelibesnch
parallelism, 1,..., D, multivariate regression analysis derives @redictors, TLB, and L1 cache. Contention for these shared
total of Zi'; 1 pa Sets of coefficients. resources is largely responsible for performance and kitigja

To capture the implications of multidimensional parafiei
DPAPP uses a distinct set of critical events and derivestandis

D. Rigorous Event Set Selection fef PC' Prediction - X ; :)
)) set of scaling factors for each dimension of parallelismhe t
The accuracy of DPAPP is heavily dependent upon the sefectiq siem. DPAPP repeats the processes outlined in Sectid Il

of an effective set of critical events for predicting perfemce and 5 section I11-D, to obtain prediction event sets and cdiefits
scalability along each dimension of paralielism. The essfibuld for each dimension of parallelism. At actuation time, DPAPP
accurately reflect, in a statistical sense, performance seath- ,5kes predictions along each of the dimensions of parsttedind

bility bottlenecks in the system. We have previously coesd compines these predictions to yield a power-efficient caericy
empirical selection of events that represent known peréome- operating point for each phase in the program.

critical components of microprocessors [6]. In this papse
present a rigorous statistical technique, which automaies . .
event selection process and makes it reproducible and gener':' Predictor Optimization
applicable to any target architecture. The accuracy of DPAPP is significantly improved by clas-
Modern processors generally provide very large sets oftevessifying code phases according to their observed”C' during
that can be recorded, of which multiple can typically be rded the execution of the sampled configuration. The justificafior
at the same time. For example, Intel Pentium 4's provide 4biesy such an extension is twofold. First, grouping phases based o
which can be further differentiated by specifying bitmagkeach «/PC allows training and prediction to occur separately for
event, and up to 18 events can be recorded at once. The IBkRses with different scalability slopes. As such, the sitiwi
Power5 provides 500 events and permits up to 6 to be recorde@fween buckets is selected such that it divides differegtes
Simu|tane0us|y_ The number of |ega| sets of events that &n Qf Scalability. Second, it is intuitive that the effects akats will
recorded simultaneously on these architectures is faramelfor Vvary depending on the original instruction throughput ottea
it to be feasible to exhaustively test each set of eventsmg for Phase. Dividing the phases into buckets and creating stepa(
prediction. Moreover, while the most effective predictjpossible scaling functions for each class of phases gives the poedice
would likely result from the use of all (or at least most) dable Opportunity to make more fine-grain and accurate predistion
events, there is an architectural limit on how many eventshm At runtime, the observed./ PC' on the sample configuration
recorded simultaneously. determines which set of coefficients will be used for predict
Rather than exhaustively looking at each possible comibimat We use this optimization in our implementation of DPAPP.
of events, our predictor training tool independently loalsthe
contribution of each event talPC. To gauge each events |V. CONCURRENCYCONTROL FORPERFORMANCE AND
significance, we initially use multivariate regression atadfrom POWER OPTIMIZATION

the set of training benchmarks to predidt”C(t) for each target |n this section we present our phase-aware concurrency-thro
configuration, using all events that are available for mwmiy tling algorithm for a 2-layer shared-memory multiprocessaich

on the processor. We modell PC' as in Equation 3, with the as a multi-chip multi-processor with multi-core processone
exception that we use a set df events whereV >> n. then discuss the power and energy reduction potential of the

Following the initial «/PC modeling phase, we prune allalgorithm and extensions to the algorithm that take accdomt
events that have zero or negligible occurrence rates. We th@ter-phase interference.

consider the contribution of each event to the resultidigC'(¢)
prediction, as a percentage @f PC(t). The contribution of each A. ACTOR Runtime System
event is calculated by multiplying the event rate by its Giordnt '

and byul PC(s) and dividing the result by.l PC(t). We average Scientific codes are dqminated by iterative execution ospha
the contributions of each event across all feasible cordijpms 21d ACTOR exploits this property to sample hardware event

and all phases in the training runs, and rank the events "#f€S in the first few phase traversals and set the concyrreinc
descending order of contribution. The actual number of everf@ch phase to the predicted optimal operating point, eaniyng

selected for predictions) is processor-dependent. We seto be execution of the_ program. The live search of the optimizatio
the maximum number of events that the hardware performange@ce for operating points of concurrency can also be peedr
monitor of the processor can count simultaneously, withone- °Y fiming phases at different configurations and runningciea

multiplexing of event registers. This selection criteriminimizes Ne€uristics such as greedy hill-climbing [7], [30] or simigid
the overhead of monitoring hardware events for prediction. ~ @nnealing [27]. However, as the number of feasible hardware
configurations increases with the introduction of more saad

o))])) threads per processor, direct search methods may spend most
E. Eredlctlon on Architectures with Multiple DimensionsRafr- s ihe execution time sampling suboptimal configuratioasher
allelism than optimizing the program. This disadvantage manifastsfi
On architectures with multiple dimensions of parallelism®; in codes where dominant multithreaded phases are traverdgd
source sharing varies considerably across dimensions.efor a few times. Even if direct search methods are used for o#-li
ample, physical processors in an SMP share only the off-chiuto-tuning by repetitive executions of the entire progrdr],
interconnection network and DRAM. Cores within a process@earching the optimization space for any input on any féasib

1: {Input: phase identifier, sampling rgte

2: {Output: predicted optimal operating concurren@ysqs } Make Prediction

3: {Assume=-dimensional multiprocessor withy- P, processors.

4: {Each tuple{po, p1} represents a hardware configuratipn. ’samp'e 1‘ ’samp'es‘ ’ Decided Optimal Configuration

5. S « sampling_rate; cmaz — {Po, P1}; ul PCaa < 0; 5 p S S N

6: forall 4,1 <i< .S do Timestep

7. Cmazx,i < {P07 % : Pl},

8: sampleul PC(¢max,i);

9: sample event rates @f,,qx,:;

10: uIPCmaz.i — tIPC(Cmaz.i); Fig. 4. Sampling, prediction, and execution timeline focte@hase.

11: forall 5,1 <j< P do

12: c—{j, £ P}

13: predictul PC(c); the application, however we plan to instead embed all fonet
14: if ul PC(c) > ulPCyaz,i then ity within the threading substrate. ACTOR estimates optiom
15: Ul PCraz,i — ulPC(c); Cmaz,i < ¢; erating points of concurrency using samples of criticaldiaare
16: end if event rates from live executions of program phases. Spaltyfic
17: end for the library controls the firs& phase traversals to execute on the
18: if (WIPChaz,i > ulPCpmae) then .) -

19: Cmaz — Cmani, W PCras — wIPCrmas.i: desired sample configurations and collect event rates,agrsi
20: end if Figure 4. At the end of the sampling period, collected evates
21: end for are used by DPAPP to predict thd PC of each phase on alter-

native configurations. Once predictions for a phase areirsdda
Fig. 2. The concurrency throttling algorithm within ACTORrfan archi- 5| supsequent traversals of a phase are executed at thietpced
tecture with 2-dimensional parallelism. . . .
optimal operating point of concurrency. ACTOR enforces -con
figuration decisions through the Linux processor affinitgteyn
call, sched_setaf finity(), and threading library specific calls for
LG changing concurrency levels, such asip_set_num_threads()
in OpenMP. The library executes at user-level and so does not
require administrator privileges. The overhead of usingTAR
in terms of the time spent not executing application code is

Runtime HEC DPAPP Config. [Decision

System values Predictor | Decision’| Enforcer ; .
approximately five hundred thousand cycles per programehas
(250 microseconds on a 2 GHz processor), which is negligible

HEC management
Hardware Self-Adapting L . X
HEC collection Application for any realistic application.
B While both concurrency throttling and DVFS target improved

energy-efficiency, concurrency throttling has the adwgatthat
it will often improve performance, whereas DVFS sacrifices
Fig. 3. The overall structure of the ACTOR runtime system. performance to reduce power consumption. Further, DVFi8gel
on program phases with high memory access rates to avoid
degrading performance significantly, while concurrenapttiing
configuration of processing units may be prohibitive. ACTORhay be applied in other cases as well. In general, howevetith
prunes the search space for concurrency optimization tmstaot approaches are likely to be highly synergistic and can béiepp
number of samples. together to achieve even greater energy-efficiency. Fomele
Figure 2 illustrates a DPAPP-driven concurrency throgtinDVFS could be applied using existing approaches to cores kep
algorithm in ACTOR for a multiprocessor with two dimensionsactive by concurrency throttling. More sophisticated téghes
of parallelism. The DPAPP-based concurrency throttlingoal could be devised to optimize both DVFS and concurrency, how-
rithm has two parameters, the sampling rate and the dimensiever such a solution is beyond the scope of this work.
of parallelism along which the initial samples are takeneTh Certain assumptions are necessary to implement our concur-
sampling rate,S, corresponds to the number of times eachency throttling system and we outline those in the follagvin
phase needs to be executed before deriving a prediction ferst, we rely on the capability of the runtime system to a@n
the optimal operating point and is used to control the samgpli the number of threads used to execute a phase of parallelatode
overhead. In our prototype, we use a sample rat§ ef 2 taken runtime. This capability is available in OpenMP, at the grarity
along the innermost dimension of parallelism, i.e. threaitein of parallel loops and parallel regions. However, changhegrtum-
a processor, which provides the minimum number of sampleer of threads at runtime may not be possible in some apigitzat
needed to capture the effects of using more than one coreeath due to data initialization which depends on the number afatls
per processor. The second parameter is fixed at the traiiagep used. This pattern is uncommon and is trivial to modify. $&co
of the DPAPP predictor, during which all possible orderirafs the phases of an application must be executed at fetistes, to
dimensions of parallelism can be tested. The algorithmgufei 2 allow for sampling. Finally, the execution properties otle@hase
generalizes to more than two dimensions by repeating the lobetween executions must remain relatively stable. In fmacthis
in lines (11)—(17) for each dimension beyond the second. is the case in both regular and irregular codes.
The structure of the ACTOR system is given in Figure 3. The While we have specifically designed ACTOR for use with
controller is dynamic, in the sense that it adapts the pragaa iterative scientific applications, the approach may applyther
it executes, with no prior knowledge of program charactess categories of applications as well. The basic principle GTOR
Currently, ACTOR requires simple, formulaic instrumeigatin can be used with any definition of a phase where concurrency

ACTOR

library calls

can be dynamically adjusted. For example, in non-iterative V. EVALUATION
synchronization-intensive, or heterogenous multithegadodes, |, this section we perform an evaluation of both the perfor-
if an existing phase identification technique can be empldye ance prediction model and the adaptive concurrency timgptt
identify repetitive behavior where concurrency is modifiglthen technique presented in previous sections. In the next stibge
our approach can be applied. For server workloads the aigiit \ye present the experimental setup that we used in our ei@iuat
may be treated as one large phase and a limited timeframe #Mowing, we present the results of event selection fodjution
be monitored to decide concurrency for the entire applicati 5nd the resulting accuracy of the predictor. Finally, we pare

the power and performance results of ACTOR with those athin
B. Energy Savings Possibilities by online techniques based on empirical search and by offline

Energy savings using adaptive concurrency throttling con%SChn'ques using predetermined concurrency.

through two avenues. First, by reducing execution time, be-

cause the energy consumed is reduced proportionally. Secofi. Experimental Setup

through the deactivation of processing units, which redymever We performed all of our experimental evaluations on a Dell
consumption. The power consumption of a processing unit fowerEdge 6650 server equipped with four Intel Hypertheelad
dependent upon its level of utilization, as clock-gatingils the Xeon processors with 1GB of main memory. Each processor is a
power dissipation of functional units when they are idlertker, 1.4 GHz, 2-way SMT equipped with an 8-KB L1 data cache, a
a processor can be transitioned to a lower power mode when #-KB trace cache, a 256-KB L2 cache, and a 512-KB L3 cache.
is not being used. For example, on Intel Pentium 4 processorsie operating system on the server is Linux kernel versi6ri3.

the hit instruction transitions the processor to a low power mode, Experiments were performed with 10 benchmarks that are
where power consumption is reduced from approximately 9Vépresentative of scientific and engineering applicatiypically
when idle to 2W when halted. While we do not manually contraequiring high performance. Nine of the benchmarks origina
the transitioning between power states of the processam frfrom the OpenMP version of the NASA Advanced Supercom-
within the runtime system, the operating system does so whgiiting Parallel Benchmarks suite, version 3.1 [20]. We inseet

the processor remains inactive for some time period. We haggferent problem sizes, available in the NAS distributioh, A,
experimentally verified that in Linux 2.6 kernels, processare B). MM5 is an OpenMP implementation of a mesoscale weather
actually transitioned to the halted state during 90% of iheet prediction model [16]. The benchmarks include a wide varist
during which they have been left idle. Manually transitiwni program properties, in particular, widely varying PC' scalability
processors would result in minimal additional power sasingp across execution phases. Therefore, they are challengiggts

we do not consider this direction further in this work. for prediction. The benchmark suite includes several beveks
with a small number of iterations (CG, FT, IS, MG), in which
C. Cross-Phase Decision Making empirical search strategies may suffer due to a large ptrgen

- . . of total execution time being spent in exploration, as wall a
The processes of prediction, decision maklng, and adaptat'benchmarks with a large number of iterations (BT, LU, LU-HP,
are not performed at whole-program granularity, rathercheaspv UA, MM5), where search strategies stand to have theiclsea

pEase of .?hn d{'if? pllcattlon IS t.a nalyzed ;.nde_p etr;1dently. Thmn overheads better amortized. Results for FT are not inclifded
phases wi ifferent execution properties in the sameigijin class size B, because its working set does not fit in the dlaila

to execute with their own, locally optimal hardware Conf'gufnemory of our hardware platform.

rations. Since many programs have behavior that variessacro Table | lists the benchmarks along with some pertinent infor

phases [36], overall performance can be improved Compamdrﬁation about their structure. The number of iterations spisaand

using a §|pgle configuration for the entire program. Howeveer percentage of time spent in parallel regions shown are fasscl
non-negligible performance penalty may be paid as a redult 0

chanaing the hardware confiauration across adiacent plese Size A. The table also outlines the percentage of execuiina t
hging 9 > ad) pres uring which at least one processor can be deactivated with n
runtime. This performance penalty stems primarily from raig

. - negative impact on performance (i.e. the program runs aym
tion o.f qukmg sets O.f threads between ca_ches [24]' To avo| th at most 3 processors) and percentage of execution time
negative inter-phase interference, we consider variafit®up during which one Hyperthread per processor can be deaedivat

adaptation scheme that are aware of this interference. with non-negative impact on performance (i.e. the program r

We have developed two schemes for cross-phase adaptatgmima"y with at most one Hyperthread per processor), |

The first of these schemes simply finds the configuration_ _matdver all three class sizes. This information is taken fromtist

best for the majority of the appl|(;at|ons pha;es and a.p|dl. BS executions on all feasible hardware configurations.
to all phases, regardless of their locally optimal confitjora

This scheme avoids cache interference entirely, at the nsepe o)

of using a single configuration for all phases and missing- fin8- Performance Prediction Evaluation

grain optimization opportunities. The second approach nis a In order to evaluate our performance prediction model, we
extension to the first, where phases are allowed to tempprarselected two benchmarks for training, specifically UA (cdeg
replace the global optimal configuration with their locakiol to class size A) and MM5. These benchmarks were selected
configuration, only if IPC improvement beyond a preset thodd because the phases they contain have widely varying erecuti
is predicted by using the local decision. Using this techajq properties, including IPC, scalability, and locality. Eher, they
interference will only be tolerated when the phase in qoests contain enough phases, specifically 119, to serve as a &taerda
expected to make up for it in performance gain through the usaining set. These applications were used in the eventtizte

of an alternative configuration. process as well as the predictor training. Predictions vreaele

Benchmark BT [CG | FT IS LU [LU-HP [MG | SP [|UA |MM5
Iterations 200 [15 | 6 10 [250 | 250 4 1400 [[200 | 180
Phases 5 5 5 1 3 11 6 9 49 70

% Time in Phases [99.5[91.6 [91.2 [79.7 |99.9 | 99.7 [86.399.6 {[99.8 | 95.5
% Time Disable CPU| 1.9 {33.3| 0.1 [100.0| 0.0 15.1 | 6.0 |35.11((59.3| 7.7
% Time Disable SMT|99.1 [66.6 [93.0 {100.0 | 0.0 50.8 |53.5(32.9(|33.1|70.0

TABLE |
THE SET OF BENCHMARKS WE USED TO EVALUATE ONLINE PERFORMANCEREDICTORS FOR POWERPERFORMANCE ADAPTATION ALONG WITH THEIR
MAIN PHASE CHARACTERISTICS UA AND MM5 WERE SELECTED FOR USE IN PREDICTOR TRAINING

for the remaining benchmarks, i.e. all remaining NAS benatim | redictor (4.2)-(2) 4.1)-(-1)
with class sizes W, A, and B. Sample configurations of one and Exgmg LZCBéCzla?:fl:(l\:/ltli\éies LZCBClICELifI:(I\:/ItIi\éieS
two threads active on all four processors were selected@g in| gyent2 Branches Retired Branches Retired
to predict for configurations with fewer processors actis. a Event3 UOP Queue Writes TC Deliver Mode
result, predictions were made for a total of six configunagio Event4 | Mem. Access Cancelefl Mem. Access Canceled

1) Event Selection:Selection of an effective set of events Events SP SIMD UOPs DP SIMD UOPs

. . Event6 Memory Accesses (1) Machine Clears

to use for performance prediction requires data for all aé th| £\ one7 Memory Accesses (2) Stall Cycles
available hardware counters on each of the test configms&tio| Events Instructions Retired Instructions Retired

for all of the training benchmark phases. Further, therC TABLE Il
values of all phases on each hardware configuration are seges
. THE INTEL PENTIUM 4 HARDWARE EVENTS SELECTED FOR PREDICTION
as well. There are 40 events on Pentium 4 processors that
. . . . FROM EACH SAMPLED CONFIGURATION THE SECOND AND THIRD

can be recorded using only a single register each, with duarth

. . s . COLUMNS SHOW THE EVENTS FOR PREDICTING CONFIGURATIONS WITR
differentiation within each event through the use of bitknas

e - . AND 1 HYPERTHREADS ACTIVATED PER PROCESSOR RESPECTIVELY

parameters specifying, for example, to record L2 cache asiss
hits, or accesses. There is also an event to count memorgsese
which requires two counter registers. We select one bitnfask

each event representing the hardware parameter most itkely, here 1 pC,, is the observed IPC of useful instructions. The
have the largest effect on performance,

, leaving 41 events J9araqe prediction error for each phase is taken acrosargltt
con5|der.. Of these, 1?’ had rates near zero, and were t,hu“_ye,dmoconfiguration predictions. Configuration prediction a@myrillus-
as described in section IlI-D. The performance monitorimif U o105 how often the predictor identifies thazal static optimal
of the Pentium 4 with Hyperthreading technology shares 1€ 1, ration which is defined as follows: We execute the bench-
counter registers between the two co-executing threadsing 545 with each of the eight possible hardware configuration
9 counters available for each thread. The 28 events thalvedrv giatically, j.e. with no concurrency throttling betweenaphs.
pruning provide a total of 99,372 possible architecturdégal o each phase, we designate as optimal the one configuration
set; of events that can be recorded on the 9 performanceetouia minimizes the execution time of the phase. We shoulé not
registers per thread. that the litmus test for our predictor is nat/ PC prediction
Regression analysis was performed on the data from eagécuracy but configuration prediction accuracy. As long tes t
phase to find the events that contributed the most to thetiegul predictor consistently predicts the optimal configuratianrectly,
IPC prediction. Table Il displays the set of events that was potentially highul PC' prediction error can be disregarded.
selected for prediction from each sampled configuration on 0 As discussed in Section IlI-F, we utilize phase classifazati
platform. In this discussion, configuratiomproc, nthr/proc) pefore making predictions. Specifically, we divided phaisgs
denotes a configuration withproc processors andithr/proc puckets withul PC' greater than or equal to 1.0 and those less
threads per processor. It should be pointed out that eveitks Wnan 1.0 during the sampled configuration. This division @ n
large contributions have been excluded due to conflicts mibhe arbitrary, rather, it provides an approximate value to safga
dominant events. That is, the inclusion of one highly ctiiing phases with low scalability characteristics versus those $cale
event often eliminates other contributing events thatfate with e, on our experimental platform. During prediction, bgzhase
it. All that can be done in these cases is to select the evéhttheé ;ses the coefficients derived from thePC bucket corresponding
largest contribution and ignore the conflicting events.cHjmally, g its observedi.I PC during the sampled configuration.
three of the top five events on this architecture cannot Hedecl The wIPC prediction accuracy can be seen in the leftmost
because they conflict with the top two events. This suggésts tgraph of Figure 5. This graph gives the cumulative distitout
on architectures where there are no dependencies betweatsevfunction of prediction error, that is, the percent of phasiest
our prediction approach will likely achieve higher accyrac experience error below each threshold with threshold saspl
2) Prediction Accuracy:We perform our evaluation of the taken every 5%. The median absolute prediction error is%2.6
accuracy of the online performance predictor using eighbwf We note that 24% of all predictions have less than 5% error and
ten benchmarks, excluding the two benchmarks used foritigain 43% of all predictions have less than 10% error. On the other
the predictor. We consider the absolute prediction erra tie hand, only 4% of the predictions show error larger than 50%.
configuration prediction error for each benchmark. We daleu Although our performance prediction model is purposefislisn-
the absolute prediction error &8l PC),.q—ul PCoys|/ul PCyys, ple to minimize the overhead of applying it at runtime, itsuks

Absolute Prediction Accuracy Configuration Prediction Accuracy Performance Loss due to Misprediction
100 70

90
60
80 i
70 50
60 - 2
3
50 4 s
T
40 4 &
30 20
20
10
o 0 BT CG FT s L L6@P MG SP AVG

0 10 20 30 40 50 60 70 8 90 100 1 2 3 4 5 6 7 8 -1
Prediction Error (%) Rank of Selected Configuration Benchmark

o

o

IS

w

% Phases
N

-

Performance Loss (%)

o

Fig. 5. The left chart illustrates the CDF of prediction errdhe middle chart illustrates the percent of phases forclvigach rank of configuration was
selected. The rank of the selected configuration is takem fifte list of configurations sorted by their IPCs on staticcexiens of each phase. A value of 1
indicates that the optimal configuration was selected. Tdte chart shows the performance lossQ) or gain 0) resulting from configuration misprediction.

compare favorably with other reported statistical techeig for C. Adaptive Concurrency Control Evaluation
predicting IPC [9]. The high accuracy of the model stems fthm
use of statistically selected event rates, which allowslipt®ns
to be made based on detailed knowledge of the utilization
specific critical processor resources where programs speost
of their execution cycles. Trends in the relationship betwe
the usage of these resources and the resulting scalabikty
learned offline through statistical analysis of the trajnset, so
an accurate model is achieved because the training phaseeap
a wide range of scalability-event correlation patterns.

To measure the power consumption of the benchmarks under
g?rious hardware configurations we utilize a power measargm
methodology based on hardware event counters [19] that has
proven to be highly accurate. This methodology works by first

artitioning the processor into components and then détém

e maximum power consumption of each component based on
the die area it consumes. The runtime power consumptionabf ea
component is the maximum power adjusted by an activity facto
The latter is estimated by looking at corresponding hardwar

In terms of prediction of the optimal configuration for eactfVent counters. This amount is added to a non-gated clockmpow

phase, the middle chart of Figure 5 shows the percent of gha@§Sociated with each component, that grows non-linearth wi

for which each possible ranking of configuration was seticte2CtVity: The power consumptions of all components are sathm

This value is calculated by sorting the configurations by IP&/ONg with a constant base idle power. Additionally, we riami
for each phase and identifying which entry was selected We number of cycles.durlng which the processor is halted and
the predictor. For example, a value of 1 indicates that thet b@Nly charge an associated halted power in these cases.uldsho
configuration was selected and 2 indicates that the secosid € Noted that we focus only on processor power consumption.
configuration was selected, etc. This graph shows that in 690" the well-tuned scientific applications that we considethis
phases the single best configuration is identified by theigiad PaPer processor power is the dominant portion of the totstiesy
An additional 19% of phases have the second best possibligconPOWer consumption [35].
uration selected. This evaluation shows that optimal candipn 1) Motivating ExamplesFigure 6 depicts the execution times
identification occurs at a higher rate than might be expefrted and energy consumption of each benchmark under class size A
the error rate reported_ The observed success rate can]ﬁm|par for each static Conﬁguration. Static Conﬁgurations use r@lel
attributed to the fact that the predictors tend to constitesver- configuration for the entire execution. These graphs shawdh
predict or under-predict PC' by similar margins across configu- 0ur experimental platform, very little additional perfoamce gain
rations for any given target phase. Therefore,i@C prediction is seen through adding additional processors once two psoce
error does not prevent correct ranking of Configurations_ are active. Par[icularly interesting isthe IS benChma“ki,dV sees
its best performance using a single thread on only one psoces

As a result of the high configuration prediction accuracyg thFurther, sometimes there is a large gain through using tbense
performance loss in mispredicted regions is usually quite The execution context on each processor and sometimes a stidistan
rightmost chart of Figure 5 shows the weighted performanss | loss. For these reasons, adaptation of the number of prarsess
observed for each benchmark during mispredicted phases. Tand execution contexts stands to improve both executios éna
value is calculated aii]\;Bl w; - D;, where N is the number power consumption. It can be observed that while performanc
of mispredicted regions in benchmat, w; is the weight of levels out, the energy consumption increases at rathep sttes
each mispredicted region expressed as the percentage tftéhe with more processors.
parallel execution time ofB8 that the specific region accounts The reader may note that the observed scalability bottlenec
for, and D; is the absolute performance penalty suffered by there an artifact of hardware bottlenecks, such as limited amgm
mispredicted region. The average penalty across benchmarksandwidth. While this statement is correct, it also refleats
is only 1.2%. The explanation for the negative performamuss | property of a large number of real systems, including state-
(performance gain) of LU-HP is that by not changing configusf-the-art platforms that outdate our experimental syst&ior
rations to the optimal in all cases, the cache effects ofinfie example, we performed experiments with the NAS benchmanks o
configurations are reduced. These results show that our Imodenewly released quad-core Intel processor (Q6600) whigle ha
is capable of identifying the optimal configuration most h&t shown that applications still tend not to scale well on evea t
time and when it does not it still manages to find a competitidatest hardware. In particular, several of the benchmaalistd
configuration to use, with minimal performance penalty. scale beyond two cores, with maximum speedups saturatitig we

10

BT Class A CG Class A FT Class A IS Class A
450 25000 16 700 35 3000 16 1400
400 14 14
& 3% 20000 5 . 600 2® 2500 _ . 1200
K :d g 12 500 8 525 3 H 1000 &
E 300 S 21 E g 2000 5 2]
8 250 15000 & 8 400 3 8 20 3 8 800 3
8 2 = & 8 < & 1500 2 g8 2
g 10000 3 S 6 300 3 21s 3 e 600 3
5 v S g s
2 150 g g 20 & 20 1000 5 g, 400 2
F 100 5000 1 5 & = 00 = Y
50 2 100 5 S 2 200
0 0 0 0 0 0 0 0
=) (12 @D (22 3D (32) 1) @2) =) 12 @) 22 G G2 (1) (¢2) W) (12) @1 (2 G (2 @1 @2 TN L) (12 @1 (22 B (32 @1 (42
——energ| Configuration (CPUs, Thr/CPU) ey Configuration (CPUs, Thr/CPU) ooy Configuration (CPUs, Thr/CPU) +E oy Configuration (CPUs, Thr/CPU)

LU Class A LU-HP Class A MG Class A SP Class A

600 30000 600 35000 20 900 400 25000
18 800 350
500 25000 | | . 500 30000 1 16 700 5 20000
8 25000 & L1 8 7 300
400 20000 5 400 E 2 600 5 250
3 20000 8 g 12 500 3 u 15000
S| 81 0| | & 20
> 15000 3 ey 3| | S 150 10000
200 10000 3 200 g 2 300 ©
2 10000 & E 6 oot £ 1o
w u Foa w F 5000
100
100 5000 5000 M fpos 50
0 0 0 0 0 0 0 0

=D 12 1) (22 (1) (2 “41) 42 =D (12 1) 22 B G2 41 (42) = (LD (12 @D (22 B @2 (1) @2 _'me @) (12 (1) (22 (31) (B2 (A1) 42)
oty Configuration (CPUs, Thr/CPU) ooy Configuration (CPUs, Thr/CPU) oy Configuration (CPUs, Thr/CPU) +E ergy Configuration (CPUs, Thr/CPU)

Time (Seconds)
w
8
8
Q
g
8
8
S
Time (Seconds
w
8
8
Energy (Joules)

Fig. 6. The execution times and energy consumption of eaatft stonfiguration.

LU Class B MG Class B SP Class B

DM
1 2 3 4 1 2 3 4 1 2 3 4 4

2
Cores Active Cores Active Cores Active Cores Active

IS Class B

10
20

8
15

6

4
100 200 300 400

5

2
Execution time (secs)

Execution time (secs)
0 100 200 300 400 500 600
Execution time (secs)
10
Execution time (secs)

0
0

Fig. 7. Scalability characteristics of 4 of the NAS benchksaon a state-of-the-art quad-core Intel processor (Q6600)

IPC per Phase in LU-HP (Class B)
|m@y) B2 BRI BE2) 0E1) BE2) 0@l BE2)|

below 2 (see Figure 7). As a result, opportunities for corency 50
throttling still exist even in the newest hardware platferm -

As further evidence of the importance of phase-level adap-
tation, Figure 8 displays the IPCs for each phase of the LU-

Normalized IPC

HP benchmark at class size B under each static configuration i
normalized by the IPC of (1,1). It is evident from the chasdtth
single application can have optimal configurations vangneatly
6 7 8 9 10 11

between phases. LU-HP in particular experiences five differ
optimal configurations across different phases. Therefosing
a technique to execute each phase at its local optimal @pgratrig. 8. IPCs for each phase of the LU-HP benchmark under eatit s
point stands to improve performance. In cases where thenapti configuration, normalized by the IPC on (1,1). The configarawith the
configuration occurs on fewer than the available number of prhighest IPC for each phase is flagged with a striped bar.
cessing elements, power savings can occur during the ésecut
of these phases. The goal of our adaptation approach is toiexp
these properties with na priori knowledge of the codes andoptimal configuration regardless of input size. This medrat t
achieve both power and performance benefits. use of these static techniques requires offline analysit itha
2) Offline Adaptation StrategiedBefore discussing the online specific to the application and the input size. By contraise, t
adaptive strategies and their results, we focus on two efflip- 0nline adaptive approaches adapt autonomically at rurfiomthe
proaches to adaptation. The first of thesetic optima) uses the current application execution and require no applicatignt-size
single program-wide static configuration that results ia lidbwest specific offline analysis.
execution time. The static optimal configuration for an mnti 3) Empirical Search-based StrategieBor purposes of com-
program differs in general from the static optimal configimas parison, we have implemented two alternative dynamic adiapt
of phases in a program. The second approagih&se optimahnd strategies based on empirical search of the configuratianespt
uses the local static optimal configuration, not considgdross- runtime. The first of these is the most straightforward forfn o
phase effects, as defined earlier. Due to interference bogusy adaptation, exhaustive search, where each possible cratfiu
changing the configurations phase optimalthe mean execution is tested and the one that provides the lowest execution isme
time of the benchmarks is 1.0% higher thetatic optimal For this selected for each phase. The second empirical search geehni
reason, we limit our following evaluation to comparing atila® that we implemented is a heuristic search algorithm, whigh w
strategies testatic optimal have previously devised to reduce the overhead of exhaustiv
The two offline approaches that we consider have the disakarch [7]. This algorithm works by applying a hill-climigin
vantage that the optimal configuration may change with ifie heuristic search to find the optimal number of processinmetes
input sizes. For example, IS executes statically optimally to use at each dimension of parallelism, one dimension abe. ti
(3,1) for class size W, but (1,1) and (2,1) for class sizes A aThe algorithm begins by executing the phase on all available
B respectively. For individual phases, the optimal configion processors with all Hyperthreads active. Then, the numlfer o
varies by problem size as well. Specifically, only 52.5% ofrocessors is successively reduced until an increase icugga
the program phases in our benchmarks experience the sdine is observed. The lowest number of processors thattsesul

Region Number

11

BT CcG FT

Time Power Energy Time Power Energy Time Power Energy
Evaluation Metric Evaluation Metric Evaluation Metric

IS LU LU-HP

W Exhaustive Search D Hill Climbing BIPPACC B Static Optimal

Time Power Energy Time Power Energy Time Power Energy
Evaluation Metric Evaluation Metric Evaluation Metric

MG sP Average

Time Power Energy Time Power Energy Time Power Energy
Evaluation Metric Evaluation Metric Evaluation Metric

Fig. 9. Performance of the adaptation strategies in termsxe€ution time (first group of bars), power (second grouparsh and energy (third group of
bars) normalized with respect to the (4,2) static configonafor each benchmark, averaged over all class sizes.

a decrease in execution time is used for the correspondiageph mance compared to exhaustive search because a larger fpgreen
This process is then repeated on the decided upon numberobthe iterations will be executed with the decided upon ropti
processors to determine the number of Hyperthreads to use camfiguration, rather than testing additional suboptinmaifigura-
each processor. tions. Specifically, compared to exhaustive search, hiizing

Figure 9 illustrates the normalized arithmetic means oéehr achieves a 1.6% improvement in execution time overall and a
metrics: execution time, average power consumption duexg 3:9% improvement for applications with few iterations, fwi
ecution, and energy consumption. These metrics are deriv&#nor 0.5% increase in execution time for the applicationthw
for each benchmark under different execution strategigmhE mMany iterations. The slight performance drop in appligaiovith
metric is first normalized to the corresponding metric of th&\any iterations can be attributed to occasionally selgalightly
(4,2) configuration for the specific benchmark, which exsl@ill Worse configurations than exhaustive search. Power cortsamp
available execution contexts on our experimental platfowte IS reduced by 1.7% and energy consumption by 3.6% on average,
then calculate the means of the metrics for each benchmark. compared to exhaustive search. Comparesitatic optima) hill-

The average execution time of all benchmarks over all pmbleCllmblng reduces the performance loss 10 26.5% for appioat

. : . 0
sizes using exhaustive search was reduced by 10.9% conmrepgétl{as S;Eg\'/:/ Trl:;?brilrl g;rﬁg::t'oizséagdtéor::éﬁA’ O%/;r?g%es
statically using all available processors and executionteds 9 9

on the system. Power is reduced by 9.7% as well, resulting .tf n decisions, while requiring fewer exploration itedats, thus

a 19.5% reduction in total energy consumption. Howevers th'in roducing Iess.ovgrhead: Howe_/er, the search overheadlllis

. a factor for applications with few iterations.
approach incurs high overhead in the exploration phasetalite
testing of each configuration. Exhaustive search needsgoutx ~ Occasionally, power consumption actuallycreasesthrough
8 iterations of each phase to reach a decision. This overhdf@ use of adaptation. This result is counter-intuitivecsiadap-
shows up when the results are compared to using the optinf@fion always maintains or reduces the number of processuts
static number of threads for the entire program executidmere Hyperthreads used. In the large majority of phases, spettjfic
exhaustive search is outperformed by 16.1% overall and t§281 79%, deactivating Hyperthreading does reduce power. Hemev
in benchmarks with a small number of iterations (MG, CG, Fn certain cases the use of Hyperthreading causes severe de-
IS). However, for applications with many iterations (BT,,SFstructive interference in the cache between co-executirgatls,
LU, LU-HP), exhaustive search is able to come within 1.19¢/hich can increase stall time and therefore reduce dynamiep
of the static optimal in terms of performance, while redgcinconsumption [8]. Deactivating Hyperthreading in theseesas

power consumption by 3.3%, because the search overheackcaigreases power consumption by reducing stall time, howeve
amortized over a large number of iterations. energy is reduced due to the reduction in execution time.

Using hill-climbing reduces the number of required testate 4) Performance Prediction-based Adaptatiofhrough the use
tions for each phase to 5 in the worst case for our experirhentd performance prediction, the number of iterations reeghifor
platform and only 3 in the best case. This overhead reductiadaptation can be further reduced using the algorithm ptedén
allows the hill-climbing algorithm to achieve improved fmr Section IV, to only two iterations in the case of our experiad

12

100 Average effective decisions. More importantly, the results for kg
WPhaselocal MCross-Phase M Cross-Phase (15% tolerence) tions with a small number of iterations are within 3.7% of the
statically optimal configuration, compared to 31.6% andb26.
for exhaustive search and hill-climbing respectively, daexe of

§oss the significantly reduced exploration overhead. Our experital
080 1 platform has only eight feasible hardware configurationd tre
075 performance advantage of ACTOR over the empirical search
070 | approaches is expected to grow in the future as the available
Time Power Energy number of processors, cores, and threads in a system rises.

Evaluation Metric

The power-related results for ACTOR are just as substantial
Fig. 10. Execution time, power, and energy effects of utitizthe three as those for performance. Energy consumption is the product

different prediction based adaptation strategies, witmainbers normalized of power consumption and execution time, and concurrency

with respect fo the (4,2) execution. throttling attempts to reduce both, decreasing energywroption

by a still larger margin. We observe 10.8% and 26.7% reduostio

in power and energy consumption, respectively, comparedita

all execution contexts. When compared to using the staticnap

configuration, a 2.9% average reduction in power is seen and
0.9% reduction in energy. This result may seem surprising,

owever it can be explained by the fact that the static optima

uses only a single configuration for the entire program ettecu

rather than further decreasing the number of active pracs<sr

platform. Further, performance prediction reduces theat$ due
to changing configurations during the exploration process tan
lead to suboptimal decisions by the direct-search strase@n the
downside,ul PC predictions need significantly more processoﬁ
cycles than direct comparisons of the execution times osgha
We first compare a strategy whereby the predicted optim
configuration for each phase is used, to strategies thatdsms ™ ™)
cross-phase analysis to make decisions. The best stra&ag)}ng'v'dual phases below the global op'glmal level. .
selected for use with ACTOR and is compared to the offline andACTOR also sees a 1.1% reduction anql a 0.8% increase
direct-search approaches already presented. First, vieat@aour N power consurr_lptmn compared FO exhau;tlve search and hil
approaches to minimize the harmful effects of using theIIocﬁIlmblng respectively. Further tracmg_ of this result stsothat
optimal configuration for each phase, which occur if chang CTOR exeputes the bgnchmarks with an average of 3.13 pro-
in the configuration of adjacent phases result in redisticou cessors, while exhaustive search executes with 3.20 amd hil

of working sets between caches [24]. Our experimental t!%,Sulclimbing with 3.02 processors. However, ACTOR reducesl tota
shown in Figure 10, indicate that simply attempting to avoig "€"9Y consumption by 10.2% and 6.3% respectively because o

cache interference is not inherently effective. Using apragch Lt)s pe(;‘fo:jmancg advarglzglges. Trlleseﬁresgltscljndl_cgte tesc;tﬁrpn-
whereby the configuration selected as the best for the niyajofi ased adaptation is able to make efiective decisions, ms

execution time (i.e. the dominant configuration) is enfdréar all of improving execution time and reducing energy consunmptio

phases causes a slowdown of 1.5% compared to the local dptimaovera"' prediction-based adaptation outperforms or fesc

approach, with an additional 0.9% energy consumption. Thtige p_erformapce of direct-sea.rch bas.ed iadaptation.oncm.t.s‘r
itionally, it does not require application/input-sizpecific

happens because in many cases the benefits of executingex p s hile still achievi It | i
with its local optimal configuration outweigh the perforncarioss offine analysis, while Still achieving resufts very close e
static optimal for performance and better results for poaed

suffered as a result of cross-phase interference. Perf diction-based ad . adili
Based on these results, we developed an intermediate adaB rgy. Performance prediction- ased a aptat|on. azediin
OR thus proves to be an effective strategy for improving t

tion scheme that uses a global dominant policy for most phas@‘ T . .
excluding those expected to see substantial performarios bg performance and energy consumption of parallel applioatio
using their own local optimal. In particular, using this amgch
the global decision is enforced unless a given phase expgcts
least a 15% performance gain, which we experimentally eetifi The performance and power characteristics of applications
to be enough to outweigh the cache effects of changing configa emerging systems demand the consideration of throttling
urations. When compared to phase-local adaptation, @laase concurrency. In this paper, we have presented a novel agipttoa
decision making allowing for exceptions attains a 1.3% ager adaptive concurrency throttling that uses informatiorembd at
performance improvement. An increase in power consumptioantime to predict the performance of an application ackass
of 2% is also observed, however the energy consumption is wus hardware configurations. By applying multivariate esgion
changed, making this policy the best prediction-basedtattap analysis to hardware event rates, DPAPP is able to chaizzter
strategy. These results show that concurrency throttlimglutes the performance and scalability of a given program phase. Ou
must consider the effects of changing configurations agrbases predictor allows for the online identification of perfornta and
along with the local predictions for each phase. energy-effective concurrency levels and thread placespevttile
Using cross-phase decisions while allowing exceptionslt®s keeping the overhead at manageable levels. Over a range of
in an average 17.9% performance improvement over staticathultithreaded scientific benchmarks, the predictor wasvshto
using all available execution contexts, further improvipgrfor- be quite effective at locating the optimal configuration &ach
mance upon exhaustive search by 8.3% and upon hill-climbyng phase, due to a low median error of 12.6%.
6.8%. Additionally, the average performance loss comptodte We also describe ACTOR, a new prediction-based adaptive
statically optimal configuration is reduced to only 2.5% me concurrency throttling system, which we show to outperform
and 1.3% for applications with many iterations, showingt tha adaptation strategies based on empirical searches of tifegco
flexible cross-phase decision policy is able to make perforre- uration space due to reduced exploration overhead. Weefurth

VI. CONCLUSIONS

optimize the system by introducing cross-phase awarem#ses i[16] G. A. Grell, J. Dudhia, and D. R. Stauffer.

the decision making process, thereby allowing it to conside
potential cache effects of changing configurations betvpdaises.
Adaptive concurrency throttling is shown to be significgintl 17
more effective than simply using all available executionteats
for all phases, with improvements of 17.9% in performancél8]
10.8% in power, and 26.7% in energy consumption. The use
of ACTOR vyields performance results comparable to offline-
derived application/input-size specific decisions, with@quiring
additional application/input-size specific offline anadys

ACKNOWLEDGMENT

[19]

[20]

This research is supported by the National Science Fowdati
(grants CCF-0346867, CCF-0715051, CNS-0521381), the U.S.
Department of Energy (grants DE-FG02-06ER25751, DE-FG0OZ]
05ER25689) and Virginia Tech.

[1] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scledu

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Activations: Effective Kernel Support for the User-Levelahgement
of Parallelism. ACM Transactions on Computer Systerhi§(1):53-79,
February 1992.

U. Andersson and P. Mucci. Analysis and Optimization eeYBench
using Hardware Performance Counters. Rroc. of the ParCo 2005
Conference September 2005.

R. Balasubramonian, S. Dwarkadas, and D.H. Albonesindbyically

Managing the Communication-Parallelism Trade-off in FetCGlustered

[22]

[23]

[24]

[25]

Processors. IfProc. of the 30th International Symposium on Computer

Architecture June 2003.

Shekhar Y. Borkar. Designing Reliable Systems from Ualde
Components: The Challenges of Transistor Variability aredjiadation.
IEEE Micro, 25(6):10-16, September 2005.

C. Cascaval, E. Duesterwald, P. Sweeney, and R. Wiskiewultiple
Page Size Modeling and Optimization. Rroc. of the 14th Interna-
tional Conference on Parallel Architectures and CompdatiTechniques
September 2005.

M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. Ni&poulos.
Online Power-Performance Adaptation of MultithreadedgPams using
Hardware Event-Based Prediction. Broc. of the 20th ACM Interna-
tional Conference on Supercomputintune 2006.

M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. hli&poulos.
Online Strategies for High-Performance Power-Aware TtiiEgecution

on Emerging Multiprocessors. Froc. of the Second Workshop on High-

Performance Power-Aware Computjngpril 2006.

M. Curtis-Maury, T. Wang, C. Antonopoulos, and D. Nikptaulos.
Integrating Multiple Forms of Multithreaded Execution omailti-SMT
System: A Study with Scientific Workloads. IRroc. of the IEEE
International Conference on the Quantitative Evaluatioh Systems
September 2005.

L. Eeckhout and K. De Bosschere. Statistical SimulatibiSuperscalar
Architectures using Commercial Workloads. Rroc. of the Fourth
Workshop on Computer Architecture Evaluation using Cororaker
Workloads January 2001.

L. Eeckhout, S. Nussbaum, J. Smith, and K. De Bosschgtatistical
Simulation: Adding Efficiency to the Computer Designer'solfmx.
IEEE Micro, 23(5), September 2003.

Krste Asanovic et at. The landscape of parallel conmgutiesearch:
A view from berkeley. Technical report ucb/eecs-2006-1&ECS
Department, University of California at Berkeley, DecemB806.

N. Adiga et.al. An Overview of the BlueGene/L Supercargs. InProc.
of the IEEE/ACM Supercomputing’2002: High Performancendeking
and Computing Conferenc&lovember 2002.

W. Feng and C. Hsu. The Origin and Evolution of Green Dgstin
Proc. of IEEE Cool Chips VII: An International Symposium oowL
Power and High Speed Chipapril 2004.

V. Freeh, F. Pan, D. Lowenthal, N. Kappiah, R. Springgr, Roun-
tree, and M. Femal. Analyzing the Energy-Time Tradeoff inglhti
Performance Computing ApplicationsTransactions on Parallel and
Distributed Systemsl8(6):835—-848, June 2007.

R. Ge, X. Feng, and K. Cameron. Improvement of PowefeP@ance
Efficiency for High-End Computing. If#roc. of the 19th International
Parallel and Distributed Processing Symposjufypril 2005.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

13

A Descriptiaf the
Fifth-Generation Penn State/NCAR Mesoscale Model (MM5CAR
Technical Note NCAR/TN-398 + STR, National Center For Atiploaric
Research (NCAR), June 1995.
M. Hall and M. Martonosi.
Parallelized Code. August 1997.
E. Ipek, S. McKee, B. de Supinski, M. Schulz, and R. CaauaEffi-
ciently Exploring Architectural Design Spaces via PredetModeling.
In Proc. of the 12th International Conference on ArchitectuBaipport
for Programming Languages and Operating Systedusie 2006.

C. Isci and M. Martonosi. Runtime Power Monitoring in dghi
End Processors: Methodology and Empirical Data. Piroc. of the
26th ACM/IEEE Annual International Symposium on Microdtetture
November 2003.

H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementatid NAS
Parallel Benchmarks and its Performance. Technical remst99-011,
NASA Ames Research Center, October 1999.

P. Joseph, K. Vaswani, and M. Thazhuthaveetil. Effitye&xploring
Architectural Design Spaces via Predictive Modeling. Aroc. of the
39th International Symposium on Microarchitectuigecember 2006.
C. Jung, D. Lim, J. Lee, and S. Han. Adaptive Executioohfeques for
SMT Multiprocessor Architectures. IRroc. of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programgniune
2005.

R. Kalla, B. Sinharoy, and J. Tendler. IBM POWERS5 Chipbaal-Core
Multithreaded ProcessotEEE Micro, 24(2):40-47, March 2004.

M. Kandemir, W. Zhang, and M. Karakoy. Runtime Code Ralization
on Chip Multiprocessors. IRroc. of the 2003 Design, Automation, and
Test in Europe Conferencdlunich, Germany, March 2003.

N. Kappiah, V. Freeh, and D. Lowenthal. Just In Time DyiaVoltage
Scaling: Exploiting Inter-Node Slack to Save Energy in MPbdtams.
In Proc. of IEEE/ACM Supercomputing’2005: High Performanaarc
puting, Networking Storage, and Analysis Conferem¢evember 2005.
T.S. Karkhanis and J.E. Smith. A First-Order Supemc&rocessor
Model. In Proc. of the 31st International Symposium on Computer
Architecture June 2004.

S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimizatidsy Simulated
Annealing. Science 220(4598):671-680, 1983.

P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: R-B/ay
Multithreaded Sparc ProcesstEEE MICRQ 25(2):21-29, March/April
2005.

B. Lee and D. Brooks. Accurate and Efficient Regressiooddling
for Microarchitectural Performance and Power Predictiom Proc.
of the 12th International Conference on Architectural Sangppfor
Programming Languages and Operating Systedume 2006.

J. Li and J. Martinez. Dynamic Power-Performance Adapn of
Parallel Computation on Chip Multiprocessors. Mmoc. of the 12th
International Symposium on High-Performance Computethiéecture
February 2006.

J. Lu, H. Chen, P. Yew, and W. Hsu. Design and Implemantabf a
Lightweight Dynamic Optimization SystenThe Journal of Instruction-
Level Parallelism 6:1-24, 2004.

J. Marathe and F. Mueller. Hardwware Profile-Guided dknatic Page
Placement for ccNUMA Systems. Iroc. of the 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programgnpages
90-99, March 2006.

T. Moseley, J. Kim, D. Connors, and D. Grunwald. MethddsMod-
eling Resource Contention on Simultaneous Multithreadextd3sors.
In Proc. of the 2005 International Conference on Computer @esi
October 2005.

A. Settle, J. Kihm, A. Janiszewski, and D. Connors. Amettural
Support for Enhanced SMT Job Scheduling. Pmoc. of the 13th
International Conference on Parallel Architectures and n@mlation
Techniques (PACT'04)September 2004.

S. Sharma, C. Hsu, and W. Feng. Making a Case for a Gr&ehi50 In
Proc. of the Workshop on High-Performance, Power-Aware @gdmg
April 2006.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. ofustically
Characterizing Large Scale Program Behavior. Aroc. of the 12th
International Conference on Architectural Support for Bramming
Languages and Operating Systerxtober 2002.

R. Springer, D. Lowenthal, B. Rountree, and V. Freeh. niMizing
Execution Time in MPI Programs on an Energy-Contstrainealye?-
Scalable Cluster. IProc. of the 11th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programminiylarch 2006.

Adaptive Parallelism in Cortesi

14

Dimitrios S. Nikolopoulos Dimitrios S. Nikolopou-

los received the B.Eng. degree (Diploma in Engi-
neering) from the University of Patras in 1996, and
the Ph.D. degree in Computer Engineering from the
University of Patras in 2000. He currently serves as
an Associate Professor of Computer Science at the
Virginia Polytechnic Institute and State University
(Virginia Tech) and director of the Parallel Emerging

[38] A. Tucker and A. Gupta. Process Control and Schedulsgpés for
Multiprogrammed Shared-Memory Multiprocessors.Proc. of the 12th
ACM Symposium on Operating Systems PrincjpBscember 1989.

[39] M. Voss and R. Eigenmann. Reducing Parallel Overheadsugh
Dynamic Serialization. InProc. of the 13th International Parallel
Processing Symposium and Symposium on Parallel and Disdb
Processing pages 88-92, April 1999.

[40] L. Yang, X. Ma, and F. Mueller. Cross-Platform Performa Prediction
of Parallel Applications using Partial Execution. Froc. of the Architectures Research Lab (PEARL). Nikolopoulos
IEEE/ACM Supercomputing’2005: High Performance Netwagkand conducts research on dense parallel computer archi-
Computing ConferengceNovember 2005. tectures and their hardware/software interface. He is

[41] K. Yue and D. Lilja. An Effective Processor Allocationtr&egy for a member of the IEEE Computer Society, ACM, and the Techr@tamber
Multiprogrammed Shared-Memory Multiprocessol&EEE Transactions of Greece.
on Parallel and Distributed System®(12):1246—-1258, December 1997.

[42] Y. Zhang and M. Voss. Runtime Empirical Selection of pdgchedulers
on Hyperthreaded SMPs. IRroc. of the IEEE International Parallel
and Distributed Processing SymposiuApril 2005.

Matthew Curtis-Maury Matthew Curtis-Maury is
currently a Ph.D. candidate in the Department of
Computer Science at Virginia Tech. He received a
B.S. degree from Wake Forest University in 2003
and an M.S. degree from The College of William
& Mary in 2005, both in Computer Science. His
research interests include energy-aware computing
in the high performance computing domain and
performance prediction of parallel applications. He
is a student member of the IEEE Computer Society
and the ACM.

Filip Blagojevic Filip Blagojevic is currently a
Ph.D. candidate at the Computer Science Depart-
ment at Virginia Tech. He received an MS degree in
Computer Science from The College of William &
Mary in 2005, and a BS degree in Mathematics from
the University of Belgrade in 2002. His research
interests include process scheduling for emerging
heterogeneous accelerator-based architectures, per-
formance modeling and prediction, and power aware
computing.

Christos D. AntonopoulosDr. Christos Antonopou-
los received his Diploma in Computer Engineering
& Informatics, MSc and PhD from the Computer
Engineering & Informatics Department of the Uni-
versity of Patras, Greece. Following, he spent 2 years
in the U.S. as a Post-Doctoral Research Associate at
the College of William & Mary. He currently serves
as Visiting Faculty at the Computer and Commu-
nications Engineering Department of the University
of Thessaly in Volos, Greece. His research interests
include high performance computing architectures,
hybrid architectures based on SMT or CMP processors, sysgitwvare,
continuous performance-driven run-time optimizationgnmory management,
and power management with software techniques. He has betarelya
involved in many national, EU and US research projects.

