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Abstract

Phylogeny reconstruction is considered to be among the grand challenges in Bioin-

formatics due to the immense computational requirements. RAxML is currently among

the fastest and most accurate programs for phylogenetic tree inference under the Max-

imum Likelihood (ML) criterion. Initially, we introduce new tree search heuristics that

accelerate RAxML by factor 2.43 while returning equally good trees. The performance

of the new search algorithm has been assessed on 18 real-world datasets comprising 148

up to 4,843 DNA sequences. We then present the implementation, optimization, and

evaluation of RAxML on the IBM Cell Broadband Engine. We address problems and

provide solutions pertaining to the optimization of floating point code, control flow,

communication, and scheduling of multi-level parallelism on the Cell.

Keywords: Phylogenetic Inference, Maximum Likelihood, RAxML, IBM Cell.

1 Introduction

Phylogenetic trees are used to represent the evolutionary history of a set of n organisms. An

alignment with the DNA or protein sequences representing n organisms can be used as input

for the computation of phylogenetic trees. In a phylogeny the organisms of the input data

are located at the tips (leaves) of the tree whereas the inner nodes represent extinct common

ancestors. The branches of the tree represent the time which was required for the mutation

of one species into another, new one. Phylogenetic trees have many important applications

in medical and biological research (see [2] for a summary).
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Due to the rapid growth of sequence data over the last years it has become feasible to

compute large trees which often comprise more than 1,000 organisms and sequence data

from several genes (so-called multi-gene alignments). This means that alignments grow

in the number of organisms and in sequence length. The computation of the tree-of-life

containing representatives of all living beings on earth is still one of the grand challenges in

Bioinformatics.

The fundamental algorithmic problem computational phylogeny faces is the immense

amount of alternative tree topologies which grows exponentially with the number of organ-

isms n, e.g. for n = 50 organisms there exist 2.84 ∗ 1076 alternative trees (number of atoms

in the universe ≈ 1080). In fact, it has only recently been shown that the ML phylogeny

problem is NP-hard [7]. In addition, ML-based inference of phylogenies is very memory-

and floating point-intensive. Since phyloinformatics has definitely entered the HPC era by

now, the application of high performance computing techniques as well as the assessment

of new CPU architectures can significantly contribute to the reconstruction of larger and

more accurate trees. In addition, typical ML implementations exhibit different levels of par-

allelism and are thus well-suited as example applications for exploiting unconventional and

challenging architectures.

The Cell Broadband Engine (BE) has been developed jointly by Sony, Toshiba and IBM.

Although primarily intended as a processor for Sony PlayStation3, it can theoretically sup-

port a broad range of applications. The Cell BE is a heterogeneous multicore processor

with nine processing cores: one two-way multithreaded PowerPC Processor Element (PPE)

and eight Synergistic Processor Elements (SPEs). The Cell is well suited for data-intensive

scientific applications with high demand for memory bandwidth. It offers a unique assembly

of MIMD and SIMD execution capabilities and a software-managed memory hierarchy, thus

providing ample flexibility in selecting programming and parallelization models for a given

application.

According to its specifications [1], the Cell is capable of achieving significant performance

2



improvement over conventional multicore CPUs, including an improved power consump-

tion/performance ratio. However, due to its unconventional architecture, the development

of parallel applications that can exploit all advantages of the Cell design, is a challenging task.

One of the main difficulties is the management of the local storage of the SPEs by software.

Another challenge lies in the distribution of work among SPEs, which can be implemented at

multiple degrees of granularity and with a variety of code and data distribution schemes, the

trends of which are yet to be crystallized. This paper addresses these problems in the realm

of algorithms for phylogenetics and more specifically RAxML [27] which is currently among

the fastest and most accurate ML algorithms. We present optimizations and system software

support for vectorization, control flow parallelization, scheduling, and communication on the

Cell, along with a stepwise evaluation of these optimizations in RAxML. The optimizations

are generic enough to be reused across a wider range of parallel applications.

The remainder of this paper is organized as follows: Initially, we review related work on

IBM Cell portings and tools (Section 2). In Section 3 we provide an overview of RAxML and

related work in the area of phylogenetics. We also introduce new tree search heuristics that

accelerate RAxML by factor 2.43 while returning equally good trees on real-world datasets of

148 up to 4,843 DNA sequences. The following Section 4 gives a step-by-step description of

porting and optimizing RAxML on Cell. The conventional optimizations we used to speedup

the execution time include the use of optimized numerical libraries for the SPEs, double-

buffering for complete communication/computation overlap, vectorization of floating point

operations, and minimization of the ratio of PPE-SPE computation via function off-loading.

We also present new Cell-specific optimizations, including the vectorization of conditional

statements, asynchronous communication via direct SPE memory accesses and an event-

driven scheduling model, which can selectively exploit coarse-grain and fine-grain parallelism,

in response to workload variation. In Section 5 we evaluate performance of RAxML on the

IBM Cell and the IBM Power5 multicore processor. We conclude with Section 6.
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2 Related Work on IBM Cell

Recently, several studies were conducted to measure performance and develop programming

models for easier porting as well as optimization of parallel applications on the Cell.

Fatahalian et al. [10] developed Sequoia, a programming language suitable for porting

memory-aware applications to machines with different memory hierarchy configurations. One

of the target architectures in this study is the Cell Broadband Engine. The authors used

Sequoia to port several programs to Cell and obtained memory throughput exceeding 20

GB/s. Sequoia currently supports applications which can be parallelized via recursive block

decomposition, whereas our work focuses on less structured applications that can be paral-

lelized at multiple layers and where the management of multilevel parallelism can be tedious

for the programmer.

Bellens et al. [3] developed a dependence-driven programming model for porting sequen-

tial applications to Cell. Their compiler is capable of generating tasks that can potentially

be executed in parallel. The supporting runtime system creates a dependence graph of active

tasks during execution and determines which tasks can be scheduled for execution on the

SPEs. This work considers only one layer of task-level parallelism and does not explore the

implications of task size and available parallelism within tasks. Both issues are central in

the current paper.

Kunzman et al. [19] are in the process of adapting Charm++ on Cell. Charm++ is a

runtime system for object-based parallel programming. More specifically, Charm++ is a

library of machine-independent object abstractions for scheduling and communication on

parallel machines, implemented on both distributed and shared memory systems. No results

that would enable comparisons with our work are reported as of the time of writing this

paper.

Although Cell has been a focal point in numerous articles in popular press, published

research using Cell for real-world scientific applications beyond games and media-intensive

computation is scarce. Besides our study, Hjelte [16] presents an implementation of a smooth
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particle hydrodynamics simulation on Cell. This simulation requires good interactive perfor-

mance, since it lies on the critical path of real-time applications such as interactive simulation

of human organ tissue, body fluids, and vehicular traffic. Benthin et al. [4] present a parallel

ray-tracing algorithm for Cell.

3 The RAxML Application

Despite the high computational cost of ML significant progress has been achieved over the

last years in the field of heuristic ML search algorithms with the release of programs such as

IQPNNI [21], PHYML [15], GARLI [31] and RAxML [27, 28] to name only a few.

RAxML-VI-HPC (v2.2.0) (Randomized Axelerated Maximum Likelihood version VI for

High Performance Computing) [27] is a program for large-scale ML-based [13] inference

of evolutionary trees using multiple alignments of DNA or AA (Amino Acid) sequences.

The program is freely available as open source code at icwww.epfl.ch/˜stamatak. Some

of the largest published ML-based biological analyses to date have been conducted with

RAxML [11, 14, 23]. The program is also part of the greengenes project [12] (green-

genes.lbl.gov) as well as the CIPRES (CyberInfrastructure for Phylogenetic RESearch,

www.phylo.org) project. To the best of our knowledge RAxML-VI-HPC has been used to

compute trees on the two largest data matrices analyzed under ML to date: a 25,057-taxon

alignment of protobacteria (length: 1,463 nucleotides) and a 2,182-taxon alignment of mam-

mals (length: 51,089 nucleotides).

The current version of RAxML (v2.2.0) implements the new search algorithm described

in Section 3.2 as well as the older algorithm (command line switch -f o) outlined in [27]. A

recent performance study [27] on real world datasets ≥ 1,000 sequences reveals that it is able

to find better trees in less time and with lower memory consumption than other current ML

programs (IQPNNI, PHYML, GARLI). Moreover, RAxML-VI-HPC has been parallelized

with MPI (Message Passing Interface) to exploit the embarrassing parallelism inherent to
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ML analyses (see Section 3.1). In addition, it has been parallelized with OpenMP [29]. Like

every ML-based program, RAxML also exhibits a source of fine-grained loop-level parallelism

in the likelihood functions which consume over 90% of the overall computation time. This

source of parallelism scales particularly well on large memory-intensive multi-gene alignments

due to increased cache efficiency. Finally, RAxML has also recently been ported to a GPU

(Graphics Processing Unit) [6].

3.1 The MPI-Version of RAxML

The MPI version of RAxML exploits the embarrassing parallelism that is inherent to every

real-world phylogenetic analysis. In order to conduct a “publishable” tree reconstruction

(see [14] for an example with RAxML) a certain number (typically 20–200) of distinct tree

searches on the original alignment as well as a large number (typically 100–1,000) of bootstrap

analyses have to be conducted. Thus, if the dataset is not extremely large this represents

the most reasonable approach to exploit HPC platforms.

Multiple Inferences on the original alignment are required in order to determine the best-

known ML tree (we use “best-known” because the problem is NP-hard). This is the tree

which will be visualized and published. In the case of RAxML each independent tree search

starts from a distinct starting tree. This means, that the vast topological search space is

traversed from a different starting point every time and will yield final trees with different

likelihood scores (see [28] for details on starting tree generation and the search algorithm).

Bootstrap Analyses are required to assign confidence values ranging between 0.0 and 1.0

to the inner nodes of the best-known ML tree. This allows to determine how well-supported

certain parts of the tree are and is important for the biological conclusions drawn from it.

Bootstrapping is essentially very similar to multiple inferences. The only difference is that

inferences are conducted on a randomly re-sampled alignment for every bootstrap run, i.e. a

certain amount of alignment columns (typically 10–20%) are re–weighted. This is performed

in order to assess the topological stability of the tree under slight alterations of the input
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data. For a typical biological analysis a minimum of 100 bootstrap runs is required.

All those individual tree searches, be it bootstrap or multiple inferences are completely

independent from each other and can thus be exploited by a simple master-worker scheme.

3.2 Accelerating the Search Algorithm

This Section describes a novel heuristic optimization of the RAxML search algorithm that

is available as of version 2.2.0. The entire procedure is outlined in Figure 1.

The fundamental mechanism that is used to search the tree space with RAxML is

called Lazy Subtree Rearrangement (LSR, for details see [28]). An LSR consists in prun-

ing/removing a subtree from the currently best tree t and then re-inserting it into all neigh-

boring branches up to a certain distance/radius (rearrangement distance) of n nodes from the

pruning point (n typically ranges from 5–25). For each possible subtree insertion within the

rearrangement distance, RAxML evaluates the log likelihood score of the alternative topol-

ogy. This is done in a lazy way since only the length of the three branches adjacent to the

insertion point/node will be optimized. Thus, an LSR only yields an approximate log likeli-

hood all(t′) score for each alternative topology t′ constructed by an LSR from t. However,

this all(t′) score can be used to sort the alternative topologies. After this fast pre-scoring

of a large number of alternative topologies, only a very small fraction of the best-scoring

topologies needs to be optimized more exhaustively to improve the overall tree score. One

iteration of the RAxML hill-climbing algorithm consists in performing LSRs on all subtrees

of a given topology t for a fixed rearrangement distance n. Thereafter, the branches of the

20 best-scoring trees are thoroughly optimized. This procedure of conducting LSRs on all

subtrees and then optimizing the 20 best-scoring trees, is performed until no improved tree

is encountered.

The main idea of the new heuristics is to reduce the number of LSRs performed. This

is done by using an empirical cutoff-rule that stops the recursive descent of an LSR into

deeper branches at a higher rearrangement distance from the pruning position if they do
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LSR: optimize these
three branches only

Figure 1: Outline of lazy subtree rearrangements with cutoff procedure

not appear to be promising. Thus, if the approximate log likelihood all(t′) for the current

rearranged tree t′ is worse than the log likelihood ll(t) of the currently best tree t and if

the difference δ(all(t′), ll(t)) is larger than a certain threshold lhcutoff the remaining LSRs

below that node are omitted. The threshold lhcutoff is determined as follows: During the

first iteration of the RAxML search algorithm lhcutoff = ∞ which means that no cutoffs

are made. In the course of this first iteration, the differences δi(all(ti), ll(t)) for all those

i = 1...m alternative tree topologies ti where all(ti) ≤ ll(t) are stored. The threshold lhcutoff

for the next iteration is set to the average of δi, i.e. lhcutoff = (
∑m

i=1 δi)/m. If the search

computes an LSR for which all(t′) ≤ ll(t) and δ(all(t′), ll(t)) ≥ lhcutoff it will simply skip

the remaining LSRs below the current node. Thus, each iteration k of the search algorithm

uses a threshold value lhcutoff that has been obtained during the previous iteration k − 1.

This allows to dynamically adapt lhcutoff to the specific dataset and to the progress of the

search. The omission of a large amount of unnecessary LSRs that have a high probability

not to improve the tree yields substantial run time improvements and returns equally good

trees at the same time (see Table 1).
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# Seq LH-NEW LH-OLD Speedup #Seq LH-NEW LH-OLD Speedup
148 -69726.05 -69725.55 1.83 150 -39606.06 -39606.06 2.00
218 -134195.92 -134199.30 1.98 404 -156151.42 -156147.25 2.00
498 -219186.90 -219186.90 2.21 500 -85794.87 -85794.87 2.11
628 -50940.81 -50938.29 2.68 714 -148543.21 -148544.48 2.51
994 -348936.85 -348936.85 2.34 1288 -395999.61 -395999.61 1.92
1512 -273435.30 -273443.51 2.74 1604 -167398.16 -167399.43 3.31
1780 -178930.53 -178925.02 2.95 1908 -149645.43 -149645.43 2.89
2000 -364916.18 -364914.44 2.65 2554 -318488.01 -318488.01 2.49
4114 -325621.05 -325620.54 2.70 4843 -748075.04 -748067.23 2.48

Table 1: Average final log likelihood values and speedups over 10 runs on distinct MP starting
trees for 18 real-world datasets

3.2.1 Results

To assess performance of the new heuristics we analyzed 18 real-world datasets comprising

148 to 4,843 sequences from various sources (see Acknowledgment). The computations were

performed under the CAT approximation of rate heterogeneity [26], but final tree scores

were evaluated with the standard GAMMA model of rate heterogeneity. For each dataset

we generated 10 starting trees and executed the old and new RAxML search algorithm on

each of those starting trees. We performed a total of 380 ML searches which were executed

on the Infiniband cluster at the TU München. The cluster is equipped with 36 quad-CPU

2.4GHz AMD Opteron nodes.

Table 1 lists the average final log likelihood values (LH-NEW, LH-OLD) for the old and

new versions of the RAxML search algorithm. In addition, it provides the average speedup

value per dataset. The average speedup over all datasets is 2.43. The slight variations in

likelihood scores are insignificant.

4 Porting and Optimizing RAxML on Cell

4.1 The Cell BE

The Cell BE is a heterogeneous multicore processor. The design is inspired by graphics

co-processors and similar computation accelerators which are commonly used in game ma-
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chines and for media-intensive computations. In contrast to conventional processors, graphics

co-processors and accelerators typically provide vast memory bandwidth and vectorization

capabilities. Therefore, they are able to execute streaming computation kernels such as en-

cryption/decryption, compression, FIR filters and FFTs far more efficiently,. The Cell BE

integrates eight specialized co-processors with a conventional, dual-thread 64-bit processor

on the same chip.

Cell uses a 64-bit PowerPC core for legacy applications and operating systems. The

PowerPC version used on the Cell is a two-way hardware multithreaded processor, capable of

thread-level parallelism, process-level parallelism, and software virtualization. The PowerPC

core (called Power Processing Element or PPE) is physically surrounded by eight specialized

processing cores (called Synergistic Processing Elements, or SPEs). The SPEs are laid out in

equal distances around a ring called the Element Interconnect Bus (EIB), which can transmit

up to 96 bytes per processor cycle, thus offering a maximum bandwidth of 200 GB/s. The

PPE is also connected to the EIB.

Cell’s SPEs are based on a simple RISC architecture which can issue up to two instruc-

tions per cycle, one of which can be a 128-bit SIMD instruction. Since the SPEs do not

include hardware for branch prediction they rely on compiler- or other software-generated

schemes to predict the outcome of branches. In its current implementation, the SPE pipeline

is optimized for single-precision floating-point vector operations, for which the processor can

10



sustain a maximum throughput of over 230 Gflops. This is an artifact of earlier designs of

the processor for game consoles, in which double precision floating-point calculations are far

less important than in scientific computing. Nevertheless, double-precision throughput on

the Cell still amounts to a respectable 21 Gflops. Upcoming versions of the processor for

high-performance computing will resolve this problem1.

Each SPE on the Cell has 128 128-bit general-purpose registers and a software-managed

local storage. The use of software-managed local memory is unique in the Cell architecture.

In the current version of the processor, each SPE has 256 KB of local storage. This storage

is expandable to up to 4 MB. Local storage is locally addressable via direct load and store

instructions from the owner SPE and globally accessible from other SPEs and the PPE

via DMA requests. Software control of the local storage, instead of a conventional cache

organization, enables customized cache placement and replacement policies on the SPEs.

The local storage can actually be programmed to operate as a set-associative cache [8].

The SPEs decouple processing from communication, via the use of a memory flow con-

troller (MFC). Each SPE can issue up to 16 concurrent DMA requests, including requests

for atomic DMA operations, which can be used in lieu of conventional synchronization mech-

anisms such as locks and requests for scatter-gather memory operations.

4.2 RAxML Porting Strategy

We followed a three-step process for porting RAxML to Cell:

1. We identified and off-loaded the compute intensive parts of RAxML to the SPEs.

2. We optimized the off-loaded code on the SPEs. We used optimized numerical libraries

for the SPEs, double buffering, vectorization of computation, vectorization of control

flow, and communication optimizations for latency overlap.

1Personal communication with Kevin Barker, Roadrunner Performance Evaluation Team Member, Los
Alamos National Lab.
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3. Finally, we developed an event-driven scheduler for RAxML’s nested parallel code,

along with the necessary system software support.

The first two steps follow the function off-loading programming model, which arguably

provides the easiest path for porting MPI applications on the Cell [8, 9]. The last step is

a new contribution to support the execution of parallel programs with multiple levels of

parallelism on the Cell.

In the following Sections we describe the porting and optimization process, together with

speedups obtained at each optimization step.

4.3 Porting the MPI Code

The version of RAxML that we ported on Cell is based on the new, improved search heuris-

tics, described in Section 3.2. We initially executed the MPI version of RAxML on the

PPE. Since the PPE is a dual-threaded processor, the PPE can execute two MPI processes

simultaneously. These processes share the resources of the PPE, except from the register

file. Therefore, their parallel execution on the PPE is not expected to scale as well as on a

2-way SMP. Although it is natural to consider using the PPE for direct porting of MPI code

without modifications, this approach is clearly suboptimal. Due to the heterogeneity of the

Cell, further steps are needed to off-load and optimize most, if not all, of the computation

within each MPI process, in order to exploit the computational capacity of the SPEs.

We explored two strategies for off-loading code on the Cell SPEs. The first strategy is

pure task-level off-loading. Each MPI process running on the PPE off-loads functions on

the SPEs and each function executes from start to finish on the SPE it is assigned to. The

second strategy is a hybrid task-level and loop-level parallelization scheme. Functions are

off-loaded from the MPI process to some of the SPEs. The remaining SPEs are used for work

sharing of parallel loops included in the already off-loaded functions. These parallelization

strategies are described further in Section 4.7.
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4.4 Selecting Functions for Off-Loading

In order to find the functions in RAxML that are suitable for SPE execution, we profiled the

code using gprof. For all the profiling and benchmarking runs of RAxML presented in this

paper, we use the input file 42 SC, which contains 42 organisms, each represented by a DNA

sequence of 1167 nucleotides. The number of distinct data patterns in a DNA alignment is

in the order of 250. Profiling the sequential version of RAxML on the IBM Power5 processor

shows that 96.6% of the execution time is spent in four functions:

• 64.62% of the time is spent in the function newview(). This function computes the

partial likelihood vector [13] at an inner node of the phylogenetic tree.

• 26.88% of the time is spent in makenewz(). This function optimizes the length of a

given branch with respect to the tree likelihood using the Newton–Raphson method.

• 2.87% of the time is spent in newviewPartial(), which optimizes the per-site evolutionary

rates for the GTRCAT approximation (see [26] for details)

• Finally, 2.29% of the time is spent in evaluate(). This function calculates the Log

Likelihood score of the tree at a given branch by summing over the partial likelihood

vector entries. Note that the log likelihood value is the same at all branches of the tree

if the model of nucleotide substitution is time-reversible [13].

The prerequisite for computing evaluate() and makenewz() is that the likelihood vectors

at the nodes to the right and left of the branch have been computed. Thus, makenewz() and

evaluate() initially make calls to newview() before they can execute their own computation.

The newview() function at an inner node p calls itself recursively when the two children r and

q are not tips (leaves) and the likelihood array for r and q has not already been computed.

Consequently, the first candidate for off-loading is newview(). Although makenewz() and

evaluate() are both taking a smaller portion of execution time than newview(), offloading

these two functions can also lead to significant speedup (see Section 4.6). Besides the fact
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that each function can be optimized and executed faster on an SPE, having all four functions

offloaded to an SPE significantly reduces the amount of PPE-SPE communication.

The code executed on the SPE has to be compiled separately (using the SPE specific

compiler) from the code executed on the PPE. We choose to include all four off-loaded func-

tions in one code module. This approach has the advantage of having all off-loaded functions

in the SPE’s local storage during the entire execution of the program. Consequently, an of-

floaded function can be invoked without introducing the overhead of moving its code from

global memory to local storage. However, this decision imposes a trade-off, since the ex-

tended code segment in the SPE local storage reduces the available space for the heap and

stack segments. In the case of RAxML, the total size of all four off-loaded functions is 110

KB. The remaining space (146 KB) is large enough to store the heap and stack segments

of each of the four functions, as well as the buffers needed for communication-computation

overlap.

To keep the implementation simple, the call to each off-loaded function in the original

MPI code is executed with the same signature on the PPE in the Cell code. We replaced the

original body of each function with communication code needed to transfer local data used

in the function from the PPE to SPEs. Whenever an off-loaded function is called, the PPE

sends a signal to the SPE thread and waits for the SPE thread to complete the function

and return the result. While waiting for the SPE code to finish, the PPE seeks functions for

off-loading from other MPI processes. This process is described in more detail in Section 4.7.

All four off-loaded functions are executed inside a single SPE thread. The SPE thread is

created at the beginning of the program and stays alive during the entire program execution.

Depending on the content of a triggering signal received from the PPE, the thread executes

one of the four offloaded functions. By having a single thread active during the entire program

execution, we avoid excessive overhead from repeated spawning and joining of threads. The

SPE threads execute a busy wait for a PPE signal.
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Data consistency is maintained at the granularity of off-loaded functions. Each function

is individually responsible for collecting local updates and propagating these updates to

global shared memory.

4.5 Optimizing Off-Loaded Functions by Example of newview()

Since newview() is the most computationally expensive function in the code, it becomes the

first candidate for optimization. We found that näıvely off-loading newview() slows down the

sequential version of the code by a factor of 2.8. Therefore, exhaustive optimization of the

function on the SPE was necessary. Table 2 summarizes the execution times of RAxML

before and after newview() is off-loaded. The first column shows the number of workers (MPI

processes) used in the experiment and the amount of work done (number of bootstraps).

(a)

1 worker, 1 bootstrap 28.3s

2 workers, 8 bootstraps 152.56s

2 workers, 16 bootstraps 309.53s

2 workers, 32 bootstraps 622.43s

(b)

1 worker, 1 bootstrap 80.52s

2 workers, 8 bootstraps 348.36s

2 workers, 16 bootstraps 696.12s

2 workers, 32 bootstraps 1375.09s

Table 2: Execution time of RAxML (in seconds). The input file is 42 SC: (a) The application
is executed on the PPE, (b) newview(), without optimizations, is offloaded to one SPE.

We profiled the function newview() using the special decrementer register of the SPE. We

identified four code segments that consume almost the entire execution time in newview():

1. Math library functions, such as exp() and log(). These functions are very expensive if

their native implementations are executed on the SPE. In newview(), the exp() function

is used to compute the transition probabilities of the nucleotide substitution matrix

for the branches from the root of a subtree to its descendants. The log() function is

used to scale the branch lengths for numerical reasons [25].

2. An if(. . .) statement in the code which determines the value of a conjunction of four

expressions is the second bottleneck. This conditional statement is used to check if
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small likelihood vector entries need to be scaled to avoid numerical underflow (similar

operations are used in every ML implementation).

3. Blocking DMA requests also have a significant impact on execution time. Whenever

data required for the computation is not in local storage, the program has to wait for

the necessary data to be fetched from global memory.

4. All double precision floating point arithmetic used for the likelihood vector calculation

is not natively vectorized or optimized.

In the next few subsections we describe performance optimizations for the off-loaded

newview() function. We applied analogous optimizations to the remaining off-loaded func-

tions. We do not discuss the other functions in more detail due to space limitations.

4.5.1 Mathematical Functions

The first step in reducing the execution time of the off-loaded function was to replace the

expensive math functions exp() and log() with the mathematical functions provided by the

Cell SDK 1.1. The exp() and log() functions provided by the Cell SDK are implementations

of numerical methods for exponent and logarithm calculation. The exp() and log() functions

represent less than 1% of the total number of floating point operations executed in the

off-loaded function, however they account for 56% of execution time in newview(). Using

the implementations of the exponent and logarithm functions provided by the Cell SDK

improves total execution time by 37% - 41%. Table 3 shows the execution times of the four

test runs of RAxML after newview() is off-loaded and exp() and log() functions are replaced

with optimized implementations. Notice that the off-loaded code is still 40%–47% slower

than the non off-loaded code.
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(b)

1 worker, 1 bootstrap 47.94s

2 workers, 8 bootstraps 218.17s

2 workers, 16 bootstraps 433.94s

2 workers, 32 bootstraps 871.49s

Table 3: Execution time of RAxML with no off-loading (a), and with newview() off-loaded
and optimized to use numerical functions from the SDK library. The input file is 42 SC.

4.5.2 Optimizing Conditional Statements

Function newview() is always invoked at an inner node of the tree (p) which is at the root of

a subtree. The main computational kernel of newview() has a switch statement which selects

one out of four paths of execution. If one or both descendants r and q of p are tips (leaves) the

computations of the main for-loop in newview() can be simplified. This optimization leads

to significant performance improvements [27]. Thus, there are distinct implementations of

the main computational part of newview() for the case that r and q are tips, r is a tip, q is a

tip, or r and q are both inner nodes.

Each path in the switch statement leads to a large loop which performs the likelihood

vector calculations. Each iteration of the large loop executes a large if() statement which

determines the value of a conjunction of four arithmetic expressions. This conditional state-

ment checks if likelihood scaling is required to prevent numerical underflow. On an SPE,

a mispredicted branch incurs a penalty of 20 cycles [17]. Using the decrementer register to

profile the off-loaded code, and after optimization of exp() and log()), we find that 39% of the

execution time of newview() is spent in checking the condition of the if() statement executed

in the likelihood vector calculation loop. The conditional statement is shown in Figure 3.

minlikelihood is a positive constant and all operands are double precision floating point

values.

The ABS() function increases the number of condition checking (each ABS() function

executes an additional comparison), therefore the number of conditions that need to be

checked in this statement is actually eight.
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if (ABS(x3->a) < minlikelihood && ABS(x3->g) < minlikelihood &&

ABS(x3->c) < minlikelihood && ABS(x3->t) < minlikelihood)

{

. . .

}

Figure 3: Conditional statement which takes 39% of newview() execution time, after opti-
mization of numerical functions.

On an SPE, two integer numbers can be compared significantly faster than two double

precision floating point numbers. The advantage of integers is that they can be compared

using the existing SPE intrinsics. Current SPE intrinsics support comparison of at most 32-

bit integer values. 64-bit large integers can also be compared relatively fast, by combining 32-

bit integer intrinsics. The spu-gcc compiler automatically optimizes conditional statements

that operate on integer values, by replacing them with suitable SPE intrinsics.

According to the IEEE standard, all double precision floating point numbers are “lex-

icographically ordered”. In other words, if two double floating point numbers a and b are

ordered (a < b), then their bit patterns will be ordered in the same way when interpreted as

Sign-Magnitude integers [18] (*(unsigned long long*)&a < *(unsigned long long*)&b). However,

this rule can only be applied if both numbers are larger than 0. In the conditional statement

that we are trying to optimize all parameters are greater than 0 (we know that minlikelihood

is a constant greater than 0). Therefore, instead of comparing double precision floating

point values, we can optimize the problematic if() statement by casting all our operands to

unsigned long long before comparing them. To avoid the branch used in the ABS() function,

we transform all our operands to positive numbers, using a bitwise AND.

This optimization reduces the time spent in the conditional statement to only 7% of the

execution time of newview(). The total execution time of RAxML is reduced by 20%. Table

4 shows the new execution times of RAxML after optimizing both conditional statements

and numerical functions in newview().

18



(b)

1 worker, 1 bootstrap 38s

2 workers, 8 bootstraps 177.68s

2 workers, 16 bootstraps 354.85s

2 workers, 32 bootstraps 703.95s

Table 4: Execution time of RAxML after the floating-point conditional statement is trans-
formed to an integer conditional statement. The input file is 42 SC.

4.5.3 Double Buffering and Memory Management

The number of iterations in the main loop of newview() depends on the input alignment

length. This loop operates on three arrays with equal length (likelihood vector at current

subtree root, and likelihood vectors at left and right child). The loop has no loop-carried

dependencies and executes as many iterations as the length of the three arrays. Since the size

of the local storage is only 256 KB, the arrays cannot be stored permanently in local storage.

Instead, the arrays are strip-mined and processed in blocks. The block size is selected

such that the computation on a block can overlap completely with the memory latency for

fetching the next block. We use a 2 KB buffer for caching each array block, which holds

enough data to execute 16 loop iterations. We also use double buffering to mask memory

latency, which amounts to 8% of the execution time of the code before optimization. Table 5

shows the improved execution times of RAxML after optimization of numerical operations,

optimization of conditionals and memory latency overlap, which improved total execution

time by 3–5%.

1 worker, 1 bootstrap 36.29s

2 workers, 8 bootstraps 169.50s

2 workers, 16 bootstraps 338.24s

2 workers, 32 bootstraps 688.04s

Table 5: Execution time of RAxML with double buffering applied to overlap DMA transfers
with computation, after optimization of numerical functions and conditionals. The input file
is 42 SC.
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4.5.4 Vectorization

The core of the computation in newview() is concentrated in two loops. The first loop is

executed at the beginning of the function and computes the individual transition probability

matrices for each distinct rate category of the CAT model [26]. The number of iterations is

relatively small (between 1 and 25) and each iteration executes 36 double precision floating

point operations. The second loop calculates the likelihood vector. The length of this vector

corresponds to the number of distinct alignment patterns. Each iteration of this loop executes

44 double precision floating point operations for the CAT model.

The kernel of the first loop in newview() is shown in Figure 4(a). In Figure 4(b) we

(a)

for( ... )

{

ki = *rptr++;

d1c = exp (ki * lz10);

d1g = exp (ki * lz11);

d1t = exp (ki * lz12);

*left++ = d1c * *EV++;

*left++ = d1g * *EV++;

*left++ = d1t * *EV++;

*left++ = d1c * *EV++;

*left++ = d1g * *EV++;

*left++ = d1t * *EV++;

. . .

}

(b)

1: vector double *left_v =

(vector double*)left;

2: vector double lz1011 =

(vector double)(lz10,lz11);

. . .

for( ... )

{

3: ki_v = spu_splats(*rptr++);

4: d1cg = _exp_v ( spu_mul(ki_v,lz1011) );

d1tc = _exp_v ( spu_mul(ki_v,lz1210) );

d1gt = _exp_v ( spu_mul(ki_v,lz1112) );

left_v[0] = spu_mul(d1cg,EV_v[0]);

left_v[1] = spu_mul(d1tc,EV_v[1]);

left_v[2] = spu_mul(d1gt,EV_v[2]);

. . .

}

Figure 4: The body of the first loop in newview(): (a) Non–vectorized code, (b) Vectorized
code.

show the same code vectorized for the SPE. The function spu mul() multiplies two vectors

(in this case the arguments are vectors of doubles). Function exp v() is the vector version

of the exponential function mentioned in Section 4.5.1. After vectorization, the number of

floating point operations executed in the body of the first loop drops from 36 to 24. An

additional instruction is required to create a vector from a scalar element. Due to pointer

arithmetic on dynamically allocated data structures, automatic vectorization of this code
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would be particularly challenging for a compiler.

The second loop is vectorized in a similar way. Figure 5 shows the core of the second

loop before and after vectorization. The variables x1->a, x1->c, x1->g, x1->t, belong to

(a)

for( ... )

{

ump_x1_0 = x1->a;

ump_x1_0 += x1->c * *left++;

ump_x1_0 += x1->g * *left++;

ump_x1_0 += x1->t * *left++;

ump_x1_1 = x1->a;

ump_x1_1 += x1->c * *left++;

ump_x1_1 += x1->g * *left++;

ump_x1_1 += x1->t * *left++;

. . .

}

(b)

for( ... )

{

a_v = spu_splats(x1->a);

c_v = spu_splats(x1->c);

g_v = spu_splats(x1->g);

t_v = spu_splats(x1->t);

l1 = (vector double)(left[0],left[3]);

l2 = (vector double)(left[1],left[4]);

l3 = (vector double)(left[2],left[5]);

ump_v1[0] = spu_madd(c_v,l1,a_v);

ump_v1[0] = spu_madd(g_v,l2,ump_v1[0]);

ump_v1[0] = spu_madd(t_v,l3,ump_v1[0]);

. . .

}

Figure 5: Core of likelihood calculation loop in newview(): (a) Non–vectorized code, (b)
Vectorized code.

the same C structure (likelihood vector) and are stored in contiguous memory locations. In

Figure 5 (a) we see that only three of these variables are multiplied with the elements

of array left. Therefore, vectorization cannot be accomplished by simply interpreting the

members of the likelihood vector structure that reside in consecutive memory locations as

vectors. We actually need to create vectors using special intrinsics for vector creation, such

as spu splats().

Vectorization decreases the execution time of the two major loops in newview() from

12.8 seconds to 7.3 seconds. Table 6 summarizes the execution times for RAxML, after

vectorization, optimization of numerical functions, optimization of conditional statements

and optimization for memory latency overlap in newview(). After vectorization, the code

which off-loads newview() on the SPE becomes up to 7% faster than the code without off-

loading.
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1 worker, 1 bootstrap 30.13s

2 workers, 8 bootstraps 143.20s

2 workers, 16 bootstraps 287.31s

2 workers, 32 bootstraps 577.1s

Table 6: Execution time of RAxML after vectorization, optimization of numerical functions,
optimization of conditionals and optimization for memory overlap. The input file is 42 SC.

4.5.5 PPE-SPE Communication

Although newview() dominates the execution time of RAxML, each instance of the function

executes for only 82ms on average. This means that the granularity of the function is small

and function invocation overhead when the function is off-loaded on the SPE is by no means

negligible, since it requires PPE to SPE communication. For our test dataset, the function

is called 178,244 times.

We originally implemented PPE to SPE communication using mailboxes, which offer a

programmable, high-level interface for communication via message queues. After further

experimentation, we found that that DMA transfers achieved lower latency than using mail-

boxes and improved application execution time by a further 2%-11% in our test cases. Table 7

shows the execution times of RAxML when DMA transfers are used instead of mailboxes

and after all optimizations described so far. The input dataset is 42 SC.

1 worker, 1 bootstrap 29.9s

2 workers, 8 bootstraps 126.87s

2 workers, 16 bootstraps 253.67s

2 workers, 32 bootstraps 514.89s

Table 7: Execution time of RAxML after optimizing communication to use DMA transfers
and all previously described optimizations. The input file is 42 SC.

It is interesting to note that direct memory-to-memory communication is an optimization

which scales with parallelism on Cell, i.e. the impact on performance improves as the code

uses more SPEs. As the number of workers and bootstraps executed on the SPEs increases,

the code becomes more communication-intensive, due to the fine granularity of the offloaded
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functions. Fast communication by DMA therefore becomes critical.

4.6 Off-Loading Remaining Functions

After off-loading and optimizing the newview() function, we proceeded with off-loading the

three remaining compute-intensive functions: makenewz(), evaluate(), and newviewPartial().

Off-loading makenewz() and evaluate() was straightforward. We repeated the same off-

loading procedure and analogous optimizations as with newview(). As described in Sec-

tion 4.4, all off-loaded functions are written to the same SPE code module. In this way the

off-loaded code remains in the local storage during the entire execution of the application.

Consequently, we avoid the cost of repeatedly loading different code modules into local stor-

age. Moreover, we reduce PPE-SPE communication, since each invocation of newview() by

either makenewz() or evaluate(), can be performed locally on an SPE without involving the

PPE.

Off-loading newviewPartial() was a more challenging task. This function is used to re-

compute the per-site log likelihood values lli at column i of the alignment given a rate

ri during the per-site evolutionary rate optimization process (see [26] for details). Since

optimizing the ri implies changes of the likelihood vector values at position i in the entire

tree, a complete tree traversal (as opposed to a partial tree traversal induced by LSRs as

described in Section 3.2) must be carried out to obtain the lli for ri at each alignment position

i. Some changes in the data structures were required to allow for future parallel execution

of newviewPartial(). Instead of using the likelihood vector arrays allocated for computations

over the whole alignment length with newview(), makenewz(), and evaluate() each recursive

invocation of newviewPartial() uses the heap to create a private local likelihood vector of

length one. These changes enable the concurrent computation of individual per-site log

likelihood values lli, llj at distinct alignment positions i 6= j with different rates ri, rj.

Due to the fine granularity of newviewPartial() which only operates on one single align-

ment position and the high amount of calls per alignment position (the ri are optimized in a
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Brent-like procedure [26]) we off-loaded the large for-loop that optimizes all ri in optimizeR-

ateCategories() to the SPE. This large for-loop has already been parallelized in the current

OpenMP version of RAxML using the OpenMP schedule(dynamic) clause. Dynamic schedul-

ing avoids potential load imbalance because the optimization of each ri requires a different

number of iterations until convergence. The parallelization of newviewPartial() with OpenMP

yielded a performance improvement of 16% on the 404 sequence dataset with 7,429 distinct

patterns from Table 1 on a 4-way AMD Opteron. This large performance improvement is

due to the fact that newviewPartial() consumes a significantly larger part of execution time

for long multi-gene alignments.

With all four functions off-loaded and optimized on the SPE, the application was per-

forming 34%-36% faster. Compared to the initial code which is entirely executed on the

PPE, the optimized code is 29% faster. When more than one MPI processes is used and

more than one bootstrap is offloaded to SPEs, the gains from offloading reach 47%. Ta-

ble 8 summarizes the execution times for RAxML when all four functions are off-loaded and

optimized for the 42 SC dataset.

1 worker, 1 bootstrap 20.4s

2 workers, 8 bootstraps 84.41s

2 workers, 16 bootstraps 165.3s

2 workers, 32 bootstraps 330.62s

Table 8: Execution time of RAxML after offloading and optimizing four functions: newview(),
makenewz(), evaluate() and evaluatePartial(). The input file is 42 SC.

4.7 Scheduling Multilevel Parallelism

The distribution of resources on the Cell often introduces an imbalance between computation

supply and demand. The processor has eight SPEs, however, at most two threads can off-load

code from the PPE to the SPEs at the same time. To overcome this limitation, we explored

an event-driven programming model and the associated system software support. In this
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model, we allow an arbitrary number of MPI processes to share the PPE and implement

a context switching strategy which opts for switching the context of a PPE thread upon

off-loading a function from the current context, in anticipation of more opportunities for

function off-loading in other contexts. The intuition is that off-loading a function from a

PPE thread is typically followed by idle time on the PPE thread, which can be overlapped

with computation originating in other PPE threads.

We have extended our event-driven scheduling model with an algorithm which tracks SPE

utilization and assigns SPEs to off-loaded functions based on utilization. More specifically,

each function receives one or more SPEs, which can be used for parallelization of loops

enclosed in the function, with mechanisms and policies similar to those of OpenMP. The

assignment of SPEs to functions depends on the number of SPEs which are idling during a

predefined interval of recent execution. More details on our event-driven model are provided

in [5].

The new scheduling model reduces the execution time of one bootstrap by 36%, compared

to our original static off-loading scheme, with all SPE-specific optimizations integrated in

the code. The reason for the high speedup is the ability to distribute loops inside off-

loaded functions across SPEs. When loop parallelism and task parallelism are exploited

simultaneously in off-loaded functions, the execution time is reduced by up to 63%. Table 9

summarizes the execution times of the optimized implementation of RAxML with our event-

driven programming and scheduling model.

1 bootstrap 14.1s

8 bootstraps 26.7s

16 bootstraps 53.63s

32 bootstraps 107.2s

Table 9: Execution time of RAxML with the event-driven programming and scheduling
model (MGPS) is used. The input file is 42 SC. The number of workers is variable and is
selected at runtime by the scheduler.
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5 Comparison with the IBM Power5

It is useful to compare the performance of the Cell against other multicore processors, since

such a comparison provides valuable insight both for application developers working on

adapting their software to emerging computer architectures, and to computer architects who

are looking into improving their hardware to address the needs of challenging applications.

In this Section we compare the performance of Cell against an IBM Power5, using our

test runs of RAxML. The IBM Power5 is a homogeneous dual-core processor, where each

core is itself a two-way simultaneous multithreaded processor. Porting the MPI version of

RAxML to the Power5 is straightforward, since all that needs to be done is load four MPI

processes (workers) on the four execution contexts of the processor. The Power5 used for

this experiment runs at 1.65 GHz, and has 32KB of L1-D and L1-I cache, 1.92 MB of L2

cache and 36 MB of L3 cache.

Figure 6 provides the execution times on the two processor types for up to 128 bootstraps,

a scale which is more representative of real-world data sets for RAxML. The Cell outperforms

the IBM Power5 by 15% on average. Although the difference seems small, a number of

considerations should be taken into account. The Power5 has a lower clock frequency, but

significantly more secondary and tertiary cache space available to each core. Furthermore,

double-precision floating point arithmetic is unoptimized on the Cell’s SPE pipelines, leading

to a markedly large reduction in processor throughput (up to a factor of 10) compared

to single-precision floating point arithmetic. Furthermore, hardware studies of the Cell

indicate that the processor is significantly more power-efficient than the Power5, claiming

nominal power consumption in the range of 27W to 43W for the 3.2 GHz model used in this

study [30], as opposed to a reported 150W for the Power5 [20]. Taking these observations into

consideration, we conclude that the Cell provides a leap forward in performance compared

to homogeneous, general-purpose multicore processors. Our study is the first to demonstrate

this leap using complex, non-trivial parallel code from the field of computational biology.
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Figure 6: RAxML performance on a multi-core IBM Power5 and the IBM Cell. The number
of bootstraps performed covers 1, 8, 16, 32, 64 and 128 runs.

6 Conclusion and Future Work

We presented an improved heuristic search algorithm for RAxML as well as a detailed step-

by-step description of porting RAxML to IBM Cell. The incremental parallelization and

optimization methodology presented in this paper can serve as a guideline for parallelization

of non-trivial applications on Cell. The optimizations and system software for multilevel

parallelization introduced in this paper resolve bottlenecks which are common to many ap-

plications and even multicore architectures other than the Cell.

The porting strategy and methods developed for exploiting fine-grain parallelism in

RAxML on the Cell are generally applicable to a broad range of programs for ML-based

(GARLI [31], IQPNNI [21], PHYML [15]) and Bayesian (MrBayes [24]) phylogenetic in-

ference. All these programs spend 90-95% of their total execution time for the evaluation

of the likelihood function and face similar problems with respect to memory transfer and

function optimization. The strategies and scheduling techniques for coarse-grain parallelism

are—with some modifications—also applicable to the MPI-versions of GARLI and IQPNNI.

In fact, there already exist a hybrid MPI/OpenMP version of IQPNNI [22] and an OpenMP

parallelization of PHYML (Michael Ott, personal communication).

Future work will focus on improved ways to handle recursions on SPEs which will allow

for inference of large real-world datasets.

27



Acknowledgments

We would like to thank Olaf Bininda-Emonds, Nicolas Salamin, Josh Wilcox, Daniel Dalevi,

Usman Roshan, Chuck Robertson, and Markus Göker for letting us use their often tediously
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