
PACMAN: A PerformAnce Counters MANager for
Intel Hyperthreaded Processors

Matthew Curtis-Maury, Dimitrios S. Nikolopoulos
Department of Computer Science

Virginia Tech
{mfcurt, dsn}@cs.vt.edu

Christos D. Antonopoulos
Department of Computer Science

College of William and Mary
cda@cs.wm.edu

1 Introduction

Performance monitoring counters (PMCs) are regis-
ters within a processor which can be programmed to
count the occurrences of particular processor events,
such as L2 cache misses, stall cycles, etc. Due to the
insight that they provide into the execution of an ap-
plication on a given architecture, hardware performance
counters are seeing increasing popularity in both the re-
search [1] and industrial communities [3].

Despite the pervasiveness of Intel Hyperthreaded
processors [5], the support for collection of hardware
performance counters on this architecture is limited.
Tools designed to work on single-threaded processors
fail to provide sufficient functionality when ported over.
The difficulty stems from the sharing of the performance
monitoring unit (PMU) between the two execution con-
texts on Hyperthreaded Pentium 4 processors. Per-
fctr [6], the standard interface to Pentium 4 performance
counters for Linux, overcomes this problem by disal-
lowing the use of the second execution context on each
processor when collecting events in per-thread mode 1.
PAPI [1], being built on top of unaltered Perfctr, suffers
from the same problems. Intel’s VTune Performance
Analyzer [4] provides thread-local event counter statis-
tics offline, however it does not provide functionality for
online and accurate event counter collection. It is im-
portant that applications be able to use all available con-
texts while still exploiting the full set of hardware event
counting features at runtime.

In order to use performance counters for online adap-
tation of applications, it is necessary to be able to re-
trieve per-thread counter values from within the tar-
get application during its execution. Beyond this, it

1In per-thread mode event counters are recorded separately for
each thread, whereas in global mode counters are recorded for all pro-
cessors in the system with all executing threads included.

is also necessary to have fine-grain access to counter
values to support monitoring of short-lived regions of
code. In the following section, we discuss how we
enabled such functionality in PACMAN (available at
http://people.cs.vt.edu/˜mfcurt).

2 PACMAN Implementation

An Intel Hyperthreaded processor has 18 PMC reg-
isters that are shared between the two co-executing
threads. Each register can record a single event. Should
two threads on the same processor attempt to use the
same register, only one thread’s configuration would
ultimately be used. PACMAN prevents overlapping
of PMC register usage between co-executing threads
by introducing a logical partitioning of the registers
when events are recorded in per-thread collection mode.
Within each processor, half of the PMCs are provisioned
to each execution context. Intel has divided the registers
into four sets and any given event can only be recorded
within its designated set. We create our partition such
that each set of registers is divided evenly between the
two threads. There are also configuration registers as-
sociated with the PMCs which we have partitioned sim-
ilarly. During performance counter initialization each
thread is configured to use the partition for the execu-
tion context on which it is currently executing. To pre-
vent a thread from migrating away from the execution
context for which its PMCs were set up, PACMAN ap-
propriately binds threads to execution contexts.

PACMAN uses the interface provided by Perfctr for
low-level access to the performance monitoring coun-
ters, after removal of the internal checks from Perfctr
that enforce usage and monitoring of only the first ex-
ecution context on each processor. In addition to the
extended support for Hyperthreaded processors, PAC-
MAN retains the full functionality already present in



Perfctr. This includes the use of performance counters
with only a single thread per processor using all 18 avail-
able PMCs, as well as global mode collection.

Although global collection does allow events to be
collected on both execution contexts, even in Perfctr,
there are two shortcomings of this approach for online
use. First, event counts summarize collective perfor-
mance of all executing applications, not just the one to
be monitored. Second, the granularity of monitored re-
gions must be very coarse (on the order of hundreds of
milliseconds at least) since results are stored in the oper-
ating system and are only periodically updated between
consecutive time quanta. These were motivating factors
in the development of PACMAN.

The process of initializing Pentium 4 performance
counters can be cumbersome. One hurdle to using per-
formance monitoring counters is the creation of the bit-
masks written to specific registers as part of the configu-
ration process. Although Perfctr does abstract away the
manual process of loading the registers, it must be given
the exact contents for each desired register. These values
specify what events to record, but they also provide addi-
tional constraints on recording, and creating the desired
bitmasks can be a very complicated process. Further, for
any event to be recorded, a configuration register must
be specified and correctly initialized, however, only cer-
tain configuration registers are legal for a given event.
PACMAN simplifies the initialization process by having
predefined values for any desired event which allow the
user to specify an event to be recorded by an intuitive
name, such as STALL CYCLES, and handles the low-
level details internally. Another difficulty is that, due
to sharing of the PMU, a given PMC register cannot be
allocated to both co-executing threads. However, since
registers are allocated in PACMAN according to the par-
titioning scheme described above, this problem is over-
come as well. In these ways, PACMAN greatly reduces
the difficulty of configuring PMC registers.

3 Example Use of PACMAN

In [2], we describe an online technique to use perfor-
mance counters collected at runtime to predict the per-
formance of recurring execution phases of parallel appli-
cations, were they to be run on a different number of pro-
cessors and/or threads on an SMT-based SMP. Runtime
prediction is essential for fast performance and power
adaptation of multithreaded codes, since it overcomes
the runtime overhead of direct search approaches.

In our scheme, we collect sets of counters using PAC-
MAN during the first two executions of each phase of a

parallel program with threads executing on all execution
contexts of all processors. We calculate coefficients of-
fline using multiple linear regression with input from a
training set and then apply these to each event count to
predict the IPC when the same phase is executed with
different configurations of processors and threads per
processor. Our results show that the average IPC pre-
diction accuracy is almost 90%.

Once IPC predictions for different execution scenar-
ios have been made, it is possible to adapt the number
of threads and processors used in future executions of
each phase according to some optimization metric, such
as execution time, energy, or a combination of the two.
This runtime adaptation scheme results in large gains
in both execution time and energy consumption over a
range of parallel benchmarks on multi-Hyperthreaded
SMPs. Such adaptation would not be feasible with-
out PACMAN, which provides runtime access to per-
formance counters at a fine granularity on a thread by
thread basis and the exclusion of events incurred by ex-
ternal noise from other applications or system activity.

Acknowledgments

This research is supported by the National Science
Foundation (Grants CCF-0346867 and ACI-0312980),
the U.S. Department of Energy (Grant DE-FG02-
05ER2568) and an equipment grant from the College of
William and Mary.

References

[1] S. Browne, J. Dongarra, N. Garner, K. London, and
P. Mucci. A Scalable Cross-Platform Infrastructure for
Application Performance Tuning Using Hardware Coun-
ters. In Proc. of Supercomputing 2000 (SC’00), Dallas,
TX, November 2000.

[2] M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and
D. Nikolopoulos. Online Power-Performance Adaptation
of Multithreaded Programs using Hardware Event-Based
Prediction. In Proc. of the 20th International Conference
on Supercomputing, Queensland, Australia, June 2006.

[3] S. Eranian. The Perfmon2 Interface Specification. Tech-
nical Report HPL-2004-200R1, HP Labs, February 2005.

[4] Intel Inc. Intel VTune Performance Analyser.
http://www.intel.com/software/products/vtune, 2003.

[5] D. Koufaty and D. Marr. Hyperthreading Technology in
the Netburst Microarchitecture. IEEE Micro, 23(2):56–65,
March 2003.

[6] M. Pettersson. A Linux/x86 Performance Counters Driver.
http://user.it.uu.se/˜mikpe/linux/perfctr/.


