
1 Scheduling Algorithms with Bus
Bandwidth Considerations for
SMPs

CHRISTOS D. ANTONOPOULOS1, DIMITRIOS S. NIKOLOPOULOS2

and THEODORE S. PAPATHEODOROU1
1High Perf. Information Systems Lab, 2 Department of Computer Science,
Computer Eng. & Informatics Dept., The College of William & Mary,
University of Patras, 117 McGlothlin Street Hall,
26500 Patras, Greece Williamsburg, VA 23187-8795, U.S.A.

1.1 INTRODUCTION

Small symmetric multiprocessors have dominated the server market and the high-
performance computing field, either as standalone components, or as components for
building scalable clustered systems. Technology has driven the cost of SMPs down
enough to make them affordable for desktop computing. Future trends indicate that
symmetric multiprocessing within chips will be a viable option for computing in the
embedded systems world as well.

This class of machines is praised for cost-effectiveness, but at the same time it is
criticized for limited scalability. A major architectural bottleneck of most SMPs is the
internal bus which is used to connect the processors and the peripherals to memory.
Despite technological advances that drive the design of system-level interconnects to
more scalable, switch-based solutions such as HyperTransport [4] and InfiniBand [5],
the bandwidth of the internal interconnection network of SMPs is a dominant barrier
for performance. The problem is more acute in low-cost, SMPs in which low-end,
low-performance buses are used.

Although it has been known for long that the internal bus of an SMP is a major
performance bottleneck, software for SMPs has taken only indirect approaches to
address the problem. The goal has always been to optimize the programs for the
memory hierarchy and improve cache locality. The same philosophy is followed
in SMP operating systems for scheduling multiprogrammed workloads with time-
sharing. All SMP schedulers use cache affinity links for each thread. The affinity
links are used to bias the scheduler, so that each thread keeps running on the same

i

ii SCHEDULING ALGORITHMS WITH BUS B/W CONSIDERATIONS FOR SMPS

processor. This helps threads build state in the caches without interference noise
coming from other threads. Program optimizations for cache locality and cache
affinity scheduling reduce the bus bandwidth consumed by programs. Therefore,
they may improve the ‘capacity’ of the SMP in terms of the number of threads the
SMP can run simultaneously without slowing them down. Unfortunately, if the
bus of the SMP is saturated due to contention between threads, memory hierarchy
optimizations and affinity scheduling do not remedy the problem.

This chapter, presents a direct approach for coping with the bus bandwidth bottle-
neck of SMPs in the operating system. We motivate this approach with experiments
that show the impact of bus saturation on the performance of multiprogrammed
SMPs. In our experiments we use applications with very diverse bus bandwidth
requirements, which have already been extensively optimized for the target memory
hierarchy. The experiments show clearly that this impact can be severe. The slow-
down of jobs suffered due to bus bandwidth limitations can be significantly higher
than the slowdown suffered due to interference between jobs on processor caches.
In some cases, the slowdown due to bus saturation is even higher than the slowdown
the programs would experience if they were simply time-shared on a subset of the
system processors.

In this chapter we describe scheduling algorithms which address the problem
directly. They select the applications to co-execute driven by the bandwidth require-
ments of their threads. Bus utilization information is collected from the performance
monitoring counters which are provided by all modern processors. The algorithms
measure the bandwidth consumption of each job at runtime. The goal is to find
candidate threads for co-scheduling on multiple processors, so that the average bus
bandwidth requirements per thread are as close as possible to the available bus band-
width per processor. In other words, the scheduling policies try to achieve optimal
utilization of the bus during each quantum without either overcommiting it or wasting
bus bandwidth.

In order to evaluate the performance of our policies we experiment with hetero-
geneous workloads on multiprogrammed SMPs. The workloads consist of the appli-
cations of interest combined with two microbenchmarks: one that is bus bandwidth-
consuming and another that poses negligible overhead on the system bus. The new
scheduling policies demonstrate an up to 68% improvement of system throughput.
In average, the throughput rises by 26%.

The rest of this chapter is organized as follows: Section 1.2 discusses related work.
In section 1.3 we present an experimental evaluation of the impact of bus bandwidth
saturation on system performance. In section 1.4 we describe the new, bus bandwidth-
aware scheduling policies. Section 1.5 presents an experimental evaluation of the
proposed algorithms in comparison with the standard Linux scheduler. Finally,
section 1.6 concludes the chapter.

RELATED WORK iii

1.2 RELATED WORK

Processor scheduling policies for SMPs have been primarily driven by two factors:
the processor requirements and the cache behavior of programs. Most existing SMP
schedulers use time-sharing with dynamic priorities and include an affinity mask
or flag that biases the scheduler so that threads that have had enough time to build
their state in the cache of one processor are consecutively scheduled repeatedly on
the same processor. In these settings, parallel jobs can use all the processors of the
system. Few SMP OSs use space-sharing algorithms that partition the processors
between programs so that each program runs on a fixed or variable subset of the
system processors. If multiple jobs, including one or more parallel ones, run at the
same time, space sharing schedulers prevent parallel jobs from using all processors
of the system.

The effectiveness of cache affinity scheduling depends on a number of factors [16,
19, 21]. The cache size and replacement policy have an obvious impact. The smaller
the size of the cache, the more the performance penalty for programs which are
time-sharing the same processor. The degree of multiprogramming is also important.
The higher the degree of multiprogramming, the less are the chances that affinity
scheduling improves cache performance. The time quantum of the scheduler also
affects significantly the effectiveness of affinity scheduling. With long time quanta,
threads may not be able to reuse data from the caches if processors are time-shared
among multiple threads. On the other hand, with short time quanta threads may not
have enough time to build state on the caches.

Dynamic space sharing policies [11, 12, 20, 23] attempt to surpass the cache
performance limitations by running parallel jobs on dedicated sets of processors,
the size of which may vary at runtime. These policies tend to improve the cache
performance of parallel jobs by achieving better locality, since jobs tend to execute
on isolated sets of processors. The drawback of these policies is that they limit the
degree of parallelism that the application can exploit. It has been shown that in most
practical cases, the positive effect of improving locality outweighs the negative effect
of losing processors. Thus, space-sharing policies tend to improve the performance
of parallel jobs on multiprogrammed platforms.

New scheduling algorithms based on the impact of cache sharing on the perfor-
mance of co-scheduled jobs on multithreaded processors and chip-multiprocessors
were proposed in [17, 18]. The common aspect of this work and the policies presented
in this chapter is that both are using contention on a shared system resource as the
driving factor for making informed scheduling decisions. However, these algorithms
are based on analytical models of program behaviour on malleable caches, while our
policies are using information collected from the program at runtime. Scheduling
with on-line information overcomes the limitations of modelling program behaviour
off-line, and makes the scheduling algorithm portable on real systems, regardless of
workloads.

To the best of our knowledge, none of the already proposed job scheduling al-
gorithms for SMPs is driven by the effects of sharing system resources other than
caches and processors. In particular, none of the policies is driven by the impact of

iv SCHEDULING ALGORITHMS WITH BUS B/W CONSIDERATIONS FOR SMPS

sharing the bus, or in general, the network that connects processors and memory. Fur-
thermore, among the policies that focus on optimizing memory performance, none
considers the available bandwidth between different levels of the memory hierarchy
as a factor for guiding the scheduling decisions.

Related work on job scheduling for multithreaded processors [1, 15] has shown
that the performance of the scheduler is improved when the scheduler takes into
account the interference between applications on shared hardware resources. More
specifically, it has been shown that it is possible to achieve better performance from
multiprogrammed workloads, if the programs which are co-scheduled on multiple
processors during a time quantum meet certain criteria that indicate good symbiosis
between the programs on specific system resources. For example, the scheduler
could select to co-schedule programs that achieve the least number of stall cycles
on a shared functional unit of a multiple-issue processor, or achieve the highest
utilization of instruction slots, or fit in RAM without incurring paging. These studies
indicated the importance of sharing resources other than caches and processor time
on the performance of job scheduling algorithms, but did not propose implementable
scheduling algorithms driven by the observed utilization of specific resources.

Most modern microprocessors are equipped with performance monitoring coun-
ters. Designed primarily for analyzing the performance of programs at the architec-
tural level, they provide the programmer with a powerful tool for tracking performance
bottlenecks due to the interactions between the program and the hardware. These
counters have been widely used for off-line performance analysis of applications
either autonomously [7, 14, 24] or as the basis for building higher-level tools [3, 8].
N. Amato et al. define a performance prediction function which takes into account
the memory hierarchy and contention effects [2]. The function is expressed in terms
that can be attained using performance counters. The authors provide experimental
evidence that it can be employed as a prediction tool by extrapolating performance
counters measurements from small, pilot executions. However, information attained
from performance monitoring counters has never been used before to either affect
scheduling decisions at run-time on a real system, or drive run-time program opti-
mizations.

1.3 THE IMPLICATIONS OF BUS BANDWIDTH ON APPLICATION
PERFORMANCE

In this section we present experimental results which quantify the impact of sharing
the bus of an SMP between multiple jobs. The experimental investigation is relevant
for all types of shared-memory architectures that share some level of the memory
hierarchy, that being a cache or RAM. Besides SMPs, the analysis is also relevant for
multithreading processors and chip multi-processors.

For the experiments, we used extensively optimized applications and computa-
tional kernels from two suites, the NAS benchmarks [6] and the Splash-2 bench-
marks [22]. The benchmarks have been compiled using the 7.1 version of Intel
Fortran and C/C++ OpenMP compilers. We used codes which are optimized for

THE IMPLICATIONS OF BUS BANDWIDTH ON APPLICATION PERFORMANCE v

spatial and temporal cache locality in order to dismiss any chances that the observed
bandwidth consumption occurs due to poor implementation of the used codes. We
show that even with heavily optimized code, bus bandwidth consumption is a major
limitation for achieving high performance.

Our experimental platform is a dedicated 4-processor SMP with Hyperthreaded
Intel Xeon processors, clocked at 1.4 GHz. It is equipped with 1 GB of main
memory and each processor has 256 KB of L2 cache. The front-side bus of the
machine, namely the medium which connects processors to memory, runs at 400
MHz. The operating system is Linux and the kernel version is 2.4.20. The values of
hardware counters are monitored using the Mikael Pettersson’s performance counter
driver for Linux and the accompanying run-time library [13]. Unfortunately, the
driver does not currently support concurrent execution of two threads on the same
hyperthreaded processor if both threads use performance monitoring counters. As a
consequence, we had to disable hyperthreading on all processors.

The theoretical peak bandwidth of the bus is 3.2 GB/s. However, the maximum
sustained bandwidth measured by the STREAM benchmark [10] is 1797 MB/s when
requests are issued from all processors. The highest bus transactions rate sustained by
STREAM is 29.5 transactions/microsec, hence approximately 64 bytes are transferred
with each bus transaction.

We have conducted 4 sets of experiments. The first one measures the bandwidth
consumed by each application, when executed alone using 2 processors. The other
three experiment sets simulate a multiprogrammed execution. In the second set, two
identical instances of an application are executed using 2 processors each.

In the third experiment set, one instance of the application, using two processors,
runs together with two instances of a microbenchmark (BBMA). Each instance of
the microbenchmark uses one processor. The microbenchmark accesses a two-
dimensional array the size of which is twice as much as the size of Xeon’s L2 cache.
The size of each line of the array is equal to the cache line size of Xeon. The
microbenchmark performs column-wise writes on the array. More specifically, it
writes the first element of all lines, then the second element, then the third element
and so on. The microbenchmark is programmed in C, so the array is stored in
memory row-wise. As a consequence, each write causes the processor to fetch a new
cache line from memory. By the time the next element of each line is to be written,
the specific line has been evicted from the cache. As a result, the microbenchmark
has almost 0% cache hit rate for the elements of the array. It constantly performs
back-to-back memory accesses and consumes a significant fraction of the available
bus bandwidth. In average, it performs 23.6 bus transactions/microsec.

The fourth experiment set is identical with the third one, except from the config-
uration of the microbenchmark. The microbenchmark (nBBMA) accesses the array
row-wise, so spatial locality is maximized. Furthermore, the size of the array is half
the size of Xeon’s L2 cache. Therefore, excluding compulsory misses, the elements
are constantly accessed from the cache and the cache hit rate of the microbenchmark
approaches 100%. Its average bus transactions rate is 0.0037 transactions/microsec.

Figure 1.1 depicts the bus bandwidth consumption of each application, measured
as the number of bus transactions per microsecond. The reported bus transactions

vi SCHEDULING ALGORITHMS WITH BUS B/W CONSIDERATIONS FOR SMPS

1 Appl (2 threads)

0

5

10

15

20

25

Ra
dio

sit
y

Wa
ter

-ns
qr

Vo
lre

nd

Ba
rne

s

FM
M

LU
 C
B BT SP MG

Ra
ytr

ac
e CG

Bu
s
Tr

an
s.
 /
us

ec

Fig. 1.1 Bus transactions rate for the applications studied, when the applications are executed
alone, using two processors.

rate is the accumulated rate of transactions issued from two threads running on
two different processors. The applications are sorted in increasing order of issued
bus transactions rate. The bandwidth consumption varies from 0.48 to 23.31 bus
transactions per microsecond. Considering that each transaction transfers 64 bytes,
the applications consume no more than 1422.73 MB/s, therefore the bus offers enough
bandwidth to run these applications alone.

2 Apps (2 threads each)

0
5

10
15
20
25
30
35
40

Ra
dio

sit
y

Wa
ter

-ns
qr

Vo
lre

nd

Ba
rne

s

FM
M

LU
 C
B BT SP MG

Ra
ytr

ac
e CG

Bu
s
Tr

an
s.
 /
us

ec

Appl 1 Appl 2

Fig. 1.2 Cumulative bus transactions rate
when two instances of each application are ex-
ecuted simultaneously, using two processors
each.

2 Apps (2 threads each)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

Ra
dio

sit
y

Wa
ter

-ns
qr

Vo
lre

nd

Ba
rne

s

FM
M

LU
 C
B BT SP MG

Ra
ytr

ac
e CG

Sl
ow

do
w
n

Fig. 1.3 Slowdown of the applications when
two instances of each application are executed
simultaneously, using two processors each.
The slowdown in the diagram is the arithmetic
mean of the slowdown of the two instances.

Figure 1.2 shows the accumulated number of transactions per microsecond, when
two instances of each application run simultaneously using two processors each. The
cummulative bus transactions rate is further analyzed in the diagram to depict the
contribution of each application instance. Both instances contribute - as expected
- almost equally, however the sustained bus transactions rate of each instance is
generally lower than that of the standalone execution. The four applications with the
highest bandwidth requirements (SP, MG, Raytrace, CG) push the system bus close
to its capacity. Even in cases the cumulative bandwidth of two instances of these

THE IMPLICATIONS OF BUS BANDWIDTH ON APPLICATION PERFORMANCE vii

applications does not exceed the maximum sustained bus bandwidth, contention and
arbitration contribute to bandwidth consumption and eventually bus saturation.

It is worth noticing that four Raytrace threads yield a cumulative rate of 34.89
transactions/microsec, which is higher than the transactions rate achieved by four
concurrently executing threads of STREAM (29.5 transactions/microsec). It has
not been possible to reproduce this behavior with any other application or synthetic
microbenchmark, even by varying the length of the data chunk transferred during
each bus transaction.

Figure 1.3 shows the slowdown of the applications when two instances of each
application are executed together using two processors each. Note that the two
instances use different processors and there is no processor sharing. Theoretically, the
applications should not be slowed down at all, however in practice, there is slowdown
due to contention between the applications on the bus. The results show that the
applications with high bandwidth requirements suffer a 41% to 61% performance
degradation.

1 Appl (2 threads) + 2 BBMA

0
5

10
15
20
25
30
35

Ra
dio

sit
y

Wa
ter

-ns
qr

Vo
lre

nd

Ba
rne

s

FM
M

LU
 C
B BT SP MG

Ra
ytr

ac
e CG

Bu
s
Tr

an
s.
 /
us

ec

Appl BBMA

Fig. 1.4 Cumulative bus transactions rate
when one instance of each application, using
two processors, is executed together with two
instances of the BBMA microbenchmark that
issues back to back memory accesses without
reusing data from the cache.

1 Appl (2 threads) + 2 BBMA

0

0.5

1

1.5

2

2.5

3

Ra
dio

sit
y

Wa
ter

-ns
qr

Vo
lre

nd

Ba
rne

s

FM
M

LU
 C
B BT SP MG

Ra
ytr

ac
e CG

Sl
ow

do
w
n

Fig. 1.5 Slowdown of the applications when
one instance of each application, using two
processors, is executed together with two in-
stances of the BBMA microbenchmark that
issues back to back memory accesses without
reusing data from the cache.

Figures 1.4 and 1.5 illustrate the results from the experiments in which one parallel
application competes with two copies of the BBMA microbenchmark that streams
continuously data from memory without reusing them. These experiments isolate
the impact of having applications run on an already saturated bus. Note that in
figure 1.4 the bus bandwidth consumed from the workload is very close to the limit
of saturation, averaging 28.34 transactions/microsec. Moreover, it is clear that the
instances of the BBMA microbenchmark dominate the use of bus bandwidth. As a
result, the available bandwidth for applications is often significantly lower, compared
with their bandwidth requirements we measured during the standalone application
execution. Memory-intensive applications suffer 2 to almost 3-fold slowdowns,
despite the absence of any processor sharing. Even applications with moderate bus
bandwidth requirements have slowdowns ranging between 2% and 55% (18% in

viii SCHEDULING ALGORITHMS WITH BUS B/W CONSIDERATIONS FOR SMPS

average). The slowdown of LU CB is higher than expected. This can be attributed to
the fact that LU CB has a particularly high cache hit ratio (99.53% when executed with
two threads). As a consequence, as soon as a working set has been built in the cache
the application tends to be very sensitive to thread migrations among processors. The
same observation holds true for Water-nsqr.

1 Appl (2 threads) + 2 nBBMA

0

5

10

15

20

25

Ra
dio

sit
y

Wa
ter

-ns
qr

Vo
lre

nd

Ba
rne

s

FM
M

LU
 C
B BT SP MG

Ra
ytr

ac
e CG

Bu
s
Tr

an
s.
 /
us

ec

Appl nBBMA

Fig. 1.6 Cumulative bus transactions rate
when one instance of each application, us-
ing two processors, is executed together with
two instances of the nBBMA microbench-
mark that reuses data from the cache and does
not consume any bus bandwidth.

1 Appl (2 threads) + 2 nBBMA

0.9
0.92
0.94
0.96
0.98

1
1.02
1.04
1.06

Ra
dio

sit
y

Wa
ter

-ns
qr

Vo
lre

nd

Ba
rne

s

FM
M

LU
 C
B BT SP MG

Ra
ytr

ac
e CG

Sl
ow

do
w
n

Fig. 1.7 Slowdown of the applications when
one instance of each application, using two
processors, is executed together with two in-
stances of the nBBMA microbenchmark that
reuses data from the cache and does not con-
sume any bus bandwidth.

Figures 1.6 and 1.7 depict the results from the concurrent execution of parallel
applications - using two threads each - with two instances of the nBBMA microbench-
mark. The latter practically poses no overhead on the bus. It is clear that both the bus
transactions rate and the execution time of applications are almost identical to those
observed during the uniprogrammed execution. In fact, the contribution of nBBMA
instances to the totaly consumed bandwidth is not even visible in figure 1.6. This
confirms that the slowdowns observed in the previously described experiments are
not caused by lack of computational resources. Figures 1.6 and 1.7 also indicate that
pairing high-bandwidth with low-bandwidth applications is a good way for the SMP
scheduler to achieve higher throughput.

Figure 1.8 depicts the correlation between the reduction of the measured bus
transactions rates of applications in all multiprogrammed executions and the corre-
sponding slowndowns. All rate reductions and slowdowns have been calculated with
respect to the standalone execution of the applications. The diagram also illustrates
the regression line, fitted by applying the least squares algorithm on the (bus trans.
rate reduction, slowdown) data points. Figure 1.8 indicates a close, almost linear
relation between the limitation of the available bus bandwidth and the slowdown
applications are expected to suffer.

From the experimental data presented in this section, one can easily deduce that
programs executing on an SMP may suffer significant performance degradation even
if they are offered enough CPU and memory resources to run without sharing pro-
cessors and caches and without causing swapping. These performance problems can

SCHEDULING POLICIES FOR PRESERVING BUS BANDWIDTH ix

Correlation Between Bus Trans. Rate &
Slowdown

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
Bus Trans. Rate Decrease

Sl
ow

do
w
n

Fig. 1.8 Correlation between the reduction of the bus transactions rate and the slowdown of
applications in the multiprogrammed executions.

be attributed to bus saturation. In some cases, the slowdowns exceed the slowdowns
that would have been observed if the threads were simply time-shared on a single
processor, instead of executing on different processors of a multiprocessor. Given the
magnitude of these slowdowns it is reasonable to search for scheduling policies that
improve application and system performance by carefully managing bus bandwidth.

1.4 SCHEDULING POLICIES FOR PRESERVING BUS BANDWIDTH

We have implemented two new scheduling policies that schedule jobs on an SMP
system taking into account the bus bandwidth the jobs consume. They are referred to
as ‘Latest Quantum Gang’ (LQG) and ’Quanta Window Gang’ (QWG). Both policies
are gang scheduling-like, in the sense that, all threads of the same application are
guaranteed to execute together. The scheduling quantum is fixed to a constant value.
Applications coexisting in the system are conceptually organized as a list.

Table 1.1 outlines the pseudo-code of LQG. At the end of each scheduling quantum
the scheduler updates the bus transactions rate statistics for all running jobs, using
information provided by the applications. The bus transactions rate (BTRlatest) is
calculated as the number of bus transactions caused by the application during the
latest quantum, divided by the duration of the quantum. The previously running jobs
are then transferred to the tail of the applications list.

Then, the policy initializes the Available Bus Transactions Rate (ABTR) for the
next quantum to the System Bus Transactions Rate (SBTR). ABTR quantifies the
available bus bandwidth for allocation at any time during the scheduling.SBTR is a
constant, characteristic of the system bus capacity. Its value is equal to the maximum
bus transactions rate that does not saturate the bus.

Following, the policy elects the applications that will execute during the next
quantum. The application found at the head of the applications list is allocated by
default. This ensures that all applications will eventually have the chance to execute,
independent of their bus-bandwidth consumption characteristics. As a consequence,
no job will suffer processor starvation.

x SCHEDULING ALGORITHMS WITH BUS B/W CONSIDERATIONS FOR SMPS

Foreachrunning application
BTRlatest = Bus Transactions

Quantum Length

Enqueue the application at the tail of available applications.
ABTR = SBTR
Unallocated Processors = System Processors
Allocate processors to application at the head of available applications and dequeue it.
ABTR = ABTR−BTRlatest

Unallocated Processors -= Application Threads
While Unallocated Processors > 0

ABTR/proc = ABTR
Unallocated Processors

Foreachavailable application
If Application Threads≤ Unallocated Processors

Fitness = 1000
1+|ABTR/proc∗Application Threads−BTRlatest|

If no application withApplication Threads < Unallocated Processorshas been found
Scheduling has finished

Else
Allocate processors to the fittest application and dequeue it.
ABTR = ABTR−BTRlatest

Unallocated Processors -= Application Threads

Table 1.1 Pseudo-code of LQG algorithm. The QWG algorithm is similar.

Every time an application is selected for execution, itsBTRlatest is subtracted
from the available bus transactions rate (ABTR). Moreover, the scheduler calculates
the available bus transaction rate per unallocated processor (ABTR/proc) as

ABTR/proc =
ABTR

Unallocated processors
(1.1)

As long as there are processors available, the scheduler traverses the applications
list. For each application that fits in the available processors, a fitness value is
calculated.

Fitness =
1000

1 + |ABTR/proc ∗Application Threads−BTRlatest| (1.2)

Fitness is a metric of the proximity between the application’s bus bandwidth re-
quirements and the currently available bandwidth. The closerBTRlatest is to
ABTR/proc ∗Application Threads, the fitter the application is for scheduling. The
selection of this fitness metric favors an optimal exploitation of bus bandwidth. If pro-
cessors have already been allocated to low-bandwidth applications, high-bandwidth
ones become best candidates for the remaining processors. The reverse scenario
holds true as well. The fitness metric behaves as expected even in cases when, due
to the nature of the workload, bus saturation can not be avoided. As soon as the
bus gets overloaded,ABTR/proc turns negative and the application with the lowest
BTRlatest becomes the fittest.

SCHEDULING POLICIES FOR PRESERVING BUS BANDWIDTH xi

After each list traversal the fittest application is selected to execute during the next
quantum. If there are still unallocated processors theABTR andABTR/proc values
are updated and a new list traversal is performed.

The QWG policy is quite similar to LQG. The sole difference is that instead of using
the bus transactions rate of each application during the latest quantum, we calculate
and use its bus transactions rate during a window of past quanta (BTRwindow).

Raytrace (window 1)

0
2
4
6
8

10
12
14
16
18
20

1 101 201
Samples (1 sample / 100 msec)

Bu
s
Tr
an

sa
ct
io
ns

 /
 u
se

c

Raytrace (window 5)

0
2
4
6
8

10
12
14
16
18
20

1 101 201Samples (1 sample / 100 msec)

Bu
s T

ran
sa

cti
on

s (
wi

nd
ow

mo

vin
g a

ve
rag

e)
/ u

se
c

Raytrace (window 10)

0
2
4
6
8

10
12
14
16
18
20

1 101 201
Samples (1 sample / 100 msec)

Bu
s T

ran
sa

cti
on

s (
wi

nd
ow

mo

vin
g a

ve
rag

e)
/ u

se
c

Fig. 1.9 Bus transactions rate of Raytrace when a window of length 1 (top, left), 5 (top, right),
or 10 (bottom) is used. The reported rate is the average of the samples within the window. The
hardware counters are sampled every 100 msec.

Using BTRwindow instead of BTRlatest has an effect of smoothing sudden changes
to the bus transactions caused by an application. This technique filters out sudden
bursts with small duration, or bursts that can be attributed to random, external events
such as cache state rebuild after a thread migration. However, at the same time
it reduces the responsiveness of the scheduling policy to true changes in the bus
bandwidth requirements of applications. The selection of the window length must
take this tradeoff into account. Figure 1.9 illustrates the average bus transactions rate
of Raytrace when windows of length 1 (no smoothing), 5 and 10 are used. When no
filtering is applied, the bus transactions pattern is dominated by random variations of
small duration. On the contrary, the use of a large window has the effect of distorting
the observed pattern. The window used in QWG has been heuristically chosen to
be 5 samples long. This window length limits the average distortion introduced
by filtering within 5% of the observed transactions pattern for applications with
irregular bus bandwidth requirements, such as Raytrace or LU. The use of a wider
window would require techniques such as exponential reduction of the weight of
older samples, in order to achieve an acceptable policy responsiveness.

xii SCHEDULING ALGORITHMS WITH BUS B/W CONSIDERATIONS FOR SMPS

The use of a user-level CPU manager facilitates the design, testing and comparison
of scheduling policy without altering the OS kernel. We implemented a user-level
CPU manager which executes as a server process on the target system. Its interface
and functionality are similar to those of the NANOS CPU Manager [9].

Each application that wishes to use the new scheduling policies uses a standard
UNIX-socket to send a ‘connection’ message to the CPU manager. The thread that
contacted the CPU manager is the ‘application leader’. The CPU manager responds
to the message by creating a shared arena, i.e. a shared memory page which is used
as its primary communication medium with the application. It also informs the
application how often the bus transactions rate information on the shared arena is
expected to be updated. Moreover, the CPU manager adds the new application to a
list of connected applications.

In order to ensure the timeliness of information provided from the applications,
the bus transactions rate is updated twice per scheduling quantum. At each sampling
point the performance counters of all application threads are polled, their values are
accumulated and the result is written to the shared arena.

The applications are blocked / unblocked by the CPU manager according to the
decisions of the effective scheduling policy. Blocking / unblocking of applications
is achieved using standard unix signals. The CPU manager sends a signal to the
‘application leader’ which, in turn, is responsible to forward the signal to the appli-
cation threads. In order to avoid side-effects from possible inversion in the order
block / unblock signals are sent and received, a thread blocks only if the number of
received block signals exceeds the corresponding number of unblock signals. Such
an inversion is quite probable, especially if the time interval between consecutive
blocks and unblocks is narrow.

A run-time library which accompanies the CPU manager offers all the necessary
functionality for the cooperation between the CPU manager and applications. The
modifications required to the source code of applications are limited to the addition
of calls for connection and disconnection and to the interception of thread creation
and destruction.

The overhead introduced by the CPU manager to the execution time of the ap-
plications it controls is usually negligible. In the worst case scenario, namely when
multiple identical copies of applications with low bus bandwidth requirements are
co-executed, it may rise up to 4.5%.

1.5 EXPERIMENTAL EVALUATION

We have evaluated the effectiveness of our policies using three sets of heterogeneous
workloads. Each experiment set is executed both on top of the standard Linux
scheduler and with one of the new policies, using the CPU manager. All workloads
have a multiprogramming degree equal to two. In other words, the concurrently
active threads are twice as many as the available physical processors. The scheduling
quantum of the CPU manager is 200 msec, twice the quantum of the Linux scheduler.
We have experimented with a quantum of 100 msec, which resulted to an excessive

EXPERIMENTAL EVALUATION xiii

number of context switches. This is probably due to the lack of synchronization
between the OS scheduler and the CPU manager, which in turn results to conflicting
scheduling decisions at the user- and kernel-level. Using a larger scheduling quantum
eliminates this problem. In any case, we have verified that the duration of the CPU
manager quantum does not have any measurable effect on the cache performance of
the controlled applications.

2 Appls (2 Threads each) + 4 BBMA

0
10
20
30
40
50
60
70
80

Ra
dio

sit
y

Wa
ter

-
ns

qr

Vo
lre

nd

Ba
rne

s

FM
M

LU
 C

B BT SP MG

Ra
ytr

ac
e CG

Av
g.

Tu
rn
aro

un
d T

im
e

Im
pr
ov

em
en

t (%
)

Latest
Window

Fig. 1.10 Performance improvement (%) of the workloads when two instances of each
application (using two processors each) are executed simultaneously with four instances of the
BBMA microbenchmark. The reported values are the improvement in the arithmetic mean of
the execution times of both application instances.

In the first set, two instances of the target application, requesting two processors
each, are executed together with four instances of the BBMA microbenchmark. This
set evaluates the effectiveness of our policies on an already saturated bus. Figure 1.10
illustrates the improvement each policy introduces on the average turnaround time of
applications in comparison with the execution on top of the standard Linux scheduler.
In all diagrams applications are sorted in increasing order of issued bus transactions
rate in the uniprogrammed execution (as in figure 1.1). LQG achieves improvements
ranging from 4% to 68% (41% in average). The improvements introduced by QWG
vary between 2% and 53% with an average of 31%.

When executed with the standard Linux scheduler, applications with high band-
width requirements may be co-scheduled with instances of the BBMA microbench-
marks, resulting to bus bandwidth starvation. Our policies avoid this scenario.
Applications with lower bandwidth requirements may be scheduled with instances
of the BBMA microbenchmarks. However, even in this case, our policies ensure -
due to the gang-like scheduling - that at least two low-bandwidth threads will run
together, in contrast to the Linux scheduler which may execute one low-bandwidth
thread with three instances of BBMA.

The second set of workloads consists of two instances of the target application -
requesting two processors each - and four instances of the nBBMA microbenchmark.
This experiment demonstrates the functionality of the proposed policies when low
bandwidth jobs are available in the system. Figure 1.11 depicts the performance
gains attained by the new scheduling policies.

LQG achieves up to 60% higher performance, however three applications slow
down. The most severe case is that of Raytrace (19% slowdown). A detailed analysis

xiv SCHEDULING ALGORITHMS WITH BUS B/W CONSIDERATIONS FOR SMPS

2 Appls (2 Threads each) + 4 nBBMA

-20
-10
0

10
20
30
40
50
60
70

Ra
dio

sit
y

Wa
ter

-
ns

qr

Vo
lre

nd

Ba
rne

s

FM
M

LU
 C

B BT SP MG

Ra
ytr

ac
e CG

Av
g.

Tu
rn
aro

un
d T

im
e

Im
pr
ov

em
en

t (%
)

Latest
Window

Fig. 1.11 Performance improvement (%) of the workloads when two instances of each
application (using two processors each) are executed simultaneously with four instances of the
nBBMA microbenchmark. The reported values are the improvement in the arithmetic mean
of the execution times of both application instances.

of Raytrace revealed a highly irregular bus transactions pattern. The sensitivity
of LQG to sudden changes of bandwidth consumption has probably led to this
problematic behaviour. Moreover, from figure 1.1 one can deduce that running two
threads of Raytrace together - which is the case due to the gang-like nature of our
policies - may alone drive the bus close to saturation. LU CB and Water-nsqr also
suffer minimal slowdowns due to their high sensitivity to thread migrations among
processors. In average, LQG improved workload turnaround times by 13%. QWG
turned out to be much more stable. It improved workload turnaround times by up to
64%. Raytrace slows down once again, however this time by only 1%. The average
performance improvement is now 21%.

In this experiment set, our scheduling policies tend to pair bandwidth consuming
applications with instances of the nBBMA microbenchmark. As a consequence, the
available bus bandwidth for demanding applications is higher. Even low-bandwidth
applications seem to benefit from our algorithms. The new policies avoid executing 2
instances of the applications together in the presence of nBBMA microbenchmarks.
Despite the fact that running two instances of low-bandwidth applications together
does not saturate the bus, performance problems may occur due to contention among
application threads for the possession of the bus. Note that only one processor can
transfer data over the shared bus at any given time snapshot.

The third experiment set combines two instances of the target application - re-
questing two processors each - with two instances of the BBMA and two instances
of the nBBMA microbenchmark. Such workloads simulate execution environments
where the applications of interest coexist with more and less bus bandwidth consum-
ing ones. The performance improvements of the new scheduling policies over the
standard Linux scheduler are depicted in figure 1.12.

LQG improves the average turnaround time of applications in the workloads by
up to 50%. LU is the only application that experiences a 7% performance deterio-
ration. The average performance improvement is 26%. The maximum and average
improvement achieved by QWG are 47% and 25% respectively. Two applications,
namely Water-nsqr and LU suffer minimal slowdowns of 2% and 5%.

CONCLUSIONS xv

2 Appls (2 Threads each) + 2 BBMA + 2 nBBMA

-10
0

10
20
30
40
50
60

Ra
dio

sit
y

Wa
ter

-
ns

qr

Vo
lre

nd

Ba
rne

s

FM
M

LU
 C

B BT SP MG

Ra
ytr

ac
e CG

Av
g.

Tu
rn
aro

un
d T

im
e

Im
pr
ov

em
en

t (%
)

Latest
Window

Fig. 1.12 Performance improvement (%) of the workloads when two instances of each
application (using two processors each) are executed simultaneously with two instances of
the BBMA and two instances of the nBBMA microbenchmark. The reported values are the
improvement in the arithmetic mean of the execution times of both application instances.

In summary, for the purposes of this experimental evaluation we used applica-
tions with a variety of bus bandwidth demands. All three experiment sets benefit
significantly from the new scheduling policies. Both policies attain average perfor-
mance gains of 26%. The scheduling algorithms are robust for both high-bandwidth
and low-bandwidth applications. As expected however, QWG proves to be much
more stable than LQG. It performs well even in cases the latter exhibits problem-
atic behaviour due to sudden, short-term changes in the bandwidth consumption of
applications.

1.6 CONCLUSIONS

Symmetric multiprocessors are nowadays very popular in the area of high perfor-
mance computing both as standalone systems and as building blocks for computa-
tional clusters. The main reason is that they offer a very competitive performance /
price ratio in comparison with other architectures. However the limited bandwidth of
the bus that connects processors to memory has adverse effects to the scalability of
SMPs. Although this problem is well-known, neither user- nor system-level software
are optimized to minimize these effects.

In this chapter we presented experimental results which indicate that bus saturation
is reflected to an almost 3-fold decrease in the performance of bus bandwidth con-
suming applications. Even less demanding applications suffer slowdowns ranging
between 2% and 55%.

Motivated by this observation, we introduced two scheduling policies that take
into account the bus bandwidth requirements of applications. Both policies have been
implemented in the context of a user-level CPU manager. The information required
to drive policy decisions is provided by the performance monitoring counters present
in all modern processors. To the best of our knowledge these counters have never
before been used to improve application performance at run-time. LQG uses the
bus transactions rate of applications during the latest quantum, whereas QWG uses

xvi SCHEDULING ALGORITHMS WITH BUS B/W CONSIDERATIONS FOR SMPS

bus transactions rate calculated over a window of quanta. At any scheduling point
both policies try to schedule the application with the bus transactions rate per thread
that best matches the available bus transactions rate per unallocated processor in the
system.

In order to evaluate the performance of our policies, we have executed three
sets of workloads. In the first set, applications of interest coexisted with highly bus
demanding microbenchmarks. The second set consisted of the applications of interest
and microbenchmarks that pose no overhead on the bus. In the third set, applications
executed in an environment composed of both highly-demanding and non-demanding
microbenchmarks. Both policies attained an average 26% performance improvement
over the native Linux scheduler. Moreover, QWG has been much more stable than
LQG. It maintained good performance even in corner-cases where LQG proved to be
oversensitive to application peculiarities.

We plan to continue our study in the following directions. First, we plan to derive
analytic or empirical models of the effect of sharing resources other than the CPU,
including the bus, caches and main memory, on the performance of multiprogrammed
SMPs. Using these models, we can re-formulate the multiprocessor scheduling
problem as a multi-parametric optimization problem and derive practical model-
driven scheduling algorithms. We plan to test our scheduler with I/O and network-
intensive workloads which also stress the bus bandwidth. This can be done in
the context of scientific applications or other classes of applications, such as web
servers and database servers. The policies can also be extended in the context of
multithreading processors, where sharing occurs also at the level of internal processor
resources, such as the functional units.

Acknowledgments

The first author is supported by a grant from ‘Alexander S. Onassis’ public benefit foundation
and the European Commission through the ‘POP’ IST project (grant No.: IST-2001-33071).

The second author is supported by NSF grants ITR/ACI-0312980 and CAREER/CCF-
0346867.

REFERENCES

1. G. Alverson, S. Kahan, R. Corry, C. McCann, and B. Smith. Scheduling on
the Tera MTA. InProc. of the first Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP’95), LNCS Vol. 949, pages 19–44, Santa Barbara,
CA, April 1995.

2. Nancy M. Amato, Jack Perdue, Anrea Pietracaprina, Geppino Pucci, and Mark
Mathis. Predicting Performance on SMPs. A Case Study: The SGI Power
Challenge. InProc. of the International Parallel and Distributed Processing
Symposium (IPDPS 2000), Cancun, Mexico, May 2000.

CONCLUSIONS xvii

3. Intel Corporation. Intel Vtune Performance Analyzer.
http://developer.intel.com/software/products/vtune, 2003.

4. Meeting the I/O Bandwidth Challenge: How HyperTransport Technology Ac-
celerates Performance in Key Applications. Technical report, HyperTransport
Consortium, http://www.hypertransport.org/, December 2002.

5. Infiniband Architecture Specification, Release 1.1. Technical report, Infiniband
Trade Association, http://www.infinibandta.org, November 2002.

6. H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS Parallel
Benchmarks and its Performance. Technical Report NAS-99-011, NASA Ames
Research Center, 1999.

7. K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker. Perfor-
mance Characterization of a Quad Pentium Pro SMP Using OLTP Workloads.
ACM SIGARCH Computer Architecture News, Proc. of the 25th Annual Inter-
national Symposium on Computer Architecture (ISCA 98), 26(3), April 1998.

8. K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and T. Spencer. End-
user Tools for Application Performance Analysis, Using Hardware Counters. In
Proceedings of the 15th International Conference on Parallel and Distributed
Computing Systems (PDCS 2001), Dallas, USA, August 2001.

9. X. Martorell, J. Corbalan, D. S. Nikolopoulos, N. Navarro, E. D. Polychronopou-
los, T. S. Papatheodorou and J. Labarta. A Tool to Schedule Parallel Applications
on Multiprocessors. InProc. of the 6th IEEE Workshop on Job Scheduling Strate-
gies for Parallel Processing (JSSPP’2000), volume 1911, pages 87–112, LNCS,
May 2000.

10. John D. McCalpin. Memory Bandwidth and Machine Balance in Current
High Performance Computers.Technical Committee on Computer Architecture
(TCCA) Newsletter, December 1995.

11. C. McCann, R. Vaswani, and J. Zahorjan. A Dynamic Processor Allocation Pol-
icy for Multiprogrammed Shared Memory Multiprocessors.ACM Transactions
on Computer Systems, 11(2):146–178, May 1993.

12. T. Nguyen, R. Vaswani, and J. Zahorjan. Maximizing Speedup through Self-
Tuning Processor Allocation. InProc. of the 10th IEEE International Paral-
lel Processing Symposium (IPPS’96), pages 463–468, Honolulu, Hawaii, April
1996.

13. Mikael Pettersson. Perfctr performance counters driver for linux/x86 systems.
http://www.csd.uu.se/∼mikpe/linux/perfctr.

14. A. Singhal and A. J. Goldberg. Architectural Support for Performance Tuning:
A Case Study on the SPARCcenter 2000.ACM SIGARCH Computer Archi-
tecture News, Proc. of the 21st Annual International Symposium on Computer
Architecture (ISCA 94), 22(2), April 1994.

xviii

15. A. Snavely and D. Tullsen. Symbiotic Job Scheduling for a Simultaneous Mul-
tithreading Processor. InProc. of the 9th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS’IX),
pages 234–244, Cambridge, Massachusetts, November 2000.

16. M. Squillante and E. Lazowska. Using Processor-Cache Affinity Information
in Shared-Memory Multiprocessor Scheduling.IEEE Transactions on Parallel
and Distributed Systems, 4(2):131–143, February 1993.

17. G. Suh, S. Devadas, and L. Rudloph. Analytical Cache Models with Applications
to Cache Partitioning. InProc. of the 15th ACM International Conference on
Supercomputing (ICS’01), pages 1–12, Sorrento, Italy, June 2001.

18. G. Suh, L. Rudolph, and S. Devadas. Effects of Memory Performance on Parallel
Job Scheduling. InProc. of the 8th Workshop on Job Scheduling Strategies
for Parallel Processing (JSSPP’02), pages 116–132, Edinburgh, Scotland, June
2002.

19. J. Torrellas, A. Tucker, and A. Gupta. Evaluating the Performance of Cache-
Affinity Scheduling in Shared-Memory Multiprocessors.Journal of Parallel and
Distributed Computing, 24(2):139–151, February 1995.

20. A. Tucker and A. Gupta. Process Control and Scheduling Issues for Multipro-
grammed Shared-Memory Multiprocessors. InProc. of the 12th ACM Sym-
posium on Operating Systems Principles (SOSP’89), pages 159–166, Litchfield
Park, Arizona, December 1989.

21. R. Vaswani and J. Zahorjan. The Implications of Cache Affinity on Processor
Scheduling for Multiprogrammed Shared Memory Multiprocessors. InProc.
of the 13th ACM Symposium on Operating System Principles (SOSP’91), pages
26–40, Pacific Grove, California, October 1991.

22. Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswider Pal Singh, and
Anoop Gupta. The splash-2 programs: Characterization and methodological
considerations. InProceedings of the 22nd Annual International Symposium on
Computer Architecture (ISCA’95), pages 24–36, June 1995.

23. K. Yue and D. Lilja. An Effective Processor Allocation Strategy for Multipro-
grammed Shared-Memory Multiprocessors.IEEE Transactions on Parallel and
Distributed Systems, 8(12):1246–1258, December 1997.

24. Marco Zagha, Brond Larson, Steve Turner, and Marty Itzkowitz. Performance
Analysis Using the MIPS R10000 Performance Counters. InProceedings of the
SuperComputing 1996 Conference (SC96), Pittsburgh, USA, November 1996.

