
Mobile Netw Appl (2008) 13:337–356
DOI 10.1007/s11036-008-0063-3

Cooperative Caching in Wireless Multimedia
Sensor Networks

Nikos Dimokas · Dimitrios Katsaros ·
Yannis Manolopoulos

Published online: 11 June 2008
© Springer Science + Business Media, LLC 2008

Abstract The recent advances in miniaturization and
the creation of low-power circuits, combined with
small-sized batteries have made the development of
wireless sensor networks a working reality. Lately, the
production of cheap complementary metal-oxide semi-
conductor cameras and microphones, which are able to
capture rich multimedia content, gave birth to what is
called Wireless Multimedia Sensor Networks (WMSNs).
WMSNs will boost the capabilities of current wireless
sensor networks, and will fuel several novel applica-
tions, like multimedia surveillance sensor networks.
WMSNs introduce several new research challenges,
mainly related to mechanisms to deliver application-
level Quality-of-Service (e.g., latency minimization).
To address this goal in an environment with extreme
resource constraints, with variable channel capacity and
with requirements for multimedia in-network process-
ing, the caching of multimedia data, exploiting the
cooperation among sensor nodes is vital. This article

Research supported by a Γ.Γ.E.T. grant in the context of the
project “Data Management in Mobile Ad Hoc Networks”
funded by ΠY�AΓ OPA� II national research program.

N. Dimokas · Y. Manolopoulos
Department of Informatics, Aristotle University,
Thessaloniki, Greece

N. Dimokas
e-mail: dimokas@csd.auth.gr

Y. Manolopoulos
e-mail: manolopo@csd.auth.gr

D. Katsaros (B)
Department of Computer & Communication Engineering,
University of Thessaly, Volos, Greece
e-mail: dimitris@delab.csd.auth.gr

presents a cooperative caching solution particularly
suitable for WMSNs. The proposed caching solution
exploits sensor nodes which reside in “positions” of
the network that allow them to forward packets or
communicate decisions within short latency. These so-
called “mediator” nodes are selected dynamically, so as
to avoid the creation of hot-spots in the communication
and the depletion of their energy. The mediators are
not more powerful than the rest of the nodes, but they
have some special role in implementing the cooperation
among the sensors. The proposed cooperative caching
protocol includes components for locating cached data
as well as for implementing data purging out of the
sensor caches. The proposed solution is evaluated ex-
tensively in an advanced simulation environment, and it
is compared to the state-of-the-art cooperative caching
algorithm for mobile ad hoc networks. The results con-
firm that the proposed caching mechanism prevails over
its competitor.

Keywords cooperative caching · replacement policy ·
multimedia · wireless sensor networks

1 Introduction

Wireless Sensor Networks [2, 18] (WSNs) have
emerged during the last years due to the advances in
low-power hardware design and the development of
appropriate software, that enabled the creation of tiny
devices which are able to compute, control and com-
municate with each other. A WSN consists of wirelessly
interconnected devices that can interact with their en-
vironment by controlling and sensing “physical” para-
meters. WSNs attracted a huge interest from both the

338 Mobile Netw Appl (2008) 13:337–356

research community and the industry, that continues
to grow. This growing interest can be attributed to the
many new exciting applications that were born as a
result of the deployment of large-scale WSNs. Such
applications range from disaster relief, to environment
control and biodiversity mapping, to machine surveil-
lance, to intelligent building, to precision agriculture, to
pervasive health applications, and to telematics.

The support of such a huge range of applications
will be (rather) impossible for any single realization
of a WSN. Nonetheless, certain common features ap-
pear, in regard to the characteristics and the required
mechanisms of such systems and the realization of these
characteristics is the major challenge faced by these
networks. The most significant characteristics shared by
the aforementioned applications concern [18]:

• Lifetime: Usually, sensor nodes rely on a battery
with limited lifetime, and their replacement is not
possible due to physical constraints (they lie in
oceans or in hostile environments) or it is not in-
teresting for the owner of the sensor network.

• Scalability: the architecture and protocols of sensor
networks must be able to scale up (or to exploit)
any number of sensors.

• Wide range of densities: the deployment of sensor
nodes might not be regular and may vary signifi-
cantly, depending on the application, on the time
and space dimension and so on.

• Data-centric networking: the target of a conven-
tional communication network is to move bits from
one machine to another, but the actual purpose
of a sensor network is to provide information and
answers, not numbers [17].

Recently, the production of cheap complementary
metal-oxide semiconductor (CMOS) cameras and mi-
crophones, which can acquire rich media content from
the environment, created a new wave into the evo-
lution of WSNs. For instance, the Cyclops imaging
module [29] is a light-weight imaging module which
can be adapted to MICA21 or MICAz sensor nodes.
Thus, a new class of WSNs came to the scene, the
Wireless Multimedia Sensor Networks (WMSNs) [1].
These sensor networks, apart from boosting the existing
application of WSNs, will create new applications: a)
multimedia surveillance sensor networks which will be
composed by miniature video cameras [22] will be able
to communicate, to process and store data relevant to
crimes and terrorist attacks; b) traffic avoidance and

1http://www.xbow.com.

control systems will monitor car traffic and offer rout-
ing advices to prevent congestion; c) industrial process
control will be realized by WMSNs that will offer time-
critical information related to imaging, temperature,
pressure, etc.

The novel applications of WMSNs challenged the
scientific community because, as it is emphasized
in [1], these applications require us to rethink the
computation-communication paradigm of traditional
WSNs. This paradigm has mainly focused on reduc-
ing the energy consumption, targeting to prolong the
longevity of the sensor network. Though, the applica-
tions implemented by WMSNs have a second goal, as
important as the energy consumption, to be pursued;
this goal is the delivery of application-level quality of
service (QoS) and the mapping of this requirement
to network layer metrics, like latency. This goal has
(almost) been ignored in mainstream research efforts
on traditional WSNs.

The goal of Internet QoS in multimedia content
delivery has been pursued in architectures like Diffserv
and Intserv, but these protocols and techniques do not
face the severe constraints and hostile environment
of WSNs. In particular, WMSNs are mainly character-
ized by:

• Resource constraints: sensor nodes are battery-,
memory- and processing-starving devices.

• Variable channel capacity: the multi-hop nature
of WMSNs, which operate in a store-and-forward
fashion because of the absence of base stations, im-
plies that the capacity of each wireless link depends
on the interference level among nodes, which is
aggravated by the broadcasting operations.

• Multimedia in-network processing: is many appli-
cations of WMSNs, a single sensor node is not
able to answer a posed question, but several sensor
must collaborate to answer it. For instance, a sensor
node with a camera monitoring a moving group of
people, can not count their exact number and deter-
mine their direction, but it needs the collaboration
of nearby sensors in order to cover the whole extent
of the group of people. Therefore, sensor nodes
are required to store rich media, e.g., image, video,
needed for their running applications, and also to
retrieve such media from remote sensor nodes with
short latency.

Under these restrictions/requirements, the goal of
achieving application-level QoS in WMSNs becomes
a very challenging task. There could be several
ways to attack parts of this problem, e.g., channel-
adaptive streaming [14], joint source-channel coding

http://www.xbow.com

Mobile Netw Appl (2008) 13:337–356 339

[11]. Though, none of them can provide solutions to
all of the three aforementioned issues. In this paper,
we investigate the solution of cooperative caching mul-
timedia content in sensor nodes to address all three
characteristics. In cooperative caching, multiple sensor
nodes share and coordinate cache data to cut com-
munication cost and exploit the aggregate cache space
of cooperating sensors. The plain assumption we make,
is that each sensor node has a moderate local storage
capacity associated with it, i.e., a flash memory. Al-
though, there exist flash memories with several giga-
bytes storage capacity, e.g., the NAND flash [23] and
the trend is that they become cheaper, larger and more
common, we do not assume extreme storage capabili-
ties, so as to capture a broader field of applications and
architectures.

Since the battery lifetime can be extended if we man-
age to reduce the “amount” of communication, caching
the useful data for each sensor either in its local store
or in the near neighborhood can prolong the network
lifetime. Additionally, caching can be very effective
in reducing the need for network-wide transmissions,
thus reducing the interference and overcoming the
variable channel conditions. Finally, it can speed-up
the multimedia in-network processing, because, as it
is emphasized in [1], the processing and delivery of
multimedia content are not independent and their in-
teraction has a major impact on the levels of QoS that
can be delivered.

This paper investigates for the first time the tech-
nique of caching in the context of WMSNs. The need
for effective and intelligent caching policies in sensor
networks has been pointed out several times [10, 25] in
the very recent literature, but no appropriate sophisti-
cated policies have been proposed, although there are
quite a lot of caching protocols in other fields (see rele-
vant work in Section 2). This article proposes a novel
and high-performance cooperative caching protocol,
the NICoCa protocol named after the words Node
Importance-based Cooperative Caching, and compares
it with the state-of-the-art cooperative caching policy
for mobile ad hoc networks (MANETs), which is the
“closer” competitor. Using the J-Sim simulation envi-
ronment [34], we perform an experimental evaluation
of the two methods, which attests that the proposed
NICoCa cooperative caching policy prevails over its
competitor.

The rest of this article is organized as follows: in
Section 2 we review the relevant work and record the
contributions of the article. In Section 3 we present the
details of the NICoCa protocol, and in Section 4 we
present the results of the performance evaluation of the
methods; finally, Section 5 concludes the paper.

2 Relevant work

The technique of caching has been widely investigated
in the context of operating systems and databases and is
still an attractive research area [24]. Similarly, caching
on the Web has been thoroughly investigated for coop-
erative [12] and for non-cooperative [19] architectures.
Wessels and Claffy [37] introduced the Internet cache
protocol; Cache digests [30] and Summary Cache [12]
enable proxies to exchange information about cached
content. In [6] a cooperative hierarchical Web caching
architecture was studied. However, the above archi-
tectures and protocols usually assume a fixed network
topology and require powerful computation and com-
munication capabilities.

In the context of wireless broadcast cellular net-
works, a number of caching approaches have been
proposed [20]. These policies assume more powerful
nodes than the sensor nodes, and one-hop communi-
cation with resource-rich base stations, which serve the
needed data.

A number of data replication schemes [15, 16] and
caching schemes [31, 35, 38] have been proposed in
order to facilitate data access in MANETs. Data
replication studies the issue of allocating replicas of
data items to meet access demands. These techniques
normally require a priori knowledge of the network
topology.

Caching schemes however do not facilitate data ac-
cess based on the knowledge of distributed data items.
In SimpleCache [38] the requested data item has always
been cached by the requester node. The node uses the
cached copy in order to serve subsequent requests when
they arrive. The requester node has to get the data
from the data center in case of cache miss. However
increasing the hop distance between the requester node
and caching node will increase the response time for the
request.

The most relevant research works to our protocol
are the cooperative caching protocols which have been
developed for MANETs. The main motive for the
development of these protocols is the mobility of the
nodes, and thus they all strive to model it or exploit it.
Recently, a cooperative caching scheme, called CoCa,
was proposed in [7, 8]. The CoCa framework facilitate
mobile nodes to share their cached contents with each
other in order to reduce the number of server requests
and the number of access misses. The authors extended
CoCa with a group-based cooperative caching scheme,
called GroCoCa, in [9]. According to GroCoCa, the
decision of whether a data item should be cached
depends on two factors of the access affinity on the
data items and the mobility of each node. The mobile

340 Mobile Netw Appl (2008) 13:337–356

support station performs an incremental clustering al-
gorithm to cluster the mobile nodes into tightly coupled
groups based on their mobility patterns. In GroCoCa
also the similarity of access patterns is captured by
frequency-based similarity measurement. GroCoCa
improves system performance at the cost of extra power
consumption. Papadopouli and Schulzrinne [26] sug-
gested the 7DS architecture. The authors deployed a
couple of protocols in order to facilitate sharing and
dissemination of information among users. It operates
on two modes. The first one is a prefetch mode, based
on the information and user’s future needs and the sec-
ond one is an on-demand mode, which searches for data
items in a one hop multicast basis. Depending on the
collaborative behavior, a peer-to-peer and server-to-
client mode are used. Unlike our approach, this strategy
focuses also on single-hop wireless environment and on
data dissemination, and thus the cache management in-
cluding cache admission control and replacement is not
well explored. Sailhan and Issarny [32] proposed a col-
laborative cache management strategy among mobile
terminals interacting via an ad hoc network. The issue
that the authors addressed was on setting an ad hoc net-
work of mobile terminals that cooperate to exchange
Web pages. The proposed solution aims at improving
the Web latency on mobile terminals while optimizing
associated energy consumption. It is implemented on
top of Zone Routing Protocol. The authors proposed a
fixed broadcast range based on the underlying routing
protocol.

The Zone Cooperative (ZC) [5], the Cluster Coop-
erative (CC) [4] and the ECOR [33] protocols attempt
to form clusters of nodes based either in geographical
proximity or utilizing widely known node clustering
algorithms for MANETs [3]. In ZC, mobile nodes be-
longing to the neighborhood (zone) of a given node
form a co-operative cache system for this node since
the cost for communication with them is low both in
terms of energy consumption and message exchanges.
Each node has a cache to store the frequently accessed
data items. The data items in the cache satisfy not only
the node’s own requests, but also the data requests
passing through it from other nodes. For a data miss
in local cache, the node first searches the data in its
zone before forwarding the request to the next node
that lies on a path towards the data center. As a
part of cache management, a value-based replacement
policy based on popularity, distance, size and time-
to-live was developed to improve the data accessibil-
ity and reduce the local cache miss ratio. Simulations
experiments revealed improvements in cache hit ratio
and average query latency in comparison with other
caching strategies. In CC, the authors present a scheme

for caching in MANETs. The goal of CC is to reduce
the cache discovery overhead and provide better co-
operative caching performance. The authors partitions
the whole MANET into equal size clusters based on
the geographical network proximity. In each cluster,
CC dynamically chooses a“super” node as cache state
node, to maintain the cluster cache state information
of different nodes within its cluster domain. The cache
state node is defined as the first node that enters the
cluster. The cluster cache state for a node is the list
of cached data items along with their time-to-live field.
The cache replacement policy is similar to that in ZC.
However, the ZC protocol is problematic in terms of
communication overhead and energy consumption, be-
cause every node that lies on the path towards the
data center has to broadcast the packet to nodes in its
zone in order to discover if there is a cached copy that
satisfies the requested data item. In contrast with the
ZC protocol, the CC protocol reveal a smaller overhead
in terms of messages exchange between nodes, because
the intermediate node (the nodes between a requesting
node and the node which holds the requested data)
broadcast the packet only to cluster state node. In
ECOR, each mobile node forms a cooperation zone
(CZ) with mobile nodes in proximity by exchanging
messages to share their cached data items in order
to minimize bandwidth and energy cost for each data
retrieval. When a data request arrives, the node first
searches the data in its CZ before forwarding the re-
quest to the data center. According to ECOR each
node broadcast every modification of the cached data
items to nodes that belong to cooperation zone. Each
node maintains a cache hint table for the cache infor-
mation of all nodes in its proximity. However, in ECOR
appears a great number of exchanged messages and
energy consumption in case of large node density and
big cooperation radius.

The only protocols that deviated from such ap-
proaches and tried to exploit both data and node lo-
cality in an homogeneous manner are described in [38]
and are the following: CachePath, CacheData, and
HybridCache. In CacheData, intermediate nodes may
cache data to serve future requests instead of fetching
data from the “Data Center”. An intermediate node
caches passing by data item locally when it finds that
data item is popular and does not cache the data item
if all requests for it are from the same node. This
rule is designed in order to reduce the cache space
requirement because the mobile nodes have limited
cache spaces. In CachePath, a mobile node may cache
the information of a path to a nearby data requester
while forwarding the data and use the path information
to redirect future requests to the nearby caching site.

Mobile Netw Appl (2008) 13:337–356 341

By caching the data path for each data item, band-
width and the query delay can be reduced since the
requested data can be obtained through fewer number
of hops. The authors proposed also some optimizations
techniques. An intermediate node can save only the
destination node information because the path from the
current router to the destination node can obtained by
the underlying routing protocol. Also, the intermediate
node need to record the data path when it is closer
to the caching node than the data center. One major
drawback of CachePath is that the cached path may
not be reliable and using it may increase the overhead.
A cached path may not be reliable because either the
data item has become obsolete or the caching node can
not be reached. The hybrid protocol HybridCache com-
bines CacheData and CachePath while avoiding their
weaknesses. In HybridCache, when a mobile node for-
wards a data item, it caches the data or the path based
on some criteria. These criteria include the data item
size, the time-to-leave of the data item and the number
of hops that a cached path can save and denoted as
Hsave. Hsave value is the difference between the distance
to the data center and the distance to the caching node.
Hsave must be greater than a system tuning threshold.
One drawback with these methods is that caching in-
formation of a node cannot be shared if the node does
not lie on the path between the data requester and the
data source. Moreover, the threshold values used in
these heuristics must be set carefully in order to achieve
good performance. The only works on caching in WSNs
concern the placement of caches [28, 36] and thus they
are not strictly relevant to our considered problem.

2.1 Motivation and contributions

The protocols proposed so far for cooperative caching
in MANETs present various limitations. Those proto-
cols, which first perform a clustering of the network and
then exploit this clustering (the cluster-heads, (CH)), in
order to coordinate the caching decisions, inherit the
shortcomings of any bad CH selection. For instance,
in [4, 5], the nodes which form the cluster are assumed
to reside within the same communication range, i.e.,
they are with on-hop distance from the other nodes
of the cluster. Additionally, the nodes do not cache
the data originating from an one-hop neighbor. Thus,
CHs which do no reside in a significant part of data
routes can not serve efficiently their cluster members,
because they do not have fast access (short latency)
to requested data. The cooperation zone which is
formed in [33] by selecting an optimal radius, implies
a large communication overhead, because every node
within that radius must send/receive any changes to the

caches of the other nodes within the radius. Finally, the
HybridCache policy is tightly coupled to the underlying
routing protocol, and thus if a node does not reside in
the route selected by the routing protocol can not cache
the data/path, or conversely, can not serve the request
even if it holds the requested data.

Motivated by the weaknesses of the current coop-
erative protocols and the unique requirements of the
WMSNs, which are mainly static and not mobile, we
propose a cooperative caching policy which is based on
the idea of exploiting the sensor network topology, so
as to discover which nodes are more important than the
others, in terms of their position in the network and/or
in terms of residual energy. Incorporating both factors
into the design of the caching policy we ensure both
network longevity and short latency in multimedia data
retrieval. In summary, the article’s contribution are the
following:

• Definition of a metric for estimating the importance
of a sensor node in the network topology, which will
imply short latency in retrieval.

• Description of a cooperative caching protocol
which takes into account the residual energy of the
sensor nodes.

• Development of algorithms for discovering the
requested multimedia data, and maintaining the
caches (cache replacement policy).

• Performance evaluation of the protocol and
comparison with the state-of-the-art cooperative
caching protocol for MANETs, using an estab-
lished simulation package (J-Sim).

3 The NICoCa cooperative caching protocol
for WMSNs

One of the main parts of the proposed protocol is the
estimation of the importance of sensors relative to the
network topology. The intuition is that if we discover
those nodes, which reside in a significant part of the
(short) paths connecting other nodes, then these are the
“important” nodes; then they may be selected as coor-
dinators for the caching decisions, i.e., as “mediators”
to provide information about accessing the requested
data or even as caching points.

3.1 Measuring sensor node importance

A WMSN is abstracted as a graph G(V, E), where V is
the set of its nodes, and E is the set of radio connec-
tions between the nodes. An edge e = (u, v), u, v ∈ E
exists if and only if u is in the transmission range of

342 Mobile Netw Appl (2008) 13:337–356

v and vice versa. All links in the graph are bidirec-
tional, i.e., if u is in the transmission range of v, v is
also in the transmission range of u. The network is
assumed to be in a connected state. The set of neigh-
bors of a node v is represented by N1(v), i.e., N1(v) =
{u : (v, u) ∈ E}. The set of two-hop nodes of node v, i.e.,
the nodes which are the neighbors of node v’s neighbors
except for the nodes that are the neighbors of node
v, is represented by N2(v), i.e., N2(v)={w : (u, w) ∈ E,

where w �= v and w /∈ N1and(v, u) ∈ E}. The combined
set of one-hop and two-hop neighbors of v is denoted as
N12(v).

Definition 1 (Local network view of node v) The local
network view, denoted as LNv , of a graph G(V, E)

w.r.t. a node v ∈ V is the induced subgraph of G associ-
ated with the set of vertices in N12(v).

A path from u ∈ V to w ∈ V has the common mean-
ing of an alternating sequence of vertices and edges,
beginning with u and ending with w. The length of
a path is the number of intervening edges. We de-
note by dG(u, w) the distance between u and w, i.e.,
the minimum length of any path connecting u and w

in G, where by definition dG(v, v) = 0, ∀v ∈ V and
dG(u, w) = dG(w, u), ∀u, w ∈ V. Note that the distance
is not related to network link costs (e.g., latency), but
it is a purely abstract metric measuring the number
of hops.

Let σuw = σwu denote the number of shortest paths
from u ∈ V to w ∈ V (by definition, σuu = 0). Let
σuw(v) denote the number of shortest paths from u to
w that some vertex v ∈ V lies on. Then, we define the
node importance index NI(v) of a vertex v as:

Definition 2 The NI(v) of a vertex v is equal to:

NI(v) =
∑

u�=v �=w∈V

σuw(v)

σuw

. (1)

Large values for the NI index of a node v indicate
that this node v can reach others on relatively short
paths, or that the node v lies on considerable fractions
of shortest paths connecting others. Illustration of this
metric is presented in Fig. 1 (with well formed and
vague node clusters).

Apparently, when estimating the NI index for each
sensor node using the whole network topology we
obtain a very informative picture of which nodes re-
side in a large number of shortest paths between
other nodes. Though, it would not be practical to use
this global information in the desing of a coopera-
tive caching protocol, because it would require the

1

2

3

5

4
7

6

10

13

11

8

14

20

9

12 15

18

19

17

(68)

(0)

(0)

(0)
(0)

(0)
(0)

(0)

(0)

(0)

(0)

(0)

(0)

(1)

(156)
(233) 16(96)

(26)

(131)

(97)

X (0)
Y (0)

Z (0)

A (6.67)

B (13)

P (41)

Q (8)
R (9.33)

U (54)

W (3.33)

V (1.33)

T (1.33)

Figure 1 Calculation of NI for two sample graphs. The numbers
in parentheses denote the NI index of the respective node con-
sidering the whole WMSN topology

exchange of a huge number of messages between the
nodes to learn this information. Moreover, it would
require a lot of communication rounds; for the estab-
lishment of broadcast tree with a leader/root node,
for learning the neighborhoods for the estimation and
propagation of the NI indexes and so on. These rounds
would also increase the latency and compromise the
protocol’s robustness when changes in the topology
would take place. Therefore, if the idea of NI index
could be successfully applied in neighborhoods to iden-
tify nodes which reside in a large number of shortest
paths, then we could desing a localized algorithm based
on it. Indeed, using only the information contained in
the local network view of a node, we can still obtain this
information, quite accurately. For instance, computing
the NI indexes for all the nodes that are contained in
LN8, we obtain the information of Table 1.

We observe that although the absolute values of
the NI indexes are reduced as a consequence of the
smaller network size, the relative ranking of the 1-hop
neighbors of the node 8 w.r.t. their NI index is the

Table 1 NI index of the nodes belonging to LN8 (from the local
perspective of node 8)

n(ode) NI(n) n(ode) NI(n) n(ode) NI(n)

7 0 11 0 15 0
8 14 12 0 16 23
9 0 13 0 18 0
10 0 14 65

Mobile Netw Appl (2008) 13:337–356 343

same with that obtained when we considered the whole
network. Apparently, the larger the neighborhood we
consider the more accurate the picture of nodes’ im-
portance we get. Although, we can not come up with
a closed form that would describe when and at what
degree the relative rankings change when we consider
small neighborhoods, instead of the whole network,
because it depends on the graph characteristics, our
investigation showed that in more than 98% of the
cases, the relative rankings remain unchanged.

At a first glance, the computation of the NI seems
expensive, i.e., O(y ∗ x2) operations in total for a 2-hop
neighborhood, which consists of x nodes and y links.
For our undirected network, we can use breadth-first
traversal to count the number and find the length of
shortest paths from any particular node (source) to any
other node (target) in time linear w.r.t. the number of
edges, i.e.,O(x ∗ y). Repeating this procedure for any
possible source, we conclude that computing the length
and number of shortest paths between any possible
pair can be done in time O(y ∗ x2). Fortunately, we
can do better than this and exploit some redundancy
in the computations. This procedure gives an O(x ∗ y)

method for computing the NI indexes for the nodes.
For more information concerning the calculation and
the use of this metric in broadcasting protocols the
interested user can consult the work reported in [21].

3.2 Housekeeping information
in the NICoCa protocol

W.l.o.g. and adopting the model presented in [38], we
assume that the ultimate source of multimedia data is
a Data Center. This is not restrictive at all and simply
guarantees that every request, if it is not served by
other sensor nodes and if does not expire, will finally
be served by the Data Center.

Firstly, it is assumed that each node is aware of
its 2-hop neighborhood. This information is obtained
through periodic exchange of “beacon” messages. We
assume that we are able to determine an assignment of
time slots to the sensor nodes such that no interference
occurs, i.e., no two nodes transmit in the same time slot.
With this assignment, the nodes can transmit beacon
messages to discover their neighbors and also to acquire
the channel for transmitting their data requests. This
assignment is determined using the D2-coloring algo-
rithm [13]. Although more traditional methods can be
used for channel arbitration, this approach contributes
in reducing the latency by avoidind interference. Then,
every node calculates the NI index of its 1-hop
neighbors. The node uses this information in order to
characterize some of its neighbors as mediator nodes;

the minimum set of neighbors with the larger NI which
“cover” its 2-hop neighborhood are the mediator nodes
for that node; The node is responsible for notifying
its neighbors about which of them are its mediators.
Thus, a node can be either a mediator or an ordinary
node. Notice here that there is no need for the node to
know the “importance” of its neighbors w.r.t. the whole
network; instead the node needs to know their impor-
tance in its neighborhood. Of course, if the notion of
neighborhood is extended to cover the whole network
(i.e., each node is aware of its k-neighborhood, where k
equals the network diameter), then it is obvious that
the node would have perfect knowledge of the exact NI
indexes of all network’s nodes.

The sending of requests for data is carried out by
an ordinary sensor (or ad hoc) routing protocol, e.g.,
ad-hoc on-demand distance vector (AODV) [27]. A
node always caches a datum which has requested for.
A node is aware of its remaining energy and of the free
space in its cache. Each sensor node stores the following
metadata related to a cached multimedia item:

• the dataID, and the actual multimedia data item,
• the data size (si),
• a Time-To-Live (TTL) interval,
• for each cached item, the timestamps of the K most

recent accesses to that item. Usually, K = 2 or 3.
• each cached item is characterized either as O (i.e.,

own) or H (i.e., hosted). If an H-item is requested
by the caching node, then its state switches to O.

When a node acquires the multimedia datum he has
requested for, then it caches it and broadcasts a small
index packet containing the dataID and the associated
TTL, its remaining energy and its free cache space. The
mediator nodes which are also 1-hop neighbors of this
node store this broadcasted information. Notice here
that this set of mediator nodes includes the mediators
that the broadcasting node has selected, and also any
other mediators which have been selected by nearby
nodes. In summary, every mediator node stores the
remaining energy and the free cache space for each one
of its 1-hop neighbors, and for each dataID that has
heard through the broadcasting operation, the TTL of
this datum and the nodes that have cached this datum.

3.3 The cache discovery component protocol

When a sensor node issues a request for a multimedia
item, it searches its local cache. If the item is found
there (a local cache hit) then the K most recent ac-
cess timestamps are updated. Otherwise (a local cache
miss), the request is broadcasted and received by the

344 Mobile Netw Appl (2008) 13:337–356

mediators. If none of them responds (a “proximity”
cache miss), then the request is directed to the Data
Center.

When a non one-hop mediator node receives a re-
quest, it searches its local cache. If it deduces that
the request can be satisfied by a neighboring node (a
remote cache hit), then stops the request’s route toward
the Data Center, and forwards the request to this neigh-
boring node. If more than one nodes can satisfy the
request, then the node with the largest residual energy
is selected. If the request can not be satisfied by this
mediator node, then it does not forward it recursively
to its own mediators. This is due to the fact that these
mediators will most probably be selected by the routing
protocol as well (AODV) and thus a great deal of
savings in messages is achieved. Therefore, during the
procedure of forwarding a request toward the Data
Center, no searching to other nodes is performed apart
from the nodes which reside on the path toward the
Data Center.

For example, suppose that sensor node SNi in Fig. 2
issues a request for the data item x that is placed
in data center DC1 and which has been cached by
sensor nodes SNg and SNh. The black shaded nodes
are the mediators nodes of the sensor network. Based
on the information presented in Fig. 1, we can easily
understand that node SNi has selected as its mediators
the nodes SNa and SNb . With their turn, these sensors
would select as their mediators the nodes SNc and SNd

(for node SNa) and SNd (for node SNb).
In the beginning sensor node SNi searches its own

cache. If it deduces that data item is not available
in local cache, it sends a proximity search request in
neighboring mediator nodes SNa and SNb . Upon re-
ceiving the search request, each mediator searches in
the proximity cache table. If data item found, each
mediator replies with an index packet that contains the
dataID and the remaining energy of the sensor node
that has the uppermost battery power and has cached
the data item. SNi, upon the receipt of index packets,

selects the sensor node that has the smallest energy con-
sumption and sends the request packet. Caching node
responds with a reply packet containing the requested
data item.

If no neighboring sensor node is caching the data
item, SNi sends a request packet to the data center
DC1, as shown in Fig. 2. When SNx (x ∈ {d, e}) receives
a request packet, it searches in local cache and in prox-
imity cache table. If the data item is not found, SNx for-
wards the request through the path to the DC1. When
sensor node SNe found that the requested data item
has been cached by some neighboring nodes, it chooses
the node that has the smallest energy dissipation and
redirects the request packet to the caching node. The
caching node sends a reply packet containing the data
item x along the routing path until it reaches the orig-
inal requester. Once the requester node receives the
data item, it notifies its one-hop mediators about the
new caching item by sending an index packet containing
item’s dataID. In case of not enough cache capacity, it
triggers the cache replacement protocol to determine
the data items that should be evicted from the cache.

For every issued request one of the following four
cases may take place:

1) Local hit: the requested datum is cached by the
node which issued the request. If this datum is valid
(the TTL has not expired) then the NICoCa is not
executed.

2) “Proximity” hit: the requested datum is cached by a
node in the 2-hop neighborhood of the node which
issued the request. In this case, the mediator(s)
return to the requesting node the “location” of the
node which stores the datum.

3) Remote hit: the requested datum is cached by a
node and this node has at least one mediator re-
siding along the path from the requesting node to
the Data Center.

4) Global hit: the requested datum is acquired from
the Data Center.

Figure 2 A request packet
from sensor node SNi is
forwarded to the caching
node SNg

b

SNc

SNd

SNe

SNg

SNh

SNj

SNa

DC 1
DC 2

proximity searchSN

request

i
SN

Mobile Netw Appl (2008) 13:337–356 345

Table 2 Simulation parameters

Parameter Default value Range

items (N) 1000
Smin (KB) 1
Smax (KB) 10
Smin (MB) 1
Smax (MB) 5
Zipfian θ 0.8
nodes (n) 500 100–1000
Bandwidth (Mbps) 2
Waiting interval (tw) 10 s for items with KB size

100 s for items with KB size
Client cache size (KB) 800 200 to 1200
Client cache size (MB) 125 25 to 250
Zipfian skewness (θ) 0.8 0.0 to 1.0

3.4 The cache replacement component protocol

Even though the cache capacity of individual sensors
may be in the order of gigabytes (e.g., NAND flash)
the development of an effective and intelligent replace-
ment policy is mandatory to cope with the overwhelm-
ing size of multimedia data generated in WMSNs.
The NICoCa protocol employs the following four-step
policy:

STEP 1. In case of necessity, before purging from
cache any other data, each sensor node first
purges the data that it has cached on behalf
of some other node. Each cached item is
characterized either as O (i.e., own) or H
(i.e., hosted). In case of a local hit, then its
state switches to O. If the available cache
space is still smaller than the required, exe-
cute Step 2.

STEP 2. Calculate the following function for each
cached datum i: cost(i)= si

TT Li
∗ now−tK−th access

K .
The candidate cache victim is the item which
incurs the largest cost.

STEP 3. Inform the mediators about the candidate
victim. If it is cached by some mediator, then
this information returns back to the node
and purges the datum. If the datum is not
cached by some mediator(s), then it is for-
warded to the node with the largest residual
energy and the datum is purged from the
cache of the original node. In any case, the
mediators update their cached metadata
about the new state.

STEP 4. The node which caches this purged datum,
informs the mediators with the usual broad-
casting procedure.

The pseudocode for the complete algorithm NICoCa
is presented in the Appendix.

4 Performance evaluation

We evaluated the performance of the NICoCa proto-
col through simulation experiments. We conducted a
large number of experiments with various parameters,
and compared the performance of NICoCa to a state-
of-the-art cooperative caching policy for MANETs,
namely HybridCache [38].

4.1 Simulation model

We have developed a simulation model based on the
J-Sim simulator [34]. In our simulations, the AODV
[27] routing protocol is deployed to route the data

0

2000

4000

6000

8000

10000

12000

14000

16000

50 100 150 200 250

C
ac

he
 H

its

Cache Size (MB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

0

2000

4000

6000

8000

10000

12000

14000

50 100 150 200 250

C
ac

he
 H

its

Cache Size (MB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

Figure 3 Impact of sensor cache size on hits (MB-sized files, θ = 0.0 and θ = 0.8) in a sparse WMSN (d = 7) with 100 sensors

346 Mobile Netw Appl (2008) 13:337–356

0

2000

4000

6000

8000

10000

12000

14000

16000

50 100 150 200 250

C
ac

he
 H

its

Cache Size (MB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

0

2000

4000

6000

8000

10000

12000

14000

50 100 150 200 250

C
ac

he
 H

its

Cache Size (MB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

Figure 4 Impact of sensor cache size on hits (MB-sized files, θ = 0.0 and θ = 0.8) in a dense WMSN (d = 10) with 100 sensors

traffic in the WSN. We use IEEE 802.11 as the MAC
protocol and the free space model as the radio propa-
gation model. The wireless bandwidth is 2 Mbps.

We tested the protocols for a variety of sensor
network topologies, to simulate sensor networks with
varying levels of node degree, from 4 to 10. We also
conducted experiments by choosing the number of
nodes between 100 and 1000. In addition, in our exper-
iments we evaluate the protocol efficiency under two
different set of data item sizes. Each data item has size
that is uniformly distributed from 1KB to 10KB for the
first set, and from 1MB to 5MB for the second.

The network topology consists of many square grid
units where one or more nodes are placed. The number
of square grid units depends on the number of nodes
and the node degree. The topologies are generated as
follows: the location of each of the n sensor nodes is
uniformly distributed between the point (x = 0, y = 0)

and the point (x = 500, y = 500). The average degree d
is computed by sorting all n ∗ (n − 1)/2 edges in the
network by their length, in increasing order. The grid
unit size corresponding to the value of d is equal to

√
2

times the length of the edge at position n ∗ d/2 in the
sorted sequence. Two sensor nodes are neighbors if
they placed in the same grid or in adjacent grids. The
simulation area is assumed of size 500 m × 500 m and
is divided into equal sized square grid units. Beginning
with the lower grid unit, the units are named as 1, 2, . . . ,
in a column-wise fashion.

The client query model is similar to what have been
used in previous studies [38]. Each sensor node gener-
ates read-only queries. After a query is sent out, if the
sensor node does not receive the data item, it waits for
an interval (tw) before sending a new query. The access
pattern of sensor nodes is: a) location independent,
that is, sensor nodes decide independently the data of

25

30

35

40

50 100 150 200 250

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (MB)

NICoCa
Hybrid

20

25

30

35

40

45

50 100 150 200 250

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (MB)

NICoCa
Hybrid

Figure 5 Impact of sensor cache size on latency (MB-sized files, θ = 0.0 and θ = 0.8) in a sparse WMSN (d = 7) with 100 sensors

Mobile Netw Appl (2008) 13:337–356 347

20

25

30

35

40

50 100 150 200 250

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (MB)

NICoCa
Hybrid

20

25

30

35

40

50 100 150 200 250

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (MB)

NICoCa
Hybrid

Figure 6 Impact of sensor cache size on latency (MB-sized files, θ = 0.0 and θ = 0.8) in a dense WMSN (d = 10) with 100 sensors

interest; each sensor node generates accesses to the
data following the uniform distribution, and b) Zipfian
with θ = 0.8, where groups of nodes residing in neigh-
boring grids (25 grids with size 100 m × 100 m) have the
same access pattern. We tested the protocols both for
zipfian access pattern and for uniform access pattern.
In case of zipfian access pattern we conducted experi-
ments with varying θ values between 0.0 and 1.0.

Similar to [38], two data centers are placed at op-
posite corners of the simulation area. Data Center 1
is placed at point (x = 0, y = 0) and Data Center 2 is
place at point (x = 500, y = 500). There are N/2 data
items in each data center. Data items with even ids
are stored at Data Center 1 and data items with odd
ids are stored at Data Center 2. The size of each data
item is uniformly distributed between smin and smax.
We assumed that data items are not updated. The data
centers serve the queries on a first-come-first-served
basis. The system parameters are listed in Table 2.

4.2 Performance metrics

The measured quantities include the number of hits
(local, remote and global), the average latency for get-
ting the requested data and the message overhead. It
is evident that a small number of global hits implies
less network congestion, and thus fewer collisions and
packet drops. Moreover, large number of remote hits
proves the effectiveness of cooperation in reducing the
number of global hits. A large number of local hits
does not imply an effective cooperative caching policy,
unless it is accompanied by small number of global hits,
since the cost of global hits vanishes the benefits of
local hits.

4.3 Evaluation

We performed a large number of experiments varying
the size of the sensornet (in terms of the number of its
sensor nodes), varying the access profile of the sensor
nodes, and the cache size relative to the aggregate size
of all data items. In particular, we performed exper-
iments for 100, 500, and 1000 sensors, for cache size
equal to 1%, to 5% to 10% of the aggregated size
of all distinct multimedia data, for access pattern with
θ equal to 0.0 (uniform access pattern) to 1.0 (highly
skewed access pattern), for average sensor node degree
equal to 4, 7 (very sparse and spare sensornet) and 10
(dense sensornet), and for data item size equal to a
few kilobytes (KB) and also equal to a few megabytes
(MB). For each different setting we measured the
number of hits (local, remote, global), the latency2 and
the message overhead. In the sequel of the article we
will present only a representative set of the results,
since there are many of independent parameters and
three dependent performance metrics. We partition the
graphs in two large groups w.r.t. whether they deal with
small KB-sized files or large MB-sized multimedia files.

4.3.1 Experiments with MB-sized data items

The purpose of this set of experiments is to examine
the performance of the caching algorithms when they
have to deal with large multimedia files, e.g., video files,
queried by the sensornet.

2The latency is measured in seconds, which does not corresponds
to the usual time metric, but to internal simulator clock.

348 Mobile Netw Appl (2008) 13:337–356

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

50 100 150 200 250

C
ac

he
 H

its

Cache Size (MB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

0

10000

20000

30000

40000

50000

60000

70000

80000

50 100 150 200 250

C
ac

he
 H

its

Cache Size (MB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

Figure 7 Impact of sensor cache size on hits (MB-sized files, θ = 0.0 and θ = 0.8) in a sparse WMSN (d = 7) with 500 sensors

Figures 3 and 4 show the number of hits achieved
by the two protocols for a small (sparse and dense,
respectively) sensornet for both uniform and skewed
access pattern. The first observation is that, as expected,
the number of local hits increases for both protocols as
the access pattern becomes more skewed. The interest-
ing point is that, although for uniform access patterns
HyrbidCache is slightly better than NICoCa w.r.t. the
local hits, the situation is reversed when the requests
are concentrated to a smaller number of files, which
can be attributed to the more efficient replacement
and admission policy of the NICoCa. With respect
to the number of global hits, NICoCa achieves half
that of hybrid and the performance gap widens as we
move to dense sensor deployments; actually NICoCa
maintains almost constant the number of global hits.
The reason behind this is the relative performance

of the algorithms w.r.t. the remote cache hits. For
sparser deployments NICoCa is two times better than
HyrbidCache, and this difference becomes more ev-
ident for denser networks. Thus, it proves to be a
more effective cooperation scheme, due to the fact
that it strives to exploit the network topology. These
relative performance results are straightforwardly re-
flected to the access latency incurred by the algorithms
(Figs. 5 and 6).

When we move to larger sensornets with 500 (Fig. 7–
8) and with 1000 nodes (Fig. 12), the superiority of
the NICoCa caching algorithm in terms of hits is still
evident, but the results are not so impressive, because
we constrain more sensor nodes to be dispersed in the
same geographical region, thus creating replicas of the
same data. This superiority is reflected to the access
latency as well (Figs. 9 and 10). We observe that as

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

50 100 150 200 250

C
ac

he
 H

its

Cache Size (MB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

0

10000

20000

30000

40000

50000

60000

70000

80000

50 100 150 200 250

C
ac

he
 H

its

Cache Size (MB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

Figure 8 Impact of sensor cache size on hits (MB-sized files, θ = 0.0 and θ = 0.8) in a dense WMSN (d = 10) with 500 sensors

Mobile Netw Appl (2008) 13:337–356 349

50

55

60

65

70

75

80

85

90

50 100 150 200 250

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (MB)

NICoCa
Hybrid

50

55

60

65

70

75

80

85

90

95

100

50 100 150 200 250

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (MB)

NICoCa
Hybrid

Figure 9 Impact of sensor cache size on latency (MB-sized files, θ = 0.0 and θ = 0.8) in a sparse WMSN (d = 7) with 500 sensors

we move to larger sensornets, the latence gradually
increases, because the denser deployment (more nodes
in the same region) has a negative effect on the effi-
ciency of communication, aggravating the collisions and
packet drops.

At this point it is interesting to note the total number
of messages that are communicated between the sensor
nodes, which is also the metric that models the total net-
work energy dissipated (Figs. 11). For a dense sensornet
with uniform and skewed access pattern, NICoCa sends
at most half of the messages sent out by HyrbidCache
and the situation becomes more favorable for NICoCa
as the access pattern becomes more skewed, which is
expected. These results are confirmed for larger sensor-
nets with 1000 nodes (Figs. 12, 13, and 14).

In summary, for all network topologies NICoCa
achieves more remote hits and less global hits than
HyrbidCache. This performance gap widens in favor

of NICoCa as we move from sparse to denser WMSN.
It is striking that for very dense sensor deployments,
NICoCa achieves double the remote hits of Hyrbid
Cache and only half of its global hits. Examining the
local hits, we observe that for sparse sensor networks
HyrbidCache achieves slightly more local hits than
NICoCa, but this gap vanishes completely when moving
to denser network topologies. Besides, this small gain of
HyrbidCache for sparse topologies is not advantageous
at all, since it incurs global hits as many as twice the
number of its local hits.

4.3.2 Experiments with KB-sized data items

A significant question arises whether these relative
results still hold when the sensornet has to deal with
smaller multimedia files, with size equal to a few kilo-
bytes. Although we expect that WMSNs will deal with

40

45

50

55

60

65

70

75

80

50 100 150 200 250

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (MB)

NICoCa
Hybrid

40

45

50

55

60

65

70

75

80

85

50 100 150 200 250

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (MB)

NICoCa
Hybrid

Figure 10 Impact of sensor cache size on latency (MB-sized files, θ = 0.0 and θ = 0.8) in a dense WMSN (d = 10) with 500 sensors

350 Mobile Netw Appl (2008) 13:337–356

400000

600000

800000

1e+006

1.2e+006

50 100 150 200 250

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Cache Size (MB)

NICoCa
Hybrid

300000

400000

500000

600000

700000

800000

900000

1e+006

1.1e+006

50 100 150 200 250

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Cache Size (MB)

NICoCa
Hybrid

Figure 11 Impact of sensor cache size on number of messages (MB-sized files, θ = 0.0 and θ = 0.8) in a dense WMSN (d = 10) with
500 sensors

0

20000

40000

60000

80000

100000

120000

140000

160000

50 100 150 200 250

C
ac

he
 H

its

Cache Size (MB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

0

20000

40000

60000

80000

100000

120000

140000

160000

50 100 150 200 250

C
ac

he
 H

its

Cache Size (MB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

Figure 12 Impact of sensor cache size on hits (MB-sized files, θ = 0.8) in a dense WMSN (d = 10) with 1000 sensors

80

100

120

140

160

180

200

220

50 100 150 200 250

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (MB)

NICoCa
Hybrid

80

100

120

140

160

180

50 100 150 200 250

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (MB)

NICoCa
Hybrid

Figure 13 Impact of sensor cache size on latency (MB-sized files, θ = 0.8) in a dense WMSN (d = 10) with 1000 sensors

Mobile Netw Appl (2008) 13:337–356 351

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

2e+006

50 100 150 200 250

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Cache Size (MB)

NICoCa
Hybrid

800000

1e+006

1.2e+006

1.4e+006

1.6e+006

1.8e+006

50 100 150 200 250

T
ot

al
 n

um
be

r
of

 m
es

sa
ge

s

Cache Size (MB)

NICoCa
Hybrid

Figure 14 Impact of sensor cache size on the number of messages (MB-sized files, θ = 0.8) in a dense WMSN (d = 10) with 1000
sensors

2000

4000

6000

8000

10000

12000

14000

16000

18000

200 400 600 800 1000 1200

C
ac

he
 H

its

Cache Size (KB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

2000

4000

6000

8000

10000

12000

14000

16000

18000

200 400 600 800 1000 1200

C
ac

he
 H

its

Cache Size (KB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

Figure 15 Impact of sensor cache size on hits (KB-sized files, θ = 0.8) in a sparse and dense WMSN (d = 7 and d = 10) with 100 sensors

0.05

0.1

0.15

0.2

0.25

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
Hybrid

0

0.05

0.1

0.15

0.2

0.25

0.3

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
Hybrid

Figure 16 Impact of sensor cache size on latency (KB-sized files, θ = 0.8) in a sparse and dense WMSN (d = 7 and d = 10) with 100
sensors

352 Mobile Netw Appl (2008) 13:337–356

0

10000

20000

30000

40000

50000

60000

70000

80000

200 400 600 800 1000 1200

C
ac

he
 H

its

Cache Size (KB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

0

10000

20000

30000

40000

50000

60000

70000

80000

200 400 600 800 1000 1200

C
ac

he
 H

its

Cache Size (KB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

Figure 17 Impact of sensor cache size on hits (KB-sized files, θ = 0.8) in a sparse and dense WMSN (d = 7 and d = 10) with 500 sensors

0.2

0.4

0.6

0.8

1

1.2

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
Hybrid

0.2

0.4

0.6

0.8

1

1.2

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
Hybrid

Figure 18 Impact of sensor cache size on latency (KB-sized files, θ = 0.8) in a sparse and dense WMSN (d = 7 and d = 10) with 500
sensors

0

20000

40000

60000

80000

100000

120000

140000

200 400 600 800 1000 1200

C
ac

he
 H

its

Cache Size (KB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

0

20000

40000

60000

80000

100000

120000

140000

200 400 600 800 1000 1200

C
ac

he
 H

its

Cache Size (KB)

NICoCa - LH
Hybrid - LH

NICoCa - RH
Hybrid - RH

NICoCa - GH
Hybrid - GH

Figure 19 Impact of sensor cache size on hits (KB-sized files, θ = 0.8) in a sparse and dense WMSN (d = 7 and d = 10) with 1000
sensors

Mobile Netw Appl (2008) 13:337–356 353

1

1.5

2

2.5

3

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
Hybrid

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

200 400 600 800 1000 1200

A
vg

 L
at

en
cy

 (
se

c)

Cache Size (KB)

NICoCa
Hybrid

Figure 20 Impact of sensor cache size on latency (KB-sized files, θ = 0.8) in a sparse and dense WMSN (d = 7 and d = 10) with 1000
sensors

MB-sized images of video files, it might be the case
that the sensor nodes will exchange smaller images as
well. To investigate the performance of the cooperative
caching protocols for this case, we performed the same
set of experiments but for KB-sized files and here we
demonstrate a subset of the results obtained.

The general observations that we recorded for the
case of large MB-size files, still hold for this case;
NICoCa achieves significantly smaller number of global
hits and larger number of remote hits than Hyrbid
Cache does. It is not worthy to comment on each
individual performance graph (Fig. 15, 16, 17, 18, 19,
and 20), since in all cases NICoCa is the clear winner;
it achieves again 25% more remote hits and 50% less
global hits than HyrbidCache, which is only marginally
better than NICoCa in terms of local hits.

5 Summary and conclusions

The recent advances in miniaturization, the creation
of low-power circuits, and the development of cheap
CMOS cameras and microphones, which are able to
capture rich multimedia content, gave birth to what is
called WMSNs. WMSNs are expected to fuel many new
applications and boost the already existing. The unique
features of WMSNs call for protocol designs that will
provide application-level QoS, an issue that has largely
been ignored in traditional WSNs. Taking a first step
toward this goal, this article develops a cooperative
caching protocols, the NICoCa protocol, suitable for
deployment in WMSNs. The protocol “detects” which
sensor nodes are most “central” in the network neigh-
borhoods and gives to them the role of mediator in or-

der to coordinate the caching decisions. The proposed
protocol is evaluated with J-Sim and its performance
is compared to that of a state-of-the-art cooperative
caching protocol for MANETs. The obtained results
attest the superiority of the proposed protocol which is
able to reduce the global hits at an average percentage
of 50% and increase the remote hits due to the effective
sensor cooperation at an average percentage of 40%.
The performance of the protocol is particularly high for
the delivery of large multimedia data.

Appendix

The NICoCa cooperative caching protocol

// di: data item i, i ∈ [1 . . . 1000]
// request(di): Request for data item i
// Ni: Node i
// FS: Free cache space
// RE: Remaining energy
// PCT: Proximity Cache Table
// ipacket: An index packet that contains di’s id, FS and RE

(A) Cache Discovery Algorithm
if(di is in local cache of requester node) then

send ipacket to CHs;
return;

if(requester node is CH and di’s id in PCT) then
select caching node with largest RE;
send request(di) to caching node;

else
requester node sends request(di) to CHs;

when CHs answers or time elapsed
if(caching nodes found) then

select caching node with largest RE;
send request(di) to caching node;

354 Mobile Netw Appl (2008) 13:337–356

else
send request(di) to data center;

when Ni receives request(di)
if(Ni has a valid copy) then

send di to requester node;
else if(Ni is CH and di’s id in PCT) then

select caching node with largest RE;
redirect request(di) to caching node;

else
forward request(di) to caching node;

(B) Replacement Policy
while(current node has not enough FS)

Select a valid di with largest value and store it temporary;
Send to CHs di’s id;
Remove the valid di;

when a CH gets di’s id
if(CH gets di’s id and di’s id not in PCT) then

select caching node with largest RE and FS;
send answer to requester node;
when current node get answers from CHs
foreach(temporary stored di)

if(there is no other caching node) then
Select caching node with least RE and largest FS;
Send di to new caching node;

Remove temporary stored di;

(C) Cache Admission Policy
when the packet with di obtained from current node
if(current node is packet’s destination) then

if(there is enough FS) then
cache di;
send ipacket to CHs;

else
call Replacement Policy ;

when CH gets an ipacket
if(CH get ipacket) then

store di’s id, RE and FS in PCT;

References

1. Akyildiz I, Melodia T, Chowdhury KR (2007) A survey of
wireless multimedia sensor networks. Comput Netw 51(4):
921–960

2. Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E (2002)
A survey of wireless sensor networks. IEEE Commun Mag
40(8):102–116

3. Basagni S, Mastrogiovanni M, Panconesi A, Petrioli C (2006)
Localized protocols for ad hoc clustering and backbone for-
mation: a performance comparison. IEEE Trans Parallel
Distrib Syst 17(4):292–306

4. Chand N, Joshi RCRC, Misra M (2006) A zone co-operation
approach for efficient caching in mobile ad hoc networks. Int
J Commun Syst 19:1009–1028

5. Chand N, Joshi RCRC, Misra M (2007) Cooperative caching
strategy in mobile ad hoc networks based on clusters. Wirel
Pers Commun 43(1):41–63

6. Che H, Tung Y, Wang Z (2002) Hierarchical web caching
systems: modeling, desing and experimental results. IEEE J
Sel Areas Commun 20(7):1305–1314

7. Chow C-Y, Leong HV, Chan ATS (2004) Cache signatures
for peer-to-peer cooperative caching in mobile environments.
In: Proceedings of the IEEE international conference on
advanced information networking and applications (AINA),
vol 1. IEEE, Piscataway, pp 96–101

8. Chow C-Y, Leong HV, Chan ATS (2004) Peer-to-peer co-
operative caching in mobile environments. In: Proceedings
of the IEEE international conference on distributed com-
puting systems workshops (ICDCSW). IEEE, Piscataway,
pp 528–533

9. Chow C-Y, Leong HV, Chan ATS (2007) GroCoca: group-
based peer-to-peer cooperative caching in mobile environ-
ment. IEEE J Sel Areas Commun 25(1):179–191

10. Diao Y, Ganesan D, Mathur G, Shenoy P (2007) Rethinking
data management for storage-centric sensor networks. In:
Proceedings of the conference on innovative data systems
research (CIDR). Asilomar, 7–10 January 2007, pp 22–31

11. Eisenberg Y, Luna CE, Pappas TN, Berry R, Katsaggelos
AK (2002) Joint source coding and transmission power man-
agement for energy efficient wireless video communications.
IEEE Trans Circuits Syst Video Technol 12(6):411–424

12. Fan L, Cao P, Almeida AZ, Broder JM (2000) Summary
cache: a scalable wide-area web cache sharing protocol.
IEEE/ACM Trans Netw 8(3):281–293

13. Gandhi R, Parthasarathy S (2004) Fast distributed well
connected dominating sets for ad hoc networks. Computer
Science Department, University of Maryland at College Park,
Tech. Rep. CS-TR-4559

14. Girod B, Kalman M, Liang YJ, Zhang R (2002) Advances
in channel-adaptive video streaming. Wirel Commun Mob
Comput 2(6):573–584

15. Hara T (2003) Replica allocation methods in ad hoc net-
works with data update. ACM/Kluwer Mob Netw Appl 8(4):
343–354

16. Hara T, Madria SK (2006) Data replication for improv-
ing data accessibility in ad hoc networks. IEEE Trans Mob
Comput 5(11):1515–1532

17. Huang GT (2003) Casting the wireless sensor net. Technol
Rev 106:51–56

18. Karl H, Willig A (2006) Protocols and architectures for wire-
less sensor networks. Wiley, New York

19. Katsaros D, Manolopoulos Y (2004) Caching in web
memory hierarchies. In: Proceedings of the ACM sympo-
sium on applied computing. Cyprus, 14–17 March 2004,
pp 1109–1113

20. Katsaros D, Manolopoulos Y (2004) Web caching in broad-
cast mobile wireless environments. IEEE Internet Comput
8(3):37–45

21. Katsaros D, Manolopoulos Y (2006) The geodesic broadcast
scheme for wireless ad hoc networks. In: Proceedings of the
IEEE international symposium on world of wireless, mobile
multimedia (WoWMoM). IEEE, Piscataway, pp 571–575

22. Kulkarni P, Ganesan D, Shenoy P, Lu Q (2005) Sens
Eye: a multi-tier camera sensor network. In: Proceedings
of the ACM international conference on multimedia (MM).
Singapore, 6–11 November 2005, pp 229–238

Mobile Netw Appl (2008) 13:337–356 355

23. Mathur G, Desnoyers P, Ganesan D, Shenoy P (2006) Ultra-
low power data storage for sensor networks. In: Proceedings
of the ACM international conference on information process-
ing in sensor networks (IPSN). Nashville, 19–21 April 2006,
pp 374–381

24. Megiddo N, Modha DS (2003) ARC: a self-tuning, low over-
head replacement cache. In: Proceedings of the USENIX
conference on file and storage technologies (FAST). San
Francisco, 31 March–2 April 2003, pp 115–130

25. Nath S, Kansal A (2007) FlashDB: dynamic self-tuning
database for NAND flash. In: Proceedings of the ACM
international conference on information processing in sensor
networks (IPSN). Cambridge, 25–27 April 2007, pp 410–419

26. Papadopouli M, Schulzrinne H (2001) Effects of power con-
servation, wireless coverage and cooperation on data envi-
ronments. In: Proceedings of ACM symposium on mobile ad
hoc networking and computing (MOBIHOC). Long Beach,
4–5 October 2001, pp 117–127

27. Perkins CE, Royer E (1999) Ad hoc on-demand dis-
tance vector routing. In: Proceedings of the IEEE work-
shop on mobile computing systems and applications. IEEE,
Piscataway, pp 90–100

28. Prabh KS, Abdelzaher TF (2005) Energy-conserving data
cache placement in sensor networks. ACM Trans Sensor
Netw 1(2):178–203

29. Rahimi M, Baer R, Iroezi OI, Garcia JC, Warrior J,
Estrin D, Srivastava M (2005) Cyclops: in situ image sensing
and interpretation in wireless sensor networks. In: Proceed-
ings of the ACM international conference on embedded net-
worked sensor systems (SenSys). San Diego, 2–4 November
2005, pp 192–204

30. Rousskov A, Wessels D (1998) Cache digests. Comput Netw
ISDN Syst 30(22–23):2155–2168

31. Sailhan F, Issarny V (2002) Energy-aware web caching for
mobile terminals. In: Proceedings of the IEEE interna-
tional conference on distributed computing systems work-
shops (ICDCSW). IEEE, Piscataway, pp 820–825

32. Sailhan F, Issarny V (2003) Cooperative caching in ad
hoc networks. In: Proceedings of the IEEE international
conference on mobile data management (MDM). IEEE,
Piscataway, pp 13–28

33. Shen H, Das SK, Kumar M, Wang Z (2004) Cooperative
caching with optimal radius in hybrid wireless networks. In:
Proceedings of the international IFIP-TC6 networking con-
ference (NETWORKING), ser. Lecture Notes on Computer
Science, vol 3042. Athens, 9–14 May 2004, pp 841–853

34. Sobeih A, Hou JC, Kung L-C, Li N, Zhang H, Chen W-P,
Tyan H-Y, Lim H (2006) J-Sim: a simulation and emulation
environment for wireless sensor networks. IEEE Wireless
Commun Mag 13(4):104–119

35. Takaaki M, Aida H (2003) Cache data access system in ad hoc
networks. In: Proceedings of the IEEE spring semiannual
vehicular technology conference (VTC), vol 2. IEEE,
Piscataway, pp 1228–1232

36. Tang B, Das S, Gupta H (2005) Cache placement in sensor
networks under update cost constraint. In: Proceedings of the
(ADHOC-NOW), ser. Lecture Notes on Computer Science,
vol 3738. Springer, Heidelberg, pp 334–348

37. Wessels D, Claffy K (1998) ICP and the Squid Web cache.
IEEE J Sel Areas Commun 16(3):345–357

38. Yin L, Cao G (2006) Supporting cooperative caching in ad
hoc networks. IEEE Trans Mob Comput 5(1):77–89

Nikos Dimokas was born in Giannitsa, Greece in 1978. He re-
ceived B.Sc. and M.Sc. in Computer Science from University of
Crete, Greece, in 2001 and 2004, respectively. Between May 2004
and December 2005 he worked as a research and development
engineer in the Institute of Computer Science at Foundation of
Research and Technology Hellas (FORTH). Currently, he is a
Ph.D. candidate at the Department of Informatics of Aristotle
University of Thessaloniki, Greece. His research interests include
wireless sensor networks and vehicular ad hoc networks.

Dimitrios Katsaros was born in Thetidio (Farsala), Greece
in 1974. He received a BSc in Computer Science from
Aristotle University of Thessaloniki, Greece (1997) and a Ph.D.
from the same department on May 2004. He spent a year (July
1997–June 1998) as a visiting researcher at the Department of
Pure and Applied Mathematics at the University of L’Aquila,
Italy. Currently, he is a lecturer at the Department of Computer
and Communication Engineering of University of Thessaly
(Volos, Greece). He is editor of the book “Wireless Information
Highways” (2005), co-guest editor of a special issue of IEEE
Internet Computing on “Cloud Computing” (2009–2010), and
translator for the greek language of the book “Google’s
PageRank and Beyond: The Science of Search Engine Rank-
ings”. His research interests are in the area of distributed systems,
including the Web and Internet, social networks analysis, mobile
and pervasive computing, flash storage devices, mobile/vehicular
ad hoc networks, wireless sensor networks, and delay/disruption
tolerant networks.

356 Mobile Netw Appl (2008) 13:337–356

Yannis Manolopoulos was born in Thessaloniki, Greece in 1957.
He received a B.Eng. (1981) in Electrical Eng. and a Ph.D.
degree (1986) in Computer Eng., both from the Aristotle Univ.
of Thessaloniki. Currently, he is Professor at the Department
of Informatics of the same university. He has been with the
Department of Computer Science of the Univ. of Toronto, the
Department of Computer Science of the Univ. of Maryland at
College Park and the Univ. of Cyprus. He has published over 200
papers in journals and conference proceedings. He is co-author of
the books “Advanced Database Indexing”, “Advanced Signature
Indexing for Multimedia and Web Applications” by Kluwer and
of the books “R-Trees: Theory and Applications”, “Nearest
Neighbor Search: a Database Perspective” by Springer. He has
co-organized several conferences (among others ADBIS2002,
SSTD2003, SSDBM2004, ICEIS2006, ADBIS2006, EANN2007).
His research interests include Databases, Data mining, Web
Information Systems, Sensor Networks and Informetrics.

	Cooperative Caching in Wireless Multimedia Sensor Networks
	Abstract
	Introduction
	Relevant work
	Motivation and contributions

	The NICoCa�oofaaletfoofaatoken cooperative caching protocol for WMSNs
	Measuring sensor node importance
	Housekeeping information in the NICoCa�oofaaletfoofaatoken protocol
	The cache discovery component protocol
	The cache replacement component protocol

	Performance evaluation
	Simulation model
	Performance metrics
	Evaluation
	Experiments with MB-sized data items
	Experiments with KB-sized data items

	Summary and conclusions
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

