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ABSTRACT
A recent hot research topic in deep learning concerns the reduc-
tion of the model size of a neural network by pruning, in order to
minimize its training and inference cost and thus, being capable
of running on devices with memory constraints. In this paper, we
employ a pruning technique to sparsify a Multi-Layer Perceptron
(MLP) during training, in which the number of topology connec-
tions, being pruned and restored, is not stable, but it adopts either
one of the following rules: Linear Decreasing Variation (LDV) rule
or Oscillating Variation (OSV) rule or Exponential Decay (EXD)
rule. We conducted experiments on three MLP Network topologies,
implemented with Keras, using the Fashion-MNIST dataset and
results showed that the EXD method is a clear winner since, in that
case our proposed sparse network has a faster convergence than
the dense version of the same one, while it achieves approximately
the same high accuracy (around 90%). Furthermore, it is shown that
the memory footprint of the aforementioned sparse techniques is
at least 95% less instead of the dense version of the network, due to
the weights removed. Finally, we present an improved version of
the SET implementation in Keras, using Callbacks API, making the
SET implementation more efficient.
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1 INTRODUCTION
The unprecedented success of Deep Learning has made Neural
Networks (NN) a very useful tool in research and development.
However, the workload in order for a NN to be trained is great:
there is a huge number of parameters, in order for the model to
converge, hence, the training time is huge and has high memory
requirements. While most of the articles, presented in literature to
address the problem of accelerating NN training focus on imple-
menting pruning techniques after the model being converged, our
approach aims at enhancing the training time of a model during
its training procedure. The only prior work, found in literature is
the one presented in [8], in which SET algorithm prunes a spe-
cific number of close-to-zero weights in a MLP and restore them
randomly, in every epoch. We are, clearly, being motivated by the
encouraging results the SET algorithm gave, however, the number
of linkages, being modified (zeta parameter) in every layer is stable,
and specifically, is about 30%, even if we are in the last steps. This
may not be beneficial as, technically, in the last step, our final model
will have 30% of its weights reinitialized to be trained for only a
single epoch. This might be a waste of resources.

So, we examine three different approaches, regarding zeta pa-
rameter, which is the one, responsible for the number of weights,
being pruned and reconnected in every epoch. In our first one,
zeta changes by a small value per epoch. We define a high and low
pruning value, and we go from the one to the other linearly (Linear
Decreasing Variation - LDV). In our second proposed technique, the
value of zeta fluctuates between a low and a high value, following
a cosine function rule (Oscillating Variation - OSV), while in our
third and final method, zeta parameter undergoes about 1% reduc-
tion in every epoch, reducing exponentially the remodeling rate
(Exponential Decay - EXD). The more effective technique appears
to be the EXD method, in which we achieve comparable accuracy,
regarding the initial dense implementation and reduced memory
footprint along with a small speedup in training time.

The rest of the paper is structured as follows: the following
sub-section presents our motivations and contributions, section 2
presents the related work, section 3 describes the proposedmethods,
and in section 4 we evaluate them based in classification accuracy,
training time, and memory footprint. Finally, section 5 concludes
this article.

1.1 Motivations and Contributions
The SET procedure tries to simulate the synapse remodeling phe-
nomenon that occurs in biological brains by relating the training
epochs of a NN to the days experienced in biological brains. We
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wanted to zoom out a bit on the time scale, from a day-to-day scale
towards a year-to-year scale while also retaining the changes that
occur on a day-to-day scenario. Our approach involves modifying
the weight remodelling rate throughout the training, giving greater
opportunities to the model to mature and gain wisdom. In biolog-
ical brains their structure changes not only from one day to the
next, but also during the course of a whole year and those changes
accumulate leading to more and more changes over the course of
an animal’s life. Our contributions is a simple abstraction to the
complex mechanisms that are involved in biological brains. Another
piece of our contribution presented in this article is our endeavor to
improve the Keras implementation provided by Mocanu et al. [8]. In
their original implementation, that was released in 2018, not much
to their luck, the Keras API placed many restrictions to their efforts,
resulting in an implementation that, even though it works fine, is it
greatly un-optimized and leads to severe performance drops in time
when compared to their dense counterpart. The modern Keras API,
however incorporates the Callbacks API, that enables developers
to insert custom code and modify the training sequence seamlessly
resulting to much greater performance.

Wewould also like to align ourmethods, to the categories Hoefler
et al. [5]. Among different compression techniques, our methods
belong into the model sparsification category because they are the
result of applying an Erdos-Renyi random graph to a much bigger
initial dense model. This also explains why our methods also fall
into the sparse training category. They start from a sparse model
which they update during training by modifying its underlying
structural topology. During training our methods prune and recon-
nect parameters at a variable rate that changes during the training
process. When choosing candidates for removal, we use a data-free
selection based on weight magnitude. And finally, when we need
to regrow the network we apply a random regrowth technique that
chooses new weights to reconnect randomly.

2 RELATEDWORK
One of the first families of acceleration methods includes mem-
bers that meant to replace gradient (steepest) descent. Whereas
gradient descent is based on a first order Taylor series approxi-
mation of the performance function, methods based on second
order Taylor series were investigated, such as Newton’s method(s).
Other algorithms are those based on Conjugate Gradient, and
quasi-Newton method(s), e.g., Broyden-Fletcher-Goldfarb-Shanno
(BFGS). Recently, fast optimizers have been proposed such as Adam,
Adadelta [9]. Another family for training acceleration is based on
variable learning rates, e.g., the delta-bar-delta method [6]. The
topic of network architecture search [10] is a research area of
great importance. However, these methods require a strong hard-
ware infrastructure, search space [7] or more hyperparameters.
Dropout [11] accelerates training by randomly dropping units dur-
ing training. In similar spirit, are the methods which compute only
a subset of gradients during back propagation, e.g., meProp [12]. An
intriguing piece of work [3] suggests that only a part (subnetwork)
of a neural network is responsible for carrying out accurately a
particular prediction, and thus if we can detect which this subnet-
work is, we can then train only this, gaining significant speedups
at the training stage in the process. The family of methods that

are related mostly to the present work are those based on neural
topology sparsification [5]; there have been proposed in the litera-
ture, methods which specifically prune the connection between the
neurons [4]. However, these linkage sparsification techniques do
not aim at mimicking the topological structure of real neural net-
works, but are mainly based on eliminating close-to-zero weighted
connections. The most closely related work to ours is that reported
in [8], in which they start from a completely unstructured topology
basis, i.e., purely random network, having a specific, stable number
of connections removed and added in each epoch, which is not
efficient enough, especially when we are in the last epoch and the
model is almost trained. Our contributions involve improving the
SET implementation [8] using the Callbacks API and introducing
three newmethods that add variability to the pruning and regrowth
rate of the connections in the network during training to achieve
greater performance.

3 PROPOSED TECHNIQUES
The SET procedure as we have seen, uses a constant zeta param-
eter equal to 0.3 or 30% that keeps the evolution rate unchanged
throughout training. The weight evolution does not differentiate
between first and last epochs, even thought it obvious that a neural
network’s behavior and stability changes as it converges towards
the minimum over the training. Drawing inspiration from biology,
where the synapse remodeling rate in biological brains changes
throughout an animal’s life, we tried making this weight evolution
rate change during training.

The methods we proposed cover two main categories. Firstly,
by making the hyperparameter zeta follow a genuinely declining
function, of a linear one and a much steeper exponential one, we
simulate the aging factor in biological brains that may help the
neural network in our case ’mature’ in a much smoother rate. Sec-
ondly, causing the parameter zeta to oscillate, we display a seasonal
pattern that tries to simulates the seasonal changes in an animal’s
brain that occur during a chronological year (hibernation, bruma-
tion etc.).

The truth is, that a lot of functions can fall into these categories
but the methods we implemented for our experiments, were de-
signed to introduce as few new hyperparameters as possible but
with decent performance. The idea of making the parameter zeta
a variable also draws inspiration from variable learning rate tech-
niques, a concept that has already existed for many years. Our
implementation was based on the original author’s Keras implemen-
tation but that one was implemented in a way that caused the sparse
methods to run a lot slower than their dense MLP counterpart. A
year or two after the original paper’s release, Keras introduced the
Callbacks API and using it, we constructed an implementation that
is more efficient and closer to the desired concept.

3.1 Exponential Decay
Drawing inspiration from the field of finance we used a simple
exponential decreasing function that makes the parameter zeta
decay each epoch by a constant fraction called interest, as depicted
in the following equation:

ζi = ζ0(1 − interest)curr_iter (1)
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where ζ0 is the starting zeta value equal to 0.3 just as the SET
procedure and the interest was chosen to be equal to 0.01 for our
experiments after trying several values, so that the decay in the
zeta parameter was neither too steep nor too gentle that it didn’t
approach the zero for the number of epochs we used. We call this
method Exponential Decay (EXD) and the relevant pseudo-code is
depicted in Algorithm 1.

3.2 Linear Decreasing Variation
In a similar fashion to the variable learning rate methods used
by Abbas et al. [1] we applied a linear decreasing curvature to
the parameter zeta that is adjusted to the maximum number of
epochs.We call thismethod Linear decreasing Variation (LDV), with
the relevant pseudo-code in Algorithm 1. The following equation
depicts this procedure:

ζi = ζmin + (ζmax − ζmin ) ×
max_iter − curr_iter

max_iter
(2)

We set a maximum zeta value of 0.3, just as the SET procedure,
and a minimum one of 0.01 so that it starts with the maximum
zeta value at the start of the training and linearly decreases to the
minimum zeta value over the entire training process. We wanted
the minimum to be close to zero but not equal so the procedure
won’t shut down completely by the end.

3.3 Oscillating Variation
Here, once again following the steps of Abbas et al. [1] we applied
an oscillating variation curve to the zeta parameter, adjusted to
the maximum number of epochs. We call this method Oscillating
Variation (OSV). Just like the LDV method we need a minimum
and maximum zeta value that is defined as 0.01 and 0.3 respectively.
The following equations shows how this is done:

ζi =
ζmax + ζmin

2
+
ζmax − ζmin

2
× cos

(
2π · curr_iter

T

)
(3)

T =
2 ·max_iter

3 + 2k
(4)

In the definition of the period T we use the parameter k to
control the frequency of the oscillations and was set equal to 1
for our experiments after performing a small random search. The
relevant pseudo-code can be seen in Algorithm 1.

4 EXPERIMENTAL EVALUATION
We evaluate our methods using the following metrics: a) memory
footprint, b) accuracy on the test dataset and c) training time. The
training time metric depicts the total elapsed time it needs to train
a model. We conducted three experiments for each method and the
results are calculated by their mean values.

4.1 Evaluation Settings
For our experiments, we used the Fashion MNIST dataset, one of
datasets also used by Mocanu et al. One of the main reasons for
this decision is that we can have a common ground for comparing
our methods to the SET procedure and the Dense MLP networks,
making our results more understandable. The Fashion MNIST is
a dataset of 60,000 training examples and 10,000 test examples of
28 by 28 gray scale images, depicting clothes that belong into 10

Algorithm 1 Pseudo-code of the proposed techniques
1: Procedure Sparse_Training (Sparsity level ε , ζmax , ζmin , Frequency

κ )
2: Initialize Fully Connected Neural Network model;
3: Sparsify_network(ε );
4: Initialize training algorithm parameters;
5: for i in range(1,epochs) do
6: Feed_Forward();
7: Back_Propagation();
8: if method == EXD then
9: Apply_EXD_rule( ζ0, interest, i, epochs); // Equation 1
10: else if method == LDV then
11: Apply_rule( ζmax , ζmin , i, epochs); // Equation 2
12: else if method == OSV then
13: Apply_rule( ζmax , ζmin , κ , i, epochs); // Equation 3
14: end if
15: Weight_evolution(ζ );
16: end for

classes. We also use data augmentation techniques to make the
models generalize better and show greater accuracy.

As far as the models are concerned we chose three neural net-
work setups. We use the Multi Layer Perceptron for all topologies
in our experiments. The first topology has three hidden layers with
1000 neurons in each one (called MLP-1K). The second one is closely
related to the experiments of Mocanu et al. and uses three hidden
layers with 4000 neurons on the first, 1000 neurons on second and
4000 neurons on third (called MLP-4K). The final topology uses
four hidden layers with 4000 neurons on the first, 2000 neurons on
second and third layer and 1000 neurons on fourth (called MLP-
4K4L). Although, deeper and larger DNN architectures are the most
common approaches, they may incur substantial redundancy [2],
which may lead in heavy computational cost, without any special
contribution, regarding accuracy. After a lot of experiments, we
decided to use the aforementioned topologies to cover a wide range
of topology characteristics that will help outline differences in the
behavior of the tested methods. We train the models for 500 epochs
using the default values for most of the hyper parameters. The
experiments were executed on a desktop computer with 16 GB of
RAM and a Quad-Core Intel Core i7 processor clocked at 4.0 GHz.
For the sparse models (SET, LDV, EXD, OSV) we assign the sparsity
level ε equal to 20. The value zeta stays at 30% for the SET proce-
dure, as this was the proposed value from its creators, and we use
this same value as well for the initialization of zeta on our methods.
The parameters’ initialization values that we used for each method,
are reported along with the methods they belong to at section 3.

4.2 Evaluation Results
The fist benefit of our methods is their reduced memory footprint
especially compared to their dense MLP counterpart. Both the SET
and our methods use the same Erdos-Renyi random graph proce-
dure to make their networks sparse at the beginning of the algo-
rithm. As seen in Table 1 we achieve at least 95,7% reduction in
parameters compared to the dense topology. This creates compres-
sion rates from ×23 to ×45 depending on the topology. Due to the
nature of both SET and our methods, we know the exact model size
before training, because our methods belong to the sparse training
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Figure 1: Competitors’ training time between the old and the
improved Keras implementation based on the following net-
work architecture: MLP 1000-1000-1000 (MLP-1K).

category of model pruning, which means that even though the
model’s parameters are pruned and reconnected throughout the
whole training process, the total amount of parameters at the end
of each epoch stays the same. This is very beneficial feature, as
we can tune the parameter ε before training to achieve the desired
compression rate, which helps on models that are designed to run
in IoT devices with small memory capacities.

The second part of evaluating our methods is the training time.
As illustrated in Figures 1-3 the speed improvement comes in two
ways. Firstly, when comparing the dense MLP to the sparse models
we see same training time costs in the MLP-1K topology Figure 1,
but the sparse models become slower and slower in comparison as
the model grows in size MLP-4K and MLP-4K4L Figures 2 and 3,
even though their memory footprints are much better than the
dense MLP. Using Keras Callbacks these differences are now greatly
reduced as the weight evolution is now performed more smoothly.

We would expect that the sparse models should be faster than the
dense, considering the compression rate achieved, but as Hoefler
et al. [5] pointed out this in not always the case when using such
libraries. The reason is that, most modern libraries are not designed
to use sparse matrices and as a result they don’t always exploit
their reduced size efficiently. Another speed improvement that is
evident from the same Figures is how our methods compare to SET
and the dense MLP network. Our methods are consistently slightly
faster on average than the SET procedure with the Exponential
Decay (EXD) method being the winner among the sparse methods
when also taking the improved implementation into consideration.
We attribute this behavior due to the reduced weight pruning and
reconnecting that happens as a direct result of the parameter ζ
reduction.

Hidden Layer Architecture Dense Size Sparse Size Compression rate Percentage Reduction
MLP 1000-1000-1000 (MLP-1K) 2.797.010 ≈ 120.000 ×23 95,7%
MLP 4000-1000-4000 (MLP-4K) 11.185.010 ≈ 350.000 ×32 96,8%

MLP 4000-2000-2000-1000 (MLP-4K4L) 17.155.010 ≈ 380.000 ×45 97,7%
Table 1: Comparing the parameter reduction between the dense MLP and the sparse methods.
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Figure 3: Competitors’ training time between the old and the
improved Keras implementation based on the following net-
work architecture: MLP 4000-2000-2000-1000 (MLP-4K4L).

The final part of the evaluation involves accuracy, a metric usu-
ally considered the most important for the model’s performance. As
we can observe from Figures 4–6 our methods remain competent to
the SET and dense MLP models. We can see that the EXD method
outperforms the rest, for the topologies MLP-4K and MLP-4K4L.
In the smaller MLP-1K topology though we can see that the re-
duced number of total parameters in the network has a toll on the
performance of all the sparse methods.
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We can therefore safely declare the EXDmethod as a clear winner
in accuracy as well among the sparse methods. Our other two
methods although not as good as the EXD, we can see that they
still manage to outperform the SET method by a margin depending
to the topology used. We can observe that all our methods and
especially EXD, have the potential to outperform the dense MLP
when using sufficiently large topologies.

We should keep in mind however that the dataset used belong
into the image classification category and is only one kind of prob-
lems that neural networks are used for. Our methods may perform
differently on other types of datasets, and this is mainly the reason
that we didn’t discarded the losers, so that they may provide some
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Figure 4: Competitors’ accuracy based on the following network architecture: MLP 1000-1000-1000 (MLP-1K).
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Figure 5: Competitors’ accuracy based on the following network architecture: MLP 4000-1000-4000 (MLP-4K).
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Figure 6: Competitors’ accuracy based on the following network architecture: MLP 4000-2000-2000-1000 (MLP-4K4L).

inspiration for other experiments or to maybe find application to
other areas. But if anyone would consider trying one of our meth-
ods, the EXD method should be the default or at least the first
choice.

5 CONCLUSIONS
In this paper we apply methods of pruning in neural networks us-
ing sparse training techniques in order to boost their performance.
We improved the original SET Keras implementation and exam-
ined three new methods to further improve upon its qualities. Our
improved implementation using Keras Callbacks API shows much
more promising results in training time when comparing the sparse
methods over the dense MLP.
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In memory footprint we confirm the dominance of the sparse
methods as opposed to the dense MLP by achieving at least 95.7%
reduction in memory footprint, indicating them as a potential great
fit for small IoT devices. Furthermore, the methods we propose also
seem to display some benefits over the SET procedure in training
time while staying competitive in accuracy. Among them, the Ex-
ponential Decay method (EXD) really stands out, surpassing the
other methods on almost every experimental scenario. The EXD
method is around 8-13% faster in training speed and constantly
slightly more accurate than the SET procedure. Overall, we chose
to keep a simple and elegant design approach for our methods.1
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