
Transfer Learning for Convolutional Neural Networks in Tiny
Deep Learning Environments

Evangelia Fragkou∗
efragkou@uth.gr

University of Thessaly
Department of Electrical & Computer

Engineering
Greece

Vasileios Lygnos
vlygnos@uth.gr

University of Thessaly
Department of Electrical & Computer

Engineering
Greece

Dimitrios Katsaros
dkatsar@uth.gr

University of Thessaly
Department of Electrical & Computer

Engineering
Greece

ABSTRACT
Tiny Machine Learning (TinyML) and Transfer Learning (TL) are
two widespread methods of successfully deploying ML models
to resource-starving devices. Tiny ML provides compact models,
that can run on resource-constrained environments, while TL con-
tributes to the performance of the model by using pre-existing
knowledge. So, in this work we propose a simple but efficient TL
method, applied to three types of Convolutional Neural Networks
(CNN), by retraining more than the last fully connected layer of a
CNN in the target device, and specifically one or more of the last
convolutional layers. Our results shown that our proposed method
(𝐹𝑥𝐶1) achieves about 19% increase in accuracy and 61% increase in
convergence speed, while it incurs a bit larger energy consumption
overhead, compared to two baseline techniques, namely one that
retrains the last fully connected layer, and another that retrains the
whole network.

CCS CONCEPTS
• Computing methodologies → Neural networks; Machine
learning;Machine learning approaches;

KEYWORDS
Resource-constrained devices, Convolutional neural networks, Deep
learning, Transfer learning, TinyML

ACM Reference Format:
Evangelia Fragkou, Vasileios Lygnos, and Dimitrios Katsaros. 2022. Trans-
fer Learning for Convolutional Neural Networks in Tiny Deep Learning
Environments . In 26th Pan-Hellenic Conference on Informatics (PCI 2022),
November 25–27, 2022, Athens, Greece. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3575879.3575984

∗The research work is supported by the Hellenic Foundation for Research and In-
novation (HFRI) under the 3rd Call for HFRI PhD Fellowships (Fellowship Number:
5631)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PCI 2022, November 25–27, 2022, Athens, Greece
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9854-1/22/11. . . $15.00
https://doi.org/10.1145/3575879.3575984

1 INTRODUCTION
Tiny Machine/Deep Learning (Tiny ML/DL) is a fast-growing field,
which boosts machine learning tasks deployment in devices that
lack of computational resources, like sensors, IoT devices etc. It is
a useful tool since it combines both software and hardware opti-
mization and hence it enables the running of ML inference tasks
in those devices [26], etc. Moreover, TinyML, by encouraging data
processing on the edge device, contributes to the maintenance of
the privacy of data, since information that is collected, stays to the
device, while in parallel, it lessens the energy cost of the possible
and now not necessary communication between the edge device
and the server[1]. Furthermore, Transfer Learning (TL), is a method
in which pre-knowledge of a source model is used, in order to
enhance the learning ability of the device in which this model is
further applied. TL means either retraining the whole model or
the last fully connected layer to the resource-constrained (target)
device and hence boosting its performance with both reducing the
training time needed for the model to converge, as it inherits the al-
ready learned features and by giving the opportunity for the model
to be trained with sufficient already-existed data. In this work, we
combine the two aforementioned techniques, by proposing algo-
rithms that go the common TL and the already known TinyML
optimization techniques a step further, in order to maximize the
performance of low-powered devices. Specifically, our endeavor is
inspired by the work [12], in which authors propose the retraining
of the fully connected layers to low-powered device. We present
methods of retraining, which include also one or more convolu-
tional layers, with the one that uses only one convolutional layer
to be our best method, due to the fact that we achieve increase in
accuracy levels, with the less energy consumption, regarding to
the other two methods, proposed in this work. Specifically, 𝐹𝑥𝐶1
method gives approximately 19% increase in classification accuracy
of the model.

1.1 Motivations and contributions
TinyML contributes to the efficiency of models performance, by
running mainly inference tasks on ultra-low power devices. More-
over, TL offers pre-knowledge to the target device, maximizing the
levels of its performance. Most of the works, presented in existing
literature, are referred to inference tasks. By combining the two
aforementioned methods in this work, we try to enable step to step
not only the inference but also the training procedure in resource-
constrained devices, by retraining not only the last fully connected
layer, but also both the fully connected and the last convolutional
layer. The main prior work is the one presented in [12]).

145

https://doi.org/10.1145/3575879.3575984
https://doi.org/10.1145/3575879.3575984
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3575879.3575984&domain=pdf&date_stamp=2023-03-29

PCI 2022, November 25–27, 2022, Athens, Greece Fragkou et. al

The basic motivation is extracted by the way a CNN network
performs its tasks. Specifically, in an image classification task, the
first layers of a CNN network learn the basic concepts of an image,
then this knowledge is transferred to the next layers in order for
the final ones to be able to learn the high level concepts of the
input-image. This means that the final convolutional layer/layers
is/are responsible for the classification of the data, being processed
by the network. So, when the network is exposed to new data, it is
of high importance to update not only the categorization of data,
but also the categories themselves, so as to achieve high Accuracy
levels.

By this way, we start to enter the core of the network, without
needing the resources, that the whole network requires, in order to
operate. Overall, our work contributes in the following:

• We develop a technique where not only the final fully con-
nected layers are retrained, but also some of the immediately
previous convolutional layer are retrained. This retraining
can potentially take place in resource-starving devices, thus
improving data privacy and being ideal for cases of federated
learning [19] or Internet of Things implementations [22].

• We investigate the tradeoff between training more layers
versus accuracy versus energy consumption which has not
been explored so far. Evidently, retraining more of the last
layers (both convolutional and fully-connected) will result
in improved accuracy, but it will cost in energy consump-
tion. Is there any optimal point with respect to how many
retrained layers are enough before consuming too much
energy without gaining in accuracy?

• We use homogeneous data to experiment with, but by af-
fecting a convolution layer through retraining, we can more
easily deal with heterogeneous data in the future, since the
convolutional layers are the ones responsible for the bet-
ter understanding and categorization of the hierarchical
features of image data; we compare the examined meth-
ods against two baseline methods: a) the methods reported
in [12] (Baseline-1) and b) when the whole CNN is retrained
(Baseline-2).

The rest of the paper is structured as follows: section 2 presents
the related work, section 3 describes the proposed CNN architec-
tures used. In section 4 we evaluate the neural network’s accuracy,
loss and energy consumption, and in section 5 we summarize the
described results. Finally, section 6 concludes this article.

2 RELATEDWORK
Tiny ML/DL is an emerging field of machine learning technologies
and applications, including both hardware [15] and software de-
velopment, with the aim of performing on-device inference tasks
on ultra-low power devices, e.g. sensors, micro-controllers, IoT
devices etc. Software-based Tiny ML methods are currently fo-
cused on combining optimization techniques like neural networks
model compression (Network Architecture Search - NAS [18], Prun-
ing [16], [3], [7], Weights Quantization [10], [24]), [11], or on model
pre-training into the cloud etc. [14], [17] and then fine-tuning in
an aforementioned device, so as for the model to achieve better
performance, without sacrificing the levels of accuracy. However,
the existing literature, is mainly referred to methods that accelerate

inference tasks, while only few papers introduces ways that deal
with the on-line training procedure of a model [23], [12], [6], which
is a prospect that have to be further researched and discussed.

On the other hand, TL is a widely-used method, used for lever-
aging knowledge of a domain (source), trained on large-scale data
to the target domain, which is used to be a smaller and less data-
processing-capable one, with the aim of boosting the learning ability
of the latter one [21], [27], [4]. A neural network needs plenty of
auxiliary data so that it can be trained sufficiently, which is a very
often problem taking into account that not all systems do have
available data to do so or the appropriate technical specifications,
like many gigabytes of RAM (resource-starving devices), in order
to process all these data. So, TL came to solve not only the lack
of sufficient data for processing, but also the tremendous train-
ing time and the massive storage capacity needed from a device
in order to perform training, which are two bottlenecks in train-
ing procedure. As a consequence, TL mechanisms achieve high
performance in real – world applications, such as cross-language
text categorization, text-to-image classification, etc. Some already
known deep-learning-based approaches are DAN [20] , DCORAL
[25], and DANN [8], [9] which are applied for solving image classi-
fication problems.

The combination of Tiny ML and TL can contribute significantly
in both the reduce of training time by providing more compact and
hence faster models regarding their convergence and the mainte-
nance of their high classification accuracy, due to the knowledge,
being inherited by the pre-training of the model with plenty of
data. Concurrently, by pre-training the model to the cloud and
then fine-tuning it to the device contributes to the security of data,
too, as every device knows only the weights of the model, being
trained to specific data, and not the data themeselves. The most
relative-to-our-work paper is the [12], in which a model is trained
to a processing capable machine, e.g. a server with hundred of in-
stances of data and then the pre-trained network is applied to the
target domain. After that, only the last (Fully-Connected) layer of
a Convolutional Neural Network (CNN) is recovered by the exposi-
tion to the new data in the target device, taking into consideration
that it inherits the knowledge, or else the "frozen" weights of the
pre-trained network. This procedure is more cost-friendly since
we retrain one layer than the whole network. So, we gain time
by training only the last layer but is it the most optimal solution
regarding accuracy levels? In this work we propose a new TL im-
plementation method, in which we re-train more than one layer of
the pre-trained network to the target device and then we compare
the results with the existing implementations. Our method is not
only model but also data aware, which means it can be applied in
conjunction with any other method or in any case, being described
in this section.

3 THE FAMILY OF 𝐹𝑥𝐶𝑦TECHNIQUES
The most widespread technique in Transfer Learning is to train the
model to a dataset, then ‘freeze’ the weights and after that either
retrain the last fully connected layer, or retrain the whole model to
the new data. In our research, we conducted experiments in order
to observe how different the model will perform when we retrain
more layers than just the fully connected ones and compare our

146

Transfer Learning for Convolutional Neural Networks in Tiny Deep Learning Environments PCI 2022, November 25–27, 2022, Athens, Greece

results with the already existed TL methods. So, we created three
different experimental cases:
F𝑥C1. In this case, we train not only the last fully connected layers,
but also the last convolution layer, while the remaining model is
frozen.
F𝑥C2. In this case, we train the fully connected layers and the last
two convolution layers, while the remaining model is frozen.
F𝑥C3+. In the last case, we train the fully connected layers and up
to three convolution layers, while the remaining model is frozen.

In our experiments, the fully- connected layers of the networks,
used, are more than one, so in order to elaborately present our
Figures, we display exactly the number of both fully-connected
and convolutional layers, taking place in training, by using the
abbreviation 𝐹𝑥𝐶𝑦 , while x is the number of final fully- connected
layers and y the number of Convolution layers, re-trained in every
experiment, as it is illustrated in Table 2.

Algorithm 1 Pseudocode of the family of 𝐹𝑥𝐶𝑦 techniques

1: Procedure Pre-training() on a large dataset;
2: for 𝑖 in range(1, epochs) do
3: if method == F𝑥C1 then
4: Re-train(FC, Conv.Layer-1); //1 conv. Layer
5: else if method == F𝑥C2 then
6: Re-train(FC, Conv.Layer-1, Conv.Layer-2); //2 conv. Layers
7: else if method == F𝑥C3+ then
8: Re-train(FC, Conv.Layer-1, Conv.Layer-2 Conv.Layer-3, ...);

//up to 3 conv. Layers
9: end if
10: end for

The experiments emphasize on the large models, in most of the
cases, since it is more difficult to optimize them, without sacrificing
performance. For each case, we have computed the flops needed
for them to run for one epoch so we have made an estimation of
how much energy they will consume, taking into account a CMOS
45nm processor.

4 EXPERIMENTAL EVALUATION
This section introduces details about the competitors, the datasets
used, the size of the neural networks we experiment with and then it
presents the results of the experimental evaluation of the proposed
algorithms.

4.1 Evaluation settings
Competitors. In order to evaluate our algorithms, we compare
the performance of our method with the two following baseline
methods.
Baseline-1. In this method, only the last fully connected layer is
retrained, while the remaining model is frozen [12].
Baseline-2. In this method, the whole model is retrained.

Architectures of neural networks.Wewill use 3 CNNmodels,
a small one which has an input of 32x32x1 and 550 thousand param-
eters with 6 convolution layers with relu as the activation function
except for the last dense layer, in which we used softmax activation
function, called Small CNN. The other two models are from the
family of EfficientNet, which is a group of convolutional network
models that acheive high accuracy, with very few parameters and

hence is a viable solution for resource-constrained devices. (specifi-
cally, EfficientNetB0 and EfficientNetB2). We picked EfficientNetB0
and EfficientNetB2 as our large models with 4.05 million and 7.76
million parameters, respectively, as we see in Table 2. In the fully
connected layers, we used softmax as the activation function.

Measures. For the small CNN model, we did 50 epochs for every
case we tested, while for the EfficientNet models we did 10 epochs,
respectively. Considering we have a classification problem to tackle,
we used the ‘Accuracy’ measure (implemeted in Keras) in order to
evaluate and compare our methods. Although we address a multi-
class problem, we used accuracy metric instead of F1-measure/Score,
taking into consideration that our first experiments were conducted,
using the family of CIFAR datasets (see the following paragraph),
whose classes are equally important, or else every class constitues
by the same number of instances (balanced classification dataset),
and consequently, these two metrics can equally produce safe re-
sults, in this case. We continued our experiments, using other two
datasets, ImageNet and Intel classification, which don’t have ex-
actly the same number of instances in every class, but the difference
between the number of data tends to be very small. The proportion
of data in the first dataset is 1:7 and it is mainly used for training
the model, since it contains 1,000 classes of images, which means
plenty of images and therefore, better learning of the model. On the
contrary, the second one (whose difference among class instances
is about 2% - almost balanced) is used only for testing purposes, so
in these cases, we can safely use accuracy metric, too. Moreover, we
used both categorical cross-entropy (especially used for one-hot en-
coded vectors) and sparse categorical cross-entropy function (class
vectors contain only the integer that stipulates their input data
category - we gain processing time during training), implemented
in Keras API, as the loss function for small CNN model and the Effi-
cientNet models, respectively. The last measure we used, is the one
referred to the energy, required by our methods. The most reliable
way to estimate it, is through the FLOPS of every model needed
for one Epoch. Therefore, we computed how many FLOPS each
test we did, needs for one epoch and how much energy it would
consume, being implemented to a certain processor (45nm CMOS
technology processor) with the admission that a MAC operation is
roughly equal to two flops. Even if the admission is far from reality,
the percentage difference between the two cases would be the same,
if FLOPS remain the main comparing factor. Nano Joule (nJ) is the
unit of measurement in this case. The type we used is the following:

𝐸𝑁𝐸𝑅𝐺𝑌 =
𝐹𝐿𝑂𝑃𝑆

2
∗ 𝐸𝑚𝑎𝑐

.
Datasets. In this work, we deal with an image classification task.

In order to test our methods, we used datasets that include both
colour and greyscale images. Furthermore, datasets have a lot of
instances and the same feature space (homogeneous data) to a great
extend, so as to enhance the adaptation of data from the source
to the target domain. The test samples we used, are 20% smaller
in size compared to the training samples ragarding the CIFAR-
10, CIFAR-100 and Intel classification datasets and approximately
8% smaller, compared to Imagenet dataset (due to the tremendous
training time, needed in order to run our experiments).Besides, the
most important thing is for the test dataset to be smaller than the

147

PCI 2022, November 25–27, 2022, Athens, Greece Fragkou et. al

Table 1: Dataset characteristics.

Size of Train Test
Dataset Images Samples Samples Classes

ImageNet 224x224 1, 281, 167 100, 000 1, 000
CIFAR-100 32x32 50, 000 10, 000 100
CIFAR-10 32x32 50, 000 10, 000 10
Intel Image
Classification 150x150 14, 000 3, 000 6

Table 2: Trainable Layers, used in every model
architecture.

Model Small CNN EfficientNetB0 EfficientB2
Trainable
Parameters 550, 000 4, 049, 571 7, 768, 569

Method/
Trainable
Layers

Total #of Conv. Total #of Conv. Total #of Conv.

F𝑥C1 9 1 3 1 3 1
F𝑥C2 11 2 5 2 7 2
F𝑥C3+ 15 3 8 4 10 4
F𝑥C3+ - - 16 5 15 5
F𝑥C3+ - - 20 6 23 8
F𝑥C3+ - - 23 8 31 9
F𝑥C3+ - - 31 10 38 12

training one, or else it will cause accuracy drops. Information about
the datasets is illustrated in Table 1. Moreover, we conducted four
experiments, in which we use different combination between the
datasets for both pre-trained and retrained networks.

Hardware used. Our methods were tested on a desktop com-
puter with 16 GB of RAM and an Intel Xeon W 2123 processor,
clocked at 3.60 GHz.

4.2 Evaluation results
In the following experiments, we compare the results with the two baseline
methods, mentioned in section 4.1. In plots, every method is represented
by the number of Layers that are unfreezed during the retraining phase of
the model, so as to know exactly which architecture we use. In Table 2, we
see the total number of layers, taking place in retraining and how many of
them are convolutional ones.

4.2.1 Experiment-1 (Evaluation of Small CNN with CIFAR-100 and CIFAR-
10). In our first experiment, we used CIFAR-100 to train the model and
CIFAR-10 [13] to evaluate it. As the Figure 1 (left) illustrates, training both
the fully connected and the last convolution layer, gets almost a 10% boost
in accuracy, regarding Baseline-1 method. Hence, adding more layers to the
training procedure, finally contributes to the accuracy improvement, but it
is expensive regarding the energy requirements.

Regarding the energy consumption, depicted in Figure 1 (right), we
verify our intuition, regarding low power consumption of all models being
presented against the Baseline-2 method. This does happen due to the
smaller amount of trainable parameters of both the Baseline-1 method
and our proposed techniques, which makes the training procedure faster
and therefore, less energy-expensive. As we can understand, the energy
consumption increases proportionately with the number of layers, being
unfreezed in every experiment.

F1 F8C1 F9C2 F12C3 All Layers
retrained

Methods

0

10

20

30

40

50

60

70

80

Pe
rfo

rm
an

ce
 (%

)

69.582
76.544

80.922
84.356 85.702

14.883 11.908 9.849 8.283 7.742

Accuracy and Loss of Small CNN Model
pre-trained on CIFAR-100 and tested on CIFAR-10

Accuracy (%)
Loss (%)

F1 F8C1 F9C2 F12C3 All Layers
retrained

Methods

0

20000

40000

60000

80000

100000

120000

En
er

gy
 C

on
su

m
pt

io
n

(n
J)

844.9

31097.5

46237.6

76542

123231

Energy Consumption of Small CNN Model
pre-trained on CIFAR-100 and tested on CIFAR-10

Energy (nJ)

Figure 1: Experimental evaluation of small CNN model, pre-
trained on CIFAR-100 and tested on CIFAR-10.

4.2.2 Experiment-2 (Evaluation of EfficientNetB0 with Imagenet/ CIFAR-100.
In this test, EfficientNetB0 is used and trained with ImageNet dataset [5]. We
will evaluate it with CIFAR-100 and the results are depicted in Figure 2. The
difference in both accuracy and loss regarding the two baseline methods is
significant. We can easily observe that our method, namely 𝐹𝑥𝐶1, continues
to stands out against Baseline-1 method, while having a bigger and more
structurally-complicated network, compared to Experiment-1. Training the
fully connected layer and the last convolution layer we get an increase
of 20% compared to the training of only the fully connected layers. Also,
the accuracy of this case is slightly less than the accuracy, retained by
training all layers of the model, which means that we don’t have important
information loss.

F1 F2C1 F3C2 F4C4 F11C5 F14C6 F15C8 F21C10 All
Layers

retrained
Methods

0

20

40

60

80

Pe
rfo

rm
an

ce
 (%

)

74.547

88.517 89.72 90.955 93.563 93.787 93.17 93.645 92.843
86.547

37.44
33.163

28.491
20.557 19.67 19.71 20.013 21.831

Accuracy and Loss of EfficientNetB0 Model
pre-trained on ImageNet and tested on CIFAR-100

Accuracy (%)
Loss (%)

F1 F2C1 F3C2 F4C4 F11C5 F14C6 F15C8 F21C10 All
Layers

retrained
Methods

0.0

0.2

0.4

0.6

0.8

1.0

En
er

gy
 C

on
su

m
pt

io
n

(n
J)

1e6

510
64735.2

122538 122892 157664 192362 192699 227471

1.12486e+06

Energy Consumption of of EfficientNetB0 Model
pre-trained on ImageNet and tested on CIFAR-100

Energy (nJ)

Figure 2: Experimental evaluation of EfficientNetB0 model,
pre-trained on ImageNet and tested on CIFAR-100.

4.2.3 Experiment-3 (Evaluation of EfficientNetB2 with Imagenet/ CIFAR-
100. In this experiment, we use the same order of datasets of the previous
experiment (ImageNet for pre-training and CIFAR-100 for fine-tuning of the
network respectively), whereas a quite larger network, the EfficientNetB2
one is used. It is of a great importance that the results are encouraging in
this experiment, too. Specifically, we notice a small increase of 18.87% in
accuracy, as it is shown in Figure 3 (left), while the amount of the trainable
parameters of the network is extremely large, compared to both the small
CNN and EfficientNetB0. Moreover, it is worth highlighting that our method
𝐹𝑥𝐶1 generalizes the given data faster (about 60, 81% faster convergence),
compared to Baseline-1, in the same number of epochs. Furthermore, the
more the unfreezed layers are, the greater the improvement of accuracy
measure is, bearing in mind the results in Figure 3. Regarding the energy
consumption, we can conclude that the less the unfreezed layers are, the
less the energy consumption of every model, being tested, is but prioritizing
the measure of accuracy, we can conclude that 𝐹𝑥𝐶1 method outperforms
any other method mentioned, since it offers better accuracy, regarding the
common baseline-1 method, while it increases the energy requirements of
the model, to a small extend, comparing with the other proposed methods.

4.2.4 Experiment-4 (Evaluation of EfficientNetB0 with Imagenet/Intel Classi-
fication Dataset). In the last experiment, we use EfficientNetB0 network,

148

Transfer Learning for Convolutional Neural Networks in Tiny Deep Learning Environments PCI 2022, November 25–27, 2022, Athens, Greece

Table 3: Summary of experiments.

Model Accuracy (%) Energy (nJ) Percentage Increase in
Accuracy, compared

Percentage of faster
convergence, compared

Datasets Sets
(pre-trained/tested)

FC
(Baseline-1) F𝑥C1

FC
(Baseline-1) F𝑥C1 to Baseline-1(%) to Baseline-1(%)

Small CNN
(CIFAR-100/CIFAR-10) 69, 5 76, 5 844, 9 31097, 5 10, 01 19, 98

EfficientNetB0
(ImageNet/CIFAR-100) 74, 5 88, 5 510, 0 64735, 2 18, 79 56, 74

EfficientNetB0
(ImageNet/Intel
Classification)

86, 9 92, 2 137, 4 64350, 2 6, 09 39, 38

EfficientNetB2
(ImageNet/CIFAR-100) 78, 0 91, 1 560, 9 78273, 5 16, 79 60, 81

F1 F2C1 F5C2 F6C4 F10C5 F15C8 F22C9 F26C12 All
Layers

retrained
Methods

0

20

40

60

80

Pe
rfo

rm
an

ce
 (%

)

78.099

91.155 92.643 92.904 93.336 93.349 95.013 95.019 92.715

72.723

28.498
23.808 22.621 21.52 20.476

15.804 15.271
22.282

Accuracy and Loss of EfficientNetB2 Model
pre-trained on ImageNet and tested on CIFAR-100

Accuracy (%)
Loss (%)

F1 F2C1 F5C2 F6C4 F10C5 F15C8 F22C9 F26C12 All
Layers

retrained
Methods

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

En
er

gy
 C

on
su

m
pt

io
n

(n
J)

1e6

560.9
78273.5

194870 196060 196225

382090 422892 464026

1.93493e+06

Energy Consumption of EfficientNetB2 Model
pre-trained on ImageNet and tested on CIFAR-100

Energy (nJ)

Figure 3: Experimental evaluation of EfficientNetB2 model,
pre-trained on ImageNet and tested on CIFAR-100.

being pre-trained on ImageNet dataset. In this test, we use a smaller dataset
to evaluate it, which is the Intel classification dataset [2]. As we expected,
the pattern in the bar graph, being illustrated in Figure 4 is similar to all the
experiments, presented so far(experiment-1-2-3). Furthermore, because of
the smaller size of the dataset, used, we achieve high accuracy, faster than
the Baseline-1 method, despite the handred of parameters used in this net-
work. Specifically, in this experiment, 𝐹𝑥𝐶1 method achieves about 6, 09%
boost in accuracy and approximately, 39, 38% faster model convergence.

F1 F2C1 F3C2 F4C4 F11C5 F14C6 F15C8 F21C10 All
Layers

retrained
Methods

0

20

40

60

80

100

Pe
rfo

rm
an

ce
 (%

)

86.947
92.225 94.472 94.223 96.933 96.184 96.184 97.147 98.716

37.151

22.519
15.565 15.457

9.244 11.676 10.72 8.273
3.931

Accuracy and Loss of EfficientNetB0 Model
pre-trained on ImageNet and tested on Intel Classifiction dataset

Accuracy (%)
Loss (%)

F1 F2C1 F3C2 F4C4 F11C5 F14C6 F15C8 F21C10 All
Layers

retrained
Methods

0.0

0.2

0.4

0.6

0.8

1.0

En
er

gy
 C

on
su

m
pt

io
n

(n
J)

1e6

137.4
64350.2

122170 122524 157296 192010 192331 227103

1.1246e+06

Energy Consumption of EfficientNetB0 Model
pre-trained on ImageNet and tested on Intel Classifiction dataset

Energy (nJ)

Figure 4: Experimental evaluation of EfficientNetB0 model,
pre-trained on ImageNet and tested on Intel classification
dataset.

5 SUMMARY OF EXPERIMENTS
To sum up, in Table 3, we compare the performance of the classic TL method
(Baseline-1) and the one (𝐹𝑥𝐶1) we end up proposing, after conducting our
experiments. We compare only the Baseline-1 model since the Baseline-2
consists of the whole model and therefore it is not a viable solution for a
TinyML device, due to extravagant energy consumption (up to 143𝑥 larger

than the one needed by the Baseline-1 method). We conducted several ex-
periments, using three types of neural networks (see Table 2) and four
large-scale datasets (see Table 1) in a pair of two (for pre-training or re-
training). In every test 𝐹𝑥𝐶1 method outperforms (regarding accuracy) the
Baseline-1method in a range from 10, 7% to 18, 79%, proportionately to both
the datasets and the model, used, while it also achieves faster convergence
than Baseline-1 method, in a range from 19, 98%𝑡𝑜60, 81%, as we can see in
Figures 1, 2, 3, 4. However, the energy consumption required is a tradeoff
since it is a bit larger than the one, needed for the Baseline-1method (see Ta-
ble 3). The rest of the methods proposed, even if they had even better results
regarding accuracy, they can’t run on resource-starving devices due to the
large energy consumption they require, which increases proportionately to
the layers that are retrained in each case.

6 CONCLUSIONS
Overall, we presented new Transfer Learning methods in order to enhance
the performance of a network, being deployed to resource-constrained
environments. We present a simple but efficient method, in which we don’t
fine-tune only the last fully connected layer of a pre-trained network, but
we also retrain one or more of the convolutional layers of three kinds of
a CNN network (a Small CNN, EficientNetB0, EficientNetB2). The results
shown that 𝐹𝑥𝐶1 proposed method acheives approximately 19% increase in
network accuracy and about 61% faster convergence, whereas it is a model-
aware method since it outperforms the classic Transfer Learning techniques
in all cases, tested, with almost a small increase in energy consumption,
compared to the Baseline-1method (retraining the last fully connected layer)
and incomparably better performance, regarding the energy consumption,
needed by Baseline-2 (retraining the whole network) method.

REFERENCES
[1] Colby R. Banbury, Vijay Janapa Reddi, Maximilian Lam, William Fu, Amin

Fazel, Jeremy Holleman, Xinyuan Huang, Robert Hurtado, David Kanter, Anton
Lokhmotov, David A. Patterson, Danilo Pau, Jae sun Seo, Jeff Sieracki, Urmish
Thakker, Marian Verhelst, and Poonam Yadav. 2020. Benchmarking TinyML
Systems: Challenges and Direction. ArXiv abs/2003.04821 (2020).

[2] PUNEET BANSAL. [n. d.]. Intel Image Classification. https://www.kaggle.com/
datasets/puneet6060/intel-image-classification/discussion

[3] Andreas Chouliaras, Evangelia Fragkou, and Dimitrios Katsaros. 2021. Feed
Forward Neural Network Sparsificationwith Dynamic Pruning. In 25th Pan-
Hellenic Conference on Informatics (Volos, Greece) (PCI 2021). Association for
Computing Machinery, New York, NY, USA, 12–17. https://doi.org/10.1145/
3503823.3503826

[4] Oscar Day and Taghi M. Khoshgoftaar. 2017. A survey on heterogeneous transfer
learning. Journal of Big Data 4 (2017), 1–42.

[5] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

149

https://www.kaggle.com/datasets/puneet6060/intel-image-classification/discussion
https://www.kaggle.com/datasets/puneet6060/intel-image-classification/discussion
https://doi.org/10.1145/3503823.3503826
https://doi.org/10.1145/3503823.3503826

PCI 2022, November 25–27, 2022, Athens, Greece Fragkou et. al

[6] Simone Disabato and Manuel Roveri. 2020. Incremental On-Device Tiny Machine
Learning. Proceedings of the 2nd International Workshop on Challenges in Artificial
Intelligence and Machine Learning for Internet of Things (2020).

[7] Evangelia Fragkou, Marianna Koultouki, and Dimitrios Katsaros. 2022. Model
reduction of feed forward neural networks for resource-constrained devices.
Applied Intelligence (2022).

[8] Yaroslav Ganin and Victor S. Lempitsky. 2015. Unsupervised Domain Adaptation
by Backpropagation. ArXiv abs/1409.7495 (2015).

[9] Yaroslav Ganin, E. Ustinova, Hana Ajakan, Pascal Germain, H. Larochelle,
François Laviolette, Mario Marchand, and Victor S. Lempitsky. 2016. Domain-
Adversarial Training of Neural Networks. In J. Mach. Learn. Res.

[10] Sedigh Ghamari, Koray Ozcan, Thu Dinh, Andrey Melnikov, Juan Carvajal, Jan
Ernst, and SekM. Chai. 2021. Quantization-Guided Training for Compact TinyML
Models. ArXiv abs/2103.06231 (2021).

[11] Lennart Heim, Andreas Biri, Zhongnan Qu, and Lothar Thiele. 2021. Mea-
suring what Really Matters: Optimizing Neural Networks for TinyML. ArXiv
abs/2104.10645 (2021).

[12] Kavya Kopparapu and Eric Lin. 2021. TinyFedTL: Federated Transfer Learning
on Tiny Devices. ArXiv abs/2110.01107 (2021).

[13] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. [n. d.]. CIFAR10 and CIFAR100.
https://www.cs.toronto.edu/~kriz/cifar.html

[14] Jisu Kwon and Daejin Park. 2021. Toward Data-Adaptable TinyML using Model
Partial Replacement for Resource Frugal Edge Device. The International Confer-
ence on High Performance Computing in Asia-Pacific Region (2021).

[15] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. CMSIS-NN: Efficient
Neural Network Kernels for Arm Cortex-M CPUs. ArXiv abs/1801.06601 (2018).

[16] Josen Daniel De Leon and Rowel Atienza. 2022. Depth Pruning with Auxiliary
Networks for Tinyml. ICASSP 2022 - 2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2022), 3963–3967.

[17] Yingling Li, Zhipeng Li, Tianxing Zhang, Peng Zhou, Siyin Feng, and Kunqin Yin.
2021. Design of a Novel Neural Network Compression Method for Tiny Machine
Learning. Proceedings of the 2021 5th International Conference on Electronic
Information Technology and Computer Engineering (2021).

[18] Edgar Liberis, Lukasz Dudziak, and Nicholas D. Lane. 2021. `NAS: Constrained
Neural Architecture Search for Microcontrollers. Proceedings of the 1st Workshop
on Machine Learning and Systems (2021).

[19] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-
Chang Liang, Qiang Yang, Dusit Tao Niyato, and Chunyan Miao. 2020. Federated
Learning in Mobile Edge Networks: A Comprehensive Survey. IEEE Communica-
tions Surveys & Tutorials 22 (2020), 2031–2063.

[20] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. 2015. Learning
Transferable Features with Deep Adaptation Networks. ArXiv abs/1502.02791
(2015).

[21] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning. IEEE
Transactions on Knowledge and Data Engineering 22, 10 (2010), 1345–1359. https:
//doi.org/10.1109/TKDE.2009.191

[22] Dimitrios Papakostas, Theodoros Kasidakis, Evangelia Fragkou, and Dimitrios
Katsaros. 2021. Backbones for Internet of Battlefield Things. In 2021 16th Annual
Conference on Wireless On-demand Network Systems and Services Conference
(WONS). 1–8. https://doi.org/10.23919/WONS51326.2021.9415560

[23] Haoyu Ren, Darko Anicic, and Thomas A. Runkler. 2021. TinyOL: TinyML with
Online-Learning on Microcontrollers. 2021 International Joint Conference on
Neural Networks (IJCNN) (2021), 1–8.

[24] Muhammad Akmal Shafique, Theocharis Theocharides, Vijay Janapa Reddy, and
Boris Murmann. 2021. TinyML: Current Progress, Research Challenges, and
Future Roadmap. 2021 58th ACM/IEEE Design Automation Conference (DAC)
(2021), 1303–1306.

[25] Baochen Sun and Kate Saenko. 2016. Deep CORAL: Correlation Alignment for
Deep Domain Adaptation. In ECCV Workshops.

[26] Maxim Zemlyanikin, Alexander Smorkalov, Tatiana Khanova, Anna Petrovicheva,
and Grigory Serebryakov. 2019. 512KiB RAM Is Enough! Live Camera Face
Recognition DNN on MCU. 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW) (2019), 2493–2500.

[27] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu
Zhu, Hui Xiong, and Qing He. 2021. A Comprehensive Survey on Transfer
Learning. Proc. IEEE 109, 1 (2021), 43–76. https://doi.org/10.1109/JPROC.2020.
3004555

150

https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.23919/WONS51326.2021.9415560
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555

	Abstract
	1 Introduction
	1.1 Motivations and contributions

	2 Related Work
	3 The family of Techniques
	4 Experimental evaluation
	4.1 Evaluation settings
	4.2 Evaluation results

	5 Summary of experiments
	6 Conclusions
	References

