
A-Tree: Distributed Indexing of Multidimensional
Data for Cloud Computing Environments

Andreas Papadopoulos Dimitrios Katsaros
Department of Computer & Communications Engineering

University of Thessaly, Greece
andpapad@inf.uth.gr, dkatsar@inf.uth.gr

Abstract—Efficient querying of huge volumes of
multidimensional data stored in cloud computing systems has
become a necessity, due to the widespread of cloud storage
facilities. With clouds getting larger and available data growing
larger and larger it is mandatory to develop fast, scalable and
efficient indexing schemes. In this paper, we propose the A-tree, a
distributed indexing scheme for multidimensional data capable of
handling both point and range queries, appropriate for cloud
computing environments. A performance evaluation of the A-tree
against the state-of-the-art competitor attests its superiority,
achieving significantly lower latencies.

Distributed index, multidimensional data, point query, range
query, query processing, cloud computing.

I. INTRODUCTION
Cloud computing and data centers are facing unprecedented

challenges due to huge amount of data and number of users that
must be handled. Several thousands of computers, terabytes of
data and several millions of users comprise a typical cloud
computing system, offered as SaaS, PaaS, or IaaS [1]. Every
user allocates resources for his needs on demand from the
“infinite” cloud, and pays only for what it was really used.
Users and companies must as well consider the privacy of their
data and cost for the services that will be used and select the
most appropriate solution for their needs [2]. The amount of
stored data and the rate of querying them, calls for new data
structures which can satisfy the needs of a cloud system.

The majority of current cloud storage systems e.g.,
Google’s GFS and BigTable [3], Hadoop’s HDFS, and
Amazon’s DYNAMO are based on key-value pairs, and
therefore they can only support point queries. Though this type
of query is not rich enough to fulfill the needs of cloud users;
more complex queries such as range queries are needed.
Answering this type of queries becomes more complicated
since the queried data are multidimensional in nature and
spread among several cloud nodes.

Even though the past literature on databases and distributed
systems is full of data structures capable of dealing with point
and range queries for multidimensional data, the cloud
environments poses new challenges that make these solutions
inappropriate. First of all, cloud systems are distributed over
wide areas – even across different countries – with a (usual)
two-level hierarchy consisting of master and slave nodes and
therefore the centralized database solutions are not an option.

Secondly, proposals that are based on peer-to-peer overlay
structures, such as CAN [4], P-Grid [5], BATON [6], are
similarly not very efficient since they posses one or more of the
following drawbacks: they do not support multidimensional
data, or they require time-consuming, communication-hungry
and careful balancing operations, or they do not differentiate
among nodes. Finally, the recently proposed cloud-aware
distributed structures, such as the EEMINC [14], incur high
latencies.

In order to design a high performance distributed index for
cloud environments, we must use a cost and space efficient
indexing scheme capable of answering queries with low
latency. Specifically, this article makes the following
contributions:

• A new distributed indexing structure for cloud
computing environments, the A-tree1, is described,
which is capable of answering both point and range
queries. It is based on the combination of R-tree [16]
and Bloom filters [17].

• We describe algorithms that distributed the index
nodes to the cloud nodes, as well as well as the
relevant insertion and deletion algorithms.

• A performance evaluation of the proposed structure
against the competing state-of-the-art structure is
conducted, which attest the superiority of the new
structure.

The rest of the article is organized as follows: Section II
describes the relevant work; in Section III, we introduce a
request framework to describe the basic concepts of this work.
Section IV and V provide the details of the local and global
data structure that comprise the A-tree. Specifically, we
describe the update strategy, how R-tree nodes are selected for
being indexed in the global index, how updates are built and
sent, and we also describe the process of update handling and
the construction of global index. Section VI provides the
experimental evaluation of the A-tree and its comparison
against the state-of-the-art EEMINC. Our experimentations
have shown that A-tree is a scalable, distributed, fast and space
efficient index for multidimensional data supporting querying,
insertion and deletion of records. Finally, Section VII
concludes the present article.

1 It is A tree based on Bloom filters for Clouds.

2011 Third IEEE International Conference on Coud Computing Technology and Science

978-0-7695-4622-3/11 $26.00 © 2011 IEEE

DOI 10.1109/CloudCom.2011.61

407

Figure 1. Example of a Bloom filter. Figure 2. A sample R-tree in 2-D space.

II. RELATED WORK
Firstly, we need to describe the A-tree’s constituent

structures, namely Bloom filter and R-tree, and then the
relevant cloud indexing structures. Bloom filter is a bit array
representing a set of items. For each item in a data set the hash
values of independent hash functions are calculated and for
every value the corresponding bit is set to 1. Using Bloom filter
a point query can be answered in O(1) with a very small
probability of false positives. Figure 1 demonstrates a simple
Bloom filter with size ten bits and two hash functions are used:
modulo three and modulo ten. Initially all values are zero and
the diagram shows which bits turn on due to the insertion of
elements 57, 83 and 94. Querying whether element 38 belongs
to the set, we calculate both hash functions and we notice that
the eighth bit is not turned on, which means that 38 does not
belong to the set.

R-tree is a widely used data structure for multidimensional
data. R-tree is the extension of B-tree to multidimensional data.
Each node covers an area in the multidimensional space,
usually represented as a hyper bounding box. For non-leaf
nodes, this bounding box covers all of its children’s bounding
boxes. Leaf nodes contain pointers to the data. A lot of
varieties have been studied including R+-tree and R*-tree with
most of them trying to minimize overlap between nodes’
coverage. Figure 2 demonstrates a simple example of an R-tree
in two dimensional space using rectangles to handle space
partitions. R-tree is extensively being used on many indexing
systems including geographical information systems to provide
spatial index operations in the cloud [7].

A solution to provide query services over peer-to-peer
networks was the Distributed Hash Table (DHT) and some
variances [8]. Another relevant data structure is a scalable
distributed B-tree [9]. With these data structures though, we
can only answer point queries and not range queries over
multidimensional data. As the Map-Reduce framework is
widely used on cloud systems, a decent index structure was
proposed [10]. Although this solution is claimed to be suitable
for large datasets, the Map-Reduce framework itself adds a
significant overhead during processing, which makes it
inappropriate for extremely huge datasets. In addition efforts to
support standard SQL statements with high performance global
index have been made [11]. Other relevant indices include the
RT-CAN [12] and the BR-tree [13]. Although these structures
can answer both point and range queries, their drawback is that

they organize the cloud nodes as a structured peer-to-peer
network, which requires communication overhead and
moreover they ignore the inherent partitioning of the cloud
nodes as master and slaves. Therefore, they are not appropriate
(native) for cloud computing systems.

The most relevant work to ours is the EEMINC index
structure [14]. It exploits the separation of the cloud nodes as
masters and slaves. All nodes with data, i.e., the slaves, are
indexed using a KD-tree as a local index. Every node is
described by a node cube, i.e., a set of ranges for every
attributes of the data. E.g., {(10,20),(10,40),(30,80)} is a node
cube covering two dimensional data where the first, second and
third attributes range from ten to twenty, from ten to forty and
from thirty to eighty, respectively. As a node cube usually is
very large to avoid forwarding queries to irrelevant nodes, each
node splits its own node cube to smaller ones and all divisions
which cover some data are sent over the network to master
nodes. Node cubes that are sent to master nodes are organized
in an R-tree structure which comprises the global index. Upon
a request arrival at a master node, the local R-tree is searched
to find the nodes where potential results are stored. After
accumulating a set of ‘candidate’ nodes, the request is
forwarded to them for further processing.

Although EEMINC took a first step towards addressing the
problem of indexing multidimensional data in clouds in a
native way, it is inefficient since it results in a high number of
false positives, especially for point queries, which in turn
implies larger latencies during query processing.

III. REQUEST-RESPONSE FRAMEWORK
In this section we describe the workflow during query

processing. Nodes are categorized as master nodes and slave
nodes. The difference between the two categories is that if a
node is a master node, it maintains some metadata about the
system. This is a typical approach in the clouds, e.g., in Map-
Reduce frameworks, since it makes a lot of operations easier
and more efficient, despite the fact that the whole system
becomes ‘less’ distributed.

In a cloud system, users will communicate and request
results from the master nodes. These nodes will process the
request and forward it to the appropriate nodes on the platform.
After this step, any communication with the master node
terminates, and the users will communicate only with the
corresponding slave nodes. If a query is forwarded to a node,

408

ALGORITHM 1. BENEFIT FOR INDEXING CHILDREN OF NODE N

1. procedure double BenefitForIndexingChildren(Node n)
2.
3. children_volume = 0.0;
4. children_overlap_volume = 0.0;
5.
6. for (i = 0; i < #children; i++) do
7. childrens_volume += child[i].getVolume();
8. for (j = i+1; j < #children; j++) do
9. children_overlap_volume +=

child[i].overlapVolume(child[j]);
10. end for
11. end for
12.
13. benefit = n.getVolume() – (children_volume –

children_overlap_volume);
14. return benefit;

Figure 3. The framework for query processing.

and after executing it, the result set is empty, then it is said that
a false positive occurred. For a cloud index to be successful,
false positives should be as low as possible, because this also
implies small latencies.

In this framework (Figure 3), the task of query processing
on a master node can be divided into two phases: a) locate
relevant nodes, and b) forward the query to these nodes.
Relevant nodes will process the received query locally, and
will return the results directly to the user, avoiding thus
unnecessary resource consumption on master nodes.

Every slave node is responsible to share any data updates
with all master nodes which fully cover the data located at this
particular slave node. An update is sent after a node starts up
and – according to the changes that will be done – partial or
full updates will be exchanged. In case of deletions and
insertions, it is mandatory that master nodes must be informed
about them. Another important aspect, which is beyond the
scope of this paper, is load balancing. Load balancing must be
given attention too, and there are already some proposals such
as PASSION [15], which can be easily adopted to raise the
performance of the described framework.

Our indexing scheme, A-tree, is composed of an R-tree and
a Bloom filter on each slave node and an array of updates on
each master node (which is different than the approach of
EEMINC), as shown in figure 3. In order to introduce how
master nodes handle requests we must first introduce how slave
nodes handle data and how updates are sent and maintained.

IV. OPERATIONS ON SLAVE NODES

A. Local Operations on Slave Node
Slave nodes are the place where actually data are and query

processing is performed. The data structure that will be used on
the slave nodes must be capable to handle point and range
query, as well as insertion and deletion of records. For this
purpose we use the R-tree data structure. Because an R-tree
uses bounding boxes to describe a node’s coverage, we will
have high false positives for point queries. To avoid this we
also use a Bloom filter, a very space efficient structure which
allows with O(1) time complexity to determine if a point
belongs to a dataset or not with a small probability of false
positive.

The operations and algorithms for searching, inserting and
deleting data are those that involve the R-tree, and moreover
for every insertion on the data set, we add the record to the
Bloom filter of the node. For point and range queries a
traditional search over the R-tree costs O(log n). This is the
cost for range queries, but for point queries Bloom filters are
used. If a point does not belong in the dataset, then the search
using the R-tree structure is avoided, resulting in faster point
queries processing. For points that according to Bloom filter
belong to the dataset, then the R-tree is searched to avoid false
positives. If the system allows a small probability of errors,
then only the Bloom filter is used resulting in O(1) cost for
point query.

Record deletion is more complicated due to the fact that
simple Bloom filter does not support deletion of data. Deletions
are handled as well by our indexing system, even though
deletion is not very common in cloud computing platforms.
The process is described in the next section.

B. Distributing R-Tree Nodes
In this section we describe our algorithm for selecting and

distributing R-tree nodes to master nodes.
Every slave node must structure an update and send it over

the network to all master nodes. As every R-tree node is
described by a hyper bounding box, an update is a combination
of some hyper bounding boxes. To avoid high false positives
rate for point queries, the Bloom filter of the node is also
included in the update that will be sent.

With the assumption that the number of queries that will be
forwarded to a node for processing are proportional to the
volume of the hyper bounding boxes included in the update, we
developed an algorithm (Algorithm 1) for calculating the
benefit of indexing the children of an R-tree node.

Now that we are able to determine the benefit of
distributing a node, Algorithm 2 is proposed for selecting the
R-tree nodes that will be distributed. In real cloud computing
systems, an R-tree may be configured with a high fan out, e.g.,
100. We have a tradeoff between how many nodes to index, as
more nodes will result to higher resource consumption on
master nodes for finding relevant nodes to a query. As this is
mostly depended on the system, we use as parameters the
maximum number of hyper bounding boxes and the minimum

409

ALGORITHM 2. SELECT INDEXING NODES

1. procedure SelectIndexNodes(Node n, SET<BoundingBox>
indexNodes, int remainingSpace, double minBenefit)

2. if (n.getBenefitForIndexingChildrens() > minBenefit &&
!n.hasLeafChild() && n.#childrens <=
remainingSpace) then

3. int currentSize = indexNodes.size();
4. int more_free_slots = 0;
5. int perChild = remainingSpace / n. #children;
6. for (int i = 0; i < n. #children; i++) do
7. SelectIndexNodes(n.child[i], indexNodes, perChild,

minBenefit);
8. more_free_slots = (indexNodes.size() – currentSize);
9. perChild += more_free_slots / (n. #children – i);
10. currentSize = indexNodes.size();
11. end for
12. else
13. indexNodes.add(n.boundingBox);
14. endif

ALGORITHM 3 FIND RELEVANT NODES FOR A POINT QUERY

1. procedure SET GetRelativeNodesPointQuery(Point p)
2.
3. SET nodes = {};
4. for each (UPDATE u in global Index) do
5. if u.bloomfilter.membershipTest(p) then
6. nodes.add(node_id);
7. end if
8. end for
9. return nodes;

ALGORITHM 4. FIND RELEVANT NODES FOR A RANGE QUERY

1. procedure SET GetRelativeNodesRangeQuery(Query r)
2.
3. SET nodes = {};
4. for each (UPDATE u in global Index) do
5. for each (Bounding Box box in u) do
6. if (box.overlaps(q) then
7. nodes.add(u.node_id);
8. continue with next Update;
9. end if
10. end for
11. end for
12. return nodes;

expected benefit for indexing children. If we index only the
root, we have a large number of high false positives, and if we
index all tree nodes above leaves, we have a high processing
cost for locating relevant nodes.

It is also noted that we will not index leaf nodes because we
will end up with all the data in the global index, if we set the
update space high and the benefit low. Algorithm 2, in the
worst case, has a complexity of O(|V|), where V is the number
of nodes in the R-tree.

Upon starting the system every node executes Algorithm 2
to determine which tree nodes should be distributed. The
selected nodes are distributed to the master nodes along with
the Bloom filter of the node. An update is executed at time
O(|V|)+�(n), where n is the number of master nodes running
on the system.

C. Partial Updates
The aforementioned two algorithms describe how to select

nodes for distribution. Upon insertion or deletion, a change on
a local R-tree may occur. To deal with these changes we use
partial updates.

Upon a deletion request we delete appropriate records from
the tree and also keep a counter of deleted records. When
counter reaches a threshold we update Bloom filter and invoke
algorithm 2 to send a new update. It is recommended that the
threshold is set dynamically according to work load on the
system. To deal with insertions each node keeps an extra hyper
bounding box. If newly inserted record is not cover by the
previously sent update, the extra bounding box is expanded to
cover it. As partial update this extra bounding box is sent with
the Bloom filter if it changed. Because the volume of this extra
bounding box may get very big we set a threshold. If the
threshold is reached Algorithm 2 is invoked to send a new
update and reduce the number of false positives.

V. OPERATIONS ON MASTER NODES

A. Construction of Global Index
In this section we describe how master nodes handle the

updates and build the global index. The approach used here is

to keep it as simple as possible in order to obtain fast
processing and low complexity as well as low storage space.

Every master node maintains an array of updates received
by slave nodes. Each index on this array is assigned to a slave
node and holds the last update that was sent from this node.
Organizing updates in an array allows access to a particular
node’s update in O(1) as well as avoiding the need for more
space for pointers. This is extremely useful when processing a
newly arrived update.

Upon an update u arrival from node with id n_id the only
required action is to store it: global_index[n_id] = u. Similar
action is required for a partial update with the difference that
only the extra bounding box is changed and maybe the Bloom
filter too. It is noted that this is lowest possible cost for
handling updates.

Even though the number of master nodes is small compared
to the number of slave nodes, master nodes must keep the same
copy of the global index. To achieve data consistency, some
already proposed methods can be used [18].

B. Processing of Point and Range Queries
According to the described framework, processing a request

at a master node is equivalent to locating relevant nodes and
forwarding the request to them.

Due to the fact that an update is a combination of a Bloom
filter and some bounding boxes, the process for finding
relevant nodes for a point query or a range query are not
identical. Using Bloom filters, included in the updates, the
process of finding relevant nodes can be performed with
complexity �(n) where n is the number of nodes in the system.
For range queries, Bloom filters cannot be used and the
bounding boxes must be searched. Furthermore if a value for
an attribute is not specified then the lowest and the highest
values of the data in the dataset are used. In the worst case the

410

Figure 4. Network topology used for the experiments.

complexity is �(N*�) and in the best case �(�), where B is
the number of bounding boxes in a stored update. Algorithm 3
and Algorithm 4 show the process for finding the set of
relevant nodes to a point query and a range query, respectively.

C. Insertion of New Records
To process an insertion request the same procedure is

followed. Master node which received the request must first
find a set of relevant nodes and forward it to them. Algorithm 1
is used in order to avoid triggering a new update. As nodes
which already cover the record are selected the insertion will
not trigger a new update, except if the number of relevant
nodes is less than the replication factor of the platform in which
case more nodes can be added randomly or by choosing nodes
that cover near data, using k nearest neighbors algorithm over
the bounding boxes of the updates in the global index. If a new
update is sent then it is handled as described previously with
O(1) time cost at master nodes.

D. Deletion Of Records
In order to process a deletion request the steps are similar to

the above. Relevant nodes are located and request is forward to
them for further processing. Each node after deletion will
check if it is time to send partial update as described above.

VI. PERFORMANCE EVALUATION
In this section we evaluate the performance and scalability

of A-tree in comparison to EEMINC, since this is the state-of-
the-art cloud computing-native indexing structure. The
GridSim toolkit [19], an open source and widely used
simulation tool, was used to simulate a data intensive grid
environment. Simulation allowed us to measure point and
range queries latency taking into consideration network delay
according to links capacity as well as the size of the dataset and
the number of nodes in the system.

In all experiments, the EEMINC’s uniform cutting for node
cubes was used and three-dimensional uniformly distributed
data. R-tree fan out was set to fifty and for A-tree and Bloom
filter the size was 30.5 bytes. Each node was a simulation
resource, extending GridSim resource class, with network
capabilities. Network was consisted of five routers and four
links. All master nodes were connected to one router with a
link of 100Mbps. This router had links to two other routers
where all slave nodes were connected with 100 Mbps speed.
The speed of the links between the routers was initially 1 Gbps
and altered later to measure the effect of network speed on
performance. Users were connected to two other routers with

links to the master nodes’ router with speed 100 Mbps. Each
user’ link to the router is 100 Mbps. MTU was set to 1500
bytes for all links. Network topology is shown on figure 4. A
user sends requests to a specific master node, defined at
initialization state, and receives results from any slave nodes.
After the result for the previous request returns then another
request is sent until the predefined number of requests is
reached. The latency for each request is recorded and when all
users finish the last one calculates the total average latency. All
master nodes receive request from equal number of users. Each
slave node also keeps two counters for false positives for point
and range queries.

Experiments were run on a computer system equipped with
four Quad-Core AMD Opteron(tm) Processor 8350, 16
gigabytes ram and 320 gigabytes storage capacity. Operation
system was SUSE Linux Enterprise Server 10 (x86_64)
running kernel version 2.6.16.21-0.8-smp. All experiments ran
five times and average is used for plotting the graphs.

In the first experiment, the latency for point and range
queries is measured as the number of nodes in the system
increases. The total average of false positives is also measured
as it is very important for minimizing network usage, and
resulting in faster query processing if data set does not contain
any response results. Fifteen users are connected to the system
and each one executes one hundred point queries and one
hundred range queries. There are five master nodes, each one
responsible for three users. Each slave node is responsible for
ten thousand records meaning that the size of the collection
increases as the number of nodes increases. Due to the use of
Bloom filters, point queries are forwarded to slave nodes with a
very small probability of false positive, resulting in a dramatic
decrease of resource consumption and lower average latency
for point queries. Unfortunately for range queries Bloom filters
cannot be used, but still the A-tree performs faster especially
for large number of slave nodes showing that the proposed
algorithm for distributing R-tree nodes is efficient. Figure 5(a)
and figure 5(b) show the average latency for point and range
queries respectively revealing that A-tree can handle point and
range queries efficiently with very low latency, especially for
point queries.

In order to evaluate how the number of master nodes affects
queries’ latency, the same experiment was repeated five more
times with the difference that ten master nodes exist now in the
system. Results are shown in figure 5(c) and figure 5(d). Firstly
we notice that latency is lower for A-tree in contrast to
EEMINC where latency is higher when more master nodes
exist in the system. Furthermore we notice that for small
number of nodes with ten master nodes, latency for range
queries is almost the same with EEMINC but as the system
gets larger A-tree performs better.

Concerning point queries, EEMINC performs worst when
more nodes exist in the system, in contrast to A-tree where a
little performance is gained. Table I shows the total average
number of false positives for range and point queries. False
positives for range queries are very close but the difference for
point queries is very high because of the use of Bloom filters.
Although the difference of false positives rates for range
queries is not high, the latency is getting higher for more than
one hundred nodes in the system. Even few less false positives
can have a huge impact on large systems where possible disk

411

TABLE I. AVERAGE FALSE POSITIVES AS NODES INCREASE WITH TEN
MASTERS

#Nodes
Range queries Point queries

A-Tree EEMINC A-Tree EEMINC

100 49813 49707 3 49943

200 74809 74972 7 74894

300 99861 99958 10 99931

400 124702 124830 11 124484

500 149583 149716 13 149836

(a) (b)

(c) (d)

Figure 5. Average point and range queries latency vs. #nodes: (a) average point queries latency with five master nodes (b) average range queries latency with
five master nodes (c) average point queries latency with ten master nodes (d) average range queries latency with ten master nodes

accesses can be avoided as well as network resources. The
most important conclusion from the above experiments is that
A-tree scales linearly as system is getting larger and responds
faster to requests with more master nodes in contrast to
EEMINC where exponential behavior was recorded.

Another very important ascpect for a global index
performanace is how latency is affected by the amount of data
records handled by each node. In the following lines, the
performance of A-tree is measured as the data set is getting
bigger. Although in the previous experiment, the data set was
getting larger as nodes increase, now the number of nodes
remains the same and the data stored on each node increase.
The configuration for this experiment is: five master nodes,
fifteen users with each one making fifty point queries and fifty

range queries, the number of slave nodes was set to fifty and
data size was set from fifteen thousands records to seventy five
thousands records per slave node, resulting to total 3750000
records.

We notice that there is a small increase in latency for A-tree
as the collection is getting bigger due to high number of false
positives, especially for point queries. This is due to the fact
that the Bloom filter, which was set to default size of 30.5 Kb,
is getting full and false positives probability is getting higher.
The average latency for range and point queries is shown on
figure 6. A-tree is still capable of answering both point and
range queries efficiently and scales as the system and data set
are getting larger. Despite the fact that false positives rates, for
both point and range queries, are lower in A-tree than in
EEMINC, this small increasment for point queries along with
the fact that data set is larger on every nodes are the
extenuation for the small increasement of latency. This small
increase of latency can be easily avoided by using bigger
Bloom filters and setting the maximum number of bounding
boxes in updates higher.

Comparing the results from previous experiments, we
notice that we have better performance when less nodes are
used with more records on each of them. This behaviour is
somehow expceted because when more nodes with less records
exist, the whole system is not fully utilized. As far as each node
is not overloaded, it is shown that adding more records to the
node will lower latencies and increase performance of the
whole system.

412

(a) (b)

Figure 7. Average queries latency as number of users increases. (a) with five master nodes (b) with ten master nodes

Figure 6. Average queries latency as data set size increases.

TABLE II. AVERAGE FALSE POSITIVES AS DATA SET SIZE INCREASE

#Records/
Node

Range queries Point queries
A-tree EEMINC A-tree EEMINC

15000 37325 37339 199 37434

30000 37189 37212 707 37500

45000 37049 37123 1509 37500

60000 36911 36918 2516 37481

75000 36791 36803 3577 37499

The next experiment’s purpose is to measure latency as the

number of users on the system increases. The number of users
in our simulation scenario is equivalent to the number of
queries being concurrently processed on the system. The
system size was set to one hundred slave nodes, each one
responsible for ten thousand records, and five master nodes.
The other parameters are set to the same values as in previous
experiments. In this experiment the affection of the number of
master nodes is also measured. Figure(a) and Figure(b) show
the results of this experiment for five and ten master nodes
respectively. According to this experiments, the A-tree also
scales as the number of users – concurrent queries increases.
We notice the large difference for point queries latency
between A-tree and EEMINC for both configurations.
Conserning range queries A-tree performs slightly faster. It is
also noticeable that the number of master nodes slighly affect

the queries latency, driving us to the coclusion that only very
few master nodes are necessary and that increasing the number
of master nodes will only gain a little to nothing performance.
Furthermore, in order to gain more performance and lower
latency the search procedure on slave nodes should be further
optimized.

Another very important aspect is the capacity and speed of
the network. An efficient index should not be affected very
much from changes to networks connections and links speed.
The purpose of next experiment is to evaluate how the links
speed affect latency. The same network topology shown in
figure 4 is used with links speed altered. As speed from users to
a datacenter is mostly an external factor, only the speed of links
between masters and slaves nodes routers has been changed
from 1 Gbps to 100 Mbps. For this experiment ten master
nodes exists. Figure 8(a) shows the average latency for point
queries for both network configurations. As expected latency is
higher, because of limited network capacity, but A-tree is not
affected very much from this change. In constranst to latency
for range queries, shown in figure 8(b), where A-tree is more
affected by network change but still performs better especially
for large systems.

Figure 9 show the latency for point and range queries for
both above network configurations. Ten master nodes and one
hundred slave nodes, each responsible for ten thousand records,
exist in the system. Each user makes one hundred point queries
and one hundred range queries. Average latency as the number
of users in the system increaces is shown in Figure 9 revealing
that A-tree is not affected very much from network changes as
more users send requests simultaniously. This behaviour is
expected as network usage is limited especially for point
queries.

VII. CONCLUSIONS AND FUTURE WORK
In this paper the A-tree is presented. The proposed A-tree is

a combination of R-tree and Bloom filter and support storing
and querying large multidimensional data sets in large
datacenters. Based on the update strategy introduced, it is
capable of fast processing of point and range queries. Our
experiments proved that A-tree is an efficient, distributed data
structure for multidimensional data stored in clouds, which
scales linearly as the system grows larger and data volume is

413

(a) (b)

Figure 8. Average queries latency for different network speeds with ten master nodes: (a) average latency for point queries (b) average latency for range queries.

Figure 9. Average queries latency as users increase for different networks.

getting bigger. In addition, the A-tree is capable of handling a
lot of requests at the same time taking full advantage of
datacenter resources. As network usage is minimized, the A-
tree performs very well for slow network configurations,
especially for point queries.

For future work, the use of dynamic Bloom filters will be
studied as well as the use of R*-tree. It is expected, that both
changes will lower false positives’ rates for both point and
range queries, resulting in a tradeoff between more essential
space and preprocessing time and faster query processing. We
are also considering deployment to a real cloud environment
such as Amazon EC2 for further evaluation and optimizations.

ACKNOWLEDGEMENT
The authors acknowledge the support of the European

Commission through the FET STREP project STAMINA
(FP7-265496).

REFERENCES
[1] M.D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, A. Vakali. "Cloud

Computing: Distributed Internet Computing for IT and Scientific
Research", IEEE Internet Computing, vol. 13, no. 5, pp. 10-13, 2009.

[2] S. Bibi, D. Katsaros, P. Bozanis. "Business application acquisition: On-
premise or SaaS-based solutions?", IEEE Software, March/April 2012.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. Gruber, “BigTable: A distributed

storage system for structured data,” in Proceedings of USENIX OSDI,
pp. 205–218, 2006.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable netetwork”, in Proceedings of ACM
SIGCOMM, 2001.

[5] K. Aberer, P. Cudre-Mauroux, A.D.Z. Despotovic, M. Hauswirth, M.
Punceva, and R. Schmidt, “P-grid: A self-organizing structured p2p
system”, in Proceedings of ACM SIGMOD, 2003.

[6] H.V. Jagadish, B.C. Ooi, and Q.H. Vu, “BATON: A balanced tree
structure for peer-to-peer networks”, in Proceedings of VLDB, 2005.

[7] Y.G. Wang, S. Wang and D.L. Zhou, “Retrieving and indexing spatial
data in the cloud computing environment”, in Proceedings of IEEE
CloudCom, 2009.

[8] “Distributed Hash Tables Links”,
http://www.etse.urv.es/cpairot/dhts.html, 2009.

[9] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable
distributed B-tree,” in Proceedings of VLDB, pp. 598–609, 2008.

[10] I. Konstantinou, E. Angelou, D. Tsoumakos and N. Koziris “Distributed
indexing of Web scale datasets for the cloud” in Proceedings of MDAC,
2010.

[11] J. Qi, L. Qian, and Z. Luo, “Distributed structured database system
HugeTable”, in Proceedings of IEEE CloudCom , 2009.

[12] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi., “Indexing multi-
dimensional data in a cloud system”, In Proceedings of ACM SIGMOD,
pp. 591–602, 2010.

[13] Y. Hua, B. Xiao, J. Wang “BR-tree: A scalable prototype for supporting
multiple queries of multidimensional data”, IEEE Transactions on
Computers, vol. 58, no. 12, 2009.

[14] X. Zhang, J. Ai, Z. Wang, J. Lu, X. Meng “An efficient multi-
dimensional index for cloud data management”, In Proceedings of
CloudDB, pp. 17-24, 2009.

[15] I. Konstantinou and D. Tsoumakos and N. Koziris “Measuring the cost
of online load-balancing in distributed range-queriable systems” In
Proceedings of P2P Computing, 2009.

[16] A Guttman, “R-trees: A dynamic index structure for spatial searching”,
ACM SIGMOD Record, vol. 14, no. 2, pp. 47-57, 1984.

[17] B.H. Bloom, “Space/time trade-offs in hash coding with allowable
errors”, Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.

[18] M.A. Islam, S.V. Vrbsky, “Tree-based consistency approach for cloud
databases”, in Proceedings of IEEE CloudCom, 2010.

[19] A. Sulistio, U. Cibej, S. Venugopal, B. Robic and R. Buyya “A toolkit
for modelling and simulating data grids: An extension to GridSim”,
Concurrency and Computation: Practice and Experience, vol. 20, no.
13, pp. 1591-1609, 2008

414

