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Abstract—Efficient querying of huge volumes of 
multidimensional data stored in cloud computing systems has 
become a necessity, due to the widespread of cloud storage 
facilities. With clouds getting larger and available data growing 
larger and larger it is mandatory to develop fast, scalable and 
efficient indexing schemes. In this paper, we propose the A-tree, a 
distributed indexing scheme for multidimensional data capable of 
handling both point and range queries, appropriate for cloud 
computing environments. A performance evaluation of the A-tree 
against the state-of-the-art competitor attests its superiority, 
achieving significantly lower latencies. 

Distributed index, multidimensional data, point query, range 
query, query processing, cloud computing. 

I. INTRODUCTION 
Cloud computing and data centers are facing unprecedented 

challenges due to huge amount of data and number of users that 
must be handled. Several thousands of computers, terabytes of 
data and several millions of users comprise a typical cloud 
computing system, offered as SaaS, PaaS, or IaaS [1]. Every 
user allocates resources for his needs on demand from the 
“infinite” cloud, and pays only for what it was really used. 
Users and companies must as well consider the privacy of their 
data and cost for the services that will be used and select the 
most appropriate solution for their needs [2]. The amount of 
stored data and the rate of querying them, calls for new data 
structures which can satisfy the needs of a cloud system.  

The majority of current cloud storage systems e.g., 
Google’s GFS and BigTable [3], Hadoop’s HDFS, and 
Amazon’s DYNAMO are based on key-value pairs, and 
therefore they can only support point queries. Though this type 
of query is not rich enough to fulfill the needs of cloud users; 
more complex queries such as range queries are needed. 
Answering this type of queries becomes more complicated 
since the queried data are multidimensional in nature and 
spread among several cloud nodes. 

Even though the past literature on databases and distributed 
systems is full of data structures capable of dealing with point 
and range queries for multidimensional data, the cloud 
environments poses new challenges that make these solutions 
inappropriate. First of all, cloud systems are distributed over 
wide areas – even across different countries – with a (usual) 
two-level hierarchy consisting of master and slave nodes and 
therefore the centralized database solutions are not an option. 

Secondly, proposals that are based on peer-to-peer overlay 
structures, such as CAN [4], P-Grid [5], BATON [6], are 
similarly not very efficient since they posses one or more of the 
following drawbacks: they do not support multidimensional 
data, or they require time-consuming, communication-hungry 
and careful balancing operations, or they do not differentiate 
among nodes. Finally, the recently proposed cloud-aware 
distributed structures, such as the EEMINC [14], incur high 
latencies. 

In order to design a high performance distributed index for 
cloud environments, we must use a cost and space efficient 
indexing scheme capable of answering queries with low 
latency. Specifically, this article makes the following 
contributions: 

• A new distributed indexing structure for cloud 
computing  environments, the A-tree1,  is described, 
which is capable of answering both point and range 
queries. It is based on the combination of R-tree [16] 
and Bloom filters [17]. 

• We describe algorithms that distributed the index 
nodes to the cloud nodes, as well as well as the 
relevant insertion and deletion algorithms. 

• A performance evaluation of the proposed structure 
against the competing state-of-the-art structure is 
conducted, which attest the superiority of the new 
structure. 

The rest of the article is organized as follows: Section II 
describes the relevant work; in Section III, we introduce a 
request framework to describe the basic concepts of this work. 
Section IV and V provide the details of the local and global 
data structure that comprise the A-tree. Specifically, we 
describe the update strategy, how R-tree nodes are selected for 
being indexed in the global index, how updates are built and 
sent, and we also describe the process of update handling and 
the construction of global index. Section VI provides the 
experimental evaluation of the A-tree and its comparison 
against the state-of-the-art EEMINC. Our experimentations 
have shown that A-tree is a scalable, distributed, fast and space 
efficient index for multidimensional data supporting querying, 
insertion and deletion of records. Finally, Section VII 
concludes the present article. 

                                                           
1 It is A tree based on Bloom filters for Clouds. 

2011 Third IEEE International Conference on Coud Computing Technology and Science

978-0-7695-4622-3/11 $26.00 © 2011 IEEE

DOI 10.1109/CloudCom.2011.61

407



 

 

Figure 1.  Example of a Bloom filter. Figure 2.  A sample R-tree in 2-D space. 

II. RELATED WORK 
Firstly, we need to describe the A-tree’s constituent 

structures, namely Bloom filter and R-tree, and then the 
relevant cloud indexing structures. Bloom filter is a bit array 
representing a set of items. For each item in a data set the hash 
values of independent hash functions are calculated and for 
every value the corresponding bit is set to 1. Using Bloom filter 
a point query can be answered in O(1) with a very small 
probability of false positives. Figure 1 demonstrates a simple 
Bloom filter with size ten bits and two hash functions are used: 
modulo three and modulo ten. Initially all values are zero and 
the diagram shows which bits turn on due to the insertion of 
elements 57, 83 and 94. Querying whether element 38 belongs 
to the set, we calculate both hash functions and we notice that 
the eighth bit is not turned on, which means that 38 does not 
belong to the set. 

R-tree is a widely used data structure for multidimensional 
data. R-tree is the extension of B-tree to multidimensional data. 
Each node covers an area in the multidimensional space, 
usually represented as a hyper bounding box. For non-leaf 
nodes, this bounding box covers all of its children’s bounding 
boxes. Leaf nodes contain pointers to the data. A lot of 
varieties have been studied including R+-tree and R*-tree with 
most of them trying to minimize overlap between nodes’ 
coverage. Figure 2 demonstrates a simple example of an R-tree 
in two dimensional space using rectangles to handle space 
partitions. R-tree is extensively being used on many indexing 
systems including geographical information systems to provide 
spatial index operations in the cloud [7]. 

A solution to provide query services over peer-to-peer 
networks was the Distributed Hash Table (DHT) and some 
variances [8]. Another relevant data structure is a scalable 
distributed B-tree [9]. With these data structures though, we 
can only answer point queries and not range queries over 
multidimensional data. As the Map-Reduce framework is 
widely used on cloud systems, a decent index structure was 
proposed [10]. Although this solution is claimed to be suitable 
for large datasets, the Map-Reduce framework itself adds a 
significant overhead during processing, which makes it 
inappropriate for extremely huge datasets. In addition efforts to 
support standard SQL statements with high performance global 
index have been made [11]. Other relevant indices include the 
RT-CAN [12] and the BR-tree [13]. Although these structures 
can answer both point and range queries, their drawback is that 

they organize the cloud nodes as a structured peer-to-peer 
network, which requires communication overhead and 
moreover they ignore the inherent partitioning of the cloud 
nodes as master and slaves. Therefore, they are not appropriate 
(native) for cloud computing systems. 

The most relevant work to ours is the EEMINC index 
structure [14]. It exploits the separation of the cloud nodes as 
masters and slaves. All nodes with data, i.e., the slaves, are 
indexed using a KD-tree as a local index. Every node is 
described by a node cube, i.e., a set of ranges for every 
attributes of the data. E.g., {(10,20),(10,40),(30,80)} is a node 
cube covering two dimensional data where the first, second and 
third attributes range from ten to twenty, from ten to forty and 
from thirty to eighty, respectively. As a node cube usually is 
very large to avoid forwarding queries to irrelevant nodes, each 
node splits its own node cube to smaller ones and all divisions 
which cover some data are sent over the network to master 
nodes. Node cubes that are sent to master nodes are organized 
in an R-tree structure which comprises the global index. Upon 
a request arrival at a master node, the local R-tree is searched 
to find the nodes where potential results are stored. After 
accumulating a set of ‘candidate’ nodes, the request is 
forwarded to them for further processing.  

Although EEMINC took a first step towards addressing the 
problem of indexing multidimensional data in clouds in a 
native way, it is inefficient since it results in a high number of 
false positives, especially for point queries, which in turn 
implies larger latencies during query processing. 

III. REQUEST-RESPONSE FRAMEWORK 
In this section we describe the workflow during query 

processing. Nodes are categorized as master nodes and slave 
nodes. The difference between the two categories is that if a 
node is a master node, it maintains some metadata about the 
system. This is a typical approach in the clouds, e.g., in Map-
Reduce frameworks, since it makes a lot of operations easier 
and more efficient, despite the fact that the whole system 
becomes ‘less’ distributed. 

In a cloud system, users will communicate and request 
results from the master nodes. These nodes will process the 
request and forward it to the appropriate nodes on the platform. 
After this step, any communication with the master node 
terminates, and the users will communicate only with the 
corresponding slave nodes. If a query is forwarded to a node, 
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ALGORITHM 1. BENEFIT FOR INDEXING CHILDREN OF NODE N 

1. procedure double BenefitForIndexingChildren(Node n) 
2.  
3. children_volume = 0.0; 
4. children_overlap_volume = 0.0; 
5.    
6. for ( i = 0; i < #children; i++ ) do 
7.  childrens_volume += child[i].getVolume(); 
8.  for ( j = i+1; j < #children; j++ ) do 
9.      children_overlap_volume += 

child[i].overlapVolume(child[j]); 
10.  end for 
11. end for 
12.  
13. benefit = n.getVolume() – (children_volume – 

children_overlap_volume); 
14. return benefit; 

 
Figure 3.  The framework for query processing. 

and after executing it, the result set is empty, then it is said that 
a false positive occurred. For a cloud index to be successful, 
false positives should be as low as possible, because this also 
implies small latencies. 

In this framework (Figure 3), the task of query processing 
on a master node can be divided into two phases: a) locate 
relevant nodes, and b) forward the query to these nodes. 
Relevant nodes will process the received query locally, and 
will return the results directly to the user, avoiding thus 
unnecessary resource consumption on master nodes.  

Every slave node is responsible to share any data updates 
with all master nodes which fully cover the data located at this 
particular slave node. An update is sent after a node starts up 
and – according to the changes that will be done – partial or 
full updates will be exchanged. In case of deletions and 
insertions, it is mandatory that master nodes must be informed 
about them. Another important aspect, which is beyond the 
scope of this paper, is load balancing. Load balancing must be 
given attention too, and there are already some proposals such 
as PASSION [15], which can be easily adopted to raise the 
performance of the described framework.  

Our indexing scheme, A-tree, is composed of an R-tree and 
a Bloom filter on each slave node and an array of updates on 
each master node (which is different than the approach of 
EEMINC), as shown in figure 3. In order to introduce how 
master nodes handle requests we must first introduce how slave 
nodes handle data and how updates are sent and maintained. 

IV. OPERATIONS ON SLAVE NODES 

A. Local Operations on Slave Node 
Slave nodes are the place where actually data are and query 

processing is performed. The data structure that will be used on 
the slave nodes must be capable to handle point and range 
query, as well as insertion and deletion of records. For this 
purpose we use the R-tree data structure. Because an R-tree 
uses bounding boxes to describe a node’s coverage, we will 
have high false positives for point queries. To avoid this we 
also use a Bloom filter, a very space efficient structure which 
allows with O(1) time complexity to determine if a point 
belongs to a dataset or not with a small probability of false 
positive. 

The operations and algorithms for searching, inserting and 
deleting data are those that involve the R-tree, and moreover 
for every insertion on the data set, we add the record to the 
Bloom filter of the node. For point and range queries a 
traditional search over the R-tree costs O(log n). This is the 
cost for range queries, but for point queries Bloom filters are 
used. If a point does not belong in the dataset, then the search 
using the R-tree structure is avoided, resulting in faster point 
queries processing. For points that according to Bloom filter 
belong to the dataset, then the R-tree is searched to avoid false 
positives. If the system allows a small probability of errors, 
then only the Bloom filter is used resulting in O(1) cost for 
point query. 

Record deletion is more complicated due to the fact that 
simple Bloom filter does not support deletion of data. Deletions 
are handled as well by our indexing system, even though 
deletion is not very common in cloud computing platforms. 
The process is described in the next section. 

B. Distributing R-Tree Nodes 
In this section we describe our algorithm for selecting and 

distributing R-tree nodes to master nodes. 
Every slave node must structure an update and send it over 

the network to all master nodes. As every R-tree node is 
described by a hyper bounding box, an update is a combination 
of some hyper bounding boxes. To avoid high false positives 
rate for point queries, the Bloom filter of the node is also 
included in the update that will be sent. 

With the assumption that the number of queries that will be 
forwarded to a node for processing are proportional to the 
volume of the hyper bounding boxes included in the update, we 
developed an algorithm (Algorithm 1) for calculating the 
benefit of indexing the children of an R-tree node.  

Now that we are able to determine the benefit of 
distributing a node, Algorithm 2 is proposed for selecting the 
R-tree nodes that will be distributed. In real cloud computing 
systems, an R-tree may be configured with a high fan out, e.g., 
100. We have a tradeoff between how many nodes to index, as 
more nodes will result to higher resource consumption on 
master nodes for finding relevant nodes to a query. As this is 
mostly depended on the system, we use as parameters the 
maximum number of hyper bounding boxes and the minimum 
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ALGORITHM 2. SELECT INDEXING NODES 

1. procedure SelectIndexNodes( Node n, SET<BoundingBox> 
indexNodes,  int remainingSpace, double minBenefit) 
 

2. if ( n.getBenefitForIndexingChildrens() > minBenefit && 
!n.hasLeafChild()  && n.#childrens <= 
remainingSpace ) then 

3.  int currentSize = indexNodes.size(); 
4.  int more_free_slots = 0; 
5.  int perChild = remainingSpace / n. #children; 
6.  for ( int i = 0; i < n. #children; i++ ) do 
7.      SelectIndexNodes(n.child[i], indexNodes, perChild, 

minBenefit); 
8.      more_free_slots = (indexNodes.size() – currentSize); 
9.      perChild += more_free_slots / (n. #children – i); 
10.      currentSize = indexNodes.size(); 
11.  end for 
12. else  
13.  indexNodes.add(n.boundingBox); 
14. endif 

ALGORITHM 3 FIND RELEVANT NODES FOR A POINT QUERY 

1. procedure SET GetRelativeNodesPointQuery(Point p) 
2.  
3. SET nodes = {}; 
4. for each (UPDATE u in global Index) do 
5.  if u.bloomfilter.membershipTest(p) then 
6.   nodes.add(node_id); 
7.  end if 
8. end for 
9. return nodes;

ALGORITHM 4. FIND RELEVANT NODES FOR A RANGE QUERY 

1. procedure SET GetRelativeNodesRangeQuery(Query r) 
2.  
3. SET nodes = {}; 
4. for each (UPDATE u in global Index) do 
5.  for each (Bounding Box box in u) do 
6.   if (box.overlaps(q) then 
7.    nodes.add(u.node_id); 
8.    continue with next Update; 
9.   end if 
10.  end for 
11. end for 
12. return nodes;

 

expected benefit for indexing children. If we index only the 
root, we have a large number of high false positives, and if we 
index all tree nodes above leaves, we have a high processing 
cost for locating relevant nodes.  

It is also noted that we will not index leaf nodes because we 
will end up with all the data in the global index, if we set the 
update space high and the benefit low. Algorithm 2, in the 
worst case, has a complexity of O(|V|), where V is the number 
of nodes in the R-tree. 

Upon starting the system every node executes Algorithm 2 
to determine which tree nodes should be distributed. The 
selected nodes are distributed to the master nodes along with 
the Bloom filter of the node. An update is executed at time 
O(|V|)+�(n), where n is the number of master nodes running 
on the system. 

C. Partial Updates 
The aforementioned two algorithms describe how to select 

nodes for distribution. Upon insertion or deletion, a change on 
a local R-tree may occur. To deal with these changes we use 
partial updates. 

Upon a deletion request we delete appropriate records from 
the tree and also keep a counter of deleted records. When 
counter reaches a threshold we update Bloom filter and invoke 
algorithm 2 to send a new update. It is recommended that the 
threshold is set dynamically according to work load on the 
system. To deal with insertions each node keeps an extra hyper 
bounding box. If newly inserted record is not cover by the 
previously sent update, the extra bounding box is expanded to 
cover it. As partial update this extra bounding box is sent with 
the Bloom filter if it changed. Because the volume of this extra 
bounding box may get very big we set a threshold. If the 
threshold is reached Algorithm 2 is invoked to send a new 
update and reduce the number of false positives.  

V. OPERATIONS ON MASTER NODES 

A. Construction of Global Index 
In this section we describe how master nodes handle the 

updates and build the global index. The approach used here is 

to keep it as simple as possible in order to obtain fast 
processing and low complexity as well as low storage space. 

Every master node maintains an array of updates received 
by slave nodes. Each index on this array is assigned to a slave 
node and holds the last update that was sent from this node. 
Organizing updates in an array allows access to a particular 
node’s update in O(1) as well as avoiding the need for more 
space for pointers. This is extremely useful when processing a 
newly arrived update.  

Upon an update u arrival from node with id n_id the only 
required action is to store it: global_index[n_id] = u. Similar 
action is required for a partial update with the difference that 
only the extra bounding box is changed and maybe the Bloom 
filter too. It is noted that this is lowest possible cost for 
handling updates. 

Even though the number of master nodes is small compared 
to the number of slave nodes, master nodes must keep the same 
copy of the global index. To achieve data consistency, some 
already proposed methods can be used [18]. 

B. Processing of Point and Range Queries 
According to the described framework, processing a request 

at a master node is equivalent to locating relevant nodes and 
forwarding the request to them.  

Due to the fact that an update is a combination of a Bloom 
filter and some bounding boxes, the process for finding 
relevant nodes for a point query or a range query are not 
identical. Using Bloom filters, included in the updates, the 
process of finding relevant nodes can be performed with 
complexity �(n) where n is the number of nodes in the system. 
For range queries, Bloom filters cannot be used and the 
bounding boxes must be searched. Furthermore if a value for 
an attribute is not specified then the lowest and the highest 
values of the data in the dataset are used. In the worst case the 
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Figure 4. Network topology used for the experiments. 

complexity is �(N*�) and in the best case �(�), where B is 
the number of bounding boxes in a stored update. Algorithm 3 
and Algorithm 4 show the process for finding the set of 
relevant nodes to a point query and a range query, respectively. 

C. Insertion of New Records 
To process an insertion request the same procedure is 

followed. Master node which received the request must first 
find a set of relevant nodes and forward it to them. Algorithm 1 
is used in order to avoid triggering a new update. As nodes 
which already cover the record are selected the insertion will 
not trigger a new update, except if the number of relevant 
nodes is less than the replication factor of the platform in which 
case more nodes can be added randomly or by choosing nodes 
that cover near data, using k nearest neighbors algorithm over 
the bounding boxes of the updates in the global index. If a new 
update is sent then it is handled as described previously with 
O(1) time cost at master nodes. 

D. Deletion Of Records 
In order to process a deletion request the steps are similar to 

the above. Relevant nodes are located and request is forward to 
them for further processing. Each node after deletion will 
check if it is time to send partial update as described above. 

VI. PERFORMANCE EVALUATION 
In this section we evaluate the performance and scalability 

of A-tree in comparison to EEMINC, since this is the state-of-
the-art cloud computing-native indexing structure. The 
GridSim toolkit [19], an open source and widely used 
simulation tool, was used to simulate a data intensive grid 
environment. Simulation allowed us to measure point and 
range queries latency taking into consideration network delay 
according to links capacity as well as the size of the dataset and 
the number of nodes in the system. 

In all experiments, the EEMINC’s uniform cutting for node 
cubes was used and three-dimensional uniformly distributed 
data. R-tree fan out was set to fifty and for A-tree and Bloom 
filter the size was 30.5 bytes. Each node was a simulation 
resource, extending GridSim resource class, with network 
capabilities.  Network was consisted of five routers and four 
links. All master nodes were connected to one router with a 
link of 100Mbps. This router had links to two other routers 
where all slave nodes were connected with 100 Mbps speed. 
The speed of the links between the routers was initially 1 Gbps 
and altered later to measure the effect of network speed on 
performance. Users were connected to two other routers with 

links to the master nodes’ router with speed 100 Mbps. Each 
user’ link to the router is 100 Mbps. MTU was set to 1500 
bytes for all links. Network topology is shown on figure 4. A 
user sends requests to a specific master node, defined at 
initialization state, and receives results from any slave nodes. 
After the result for the previous request returns then another 
request is sent until the predefined number of requests is 
reached. The latency for each request is recorded and when all 
users finish the last one calculates the total average latency. All 
master nodes receive request from equal number of users. Each 
slave node also keeps two counters for false positives for point 
and range queries.  

Experiments were run on a computer system equipped with 
four Quad-Core AMD Opteron(tm) Processor 8350, 16 
gigabytes ram and 320 gigabytes storage capacity. Operation 
system was SUSE Linux Enterprise Server 10 (x86_64) 
running kernel version 2.6.16.21-0.8-smp. All experiments ran 
five times and average is used for plotting the graphs. 

In the first experiment, the latency for point and range 
queries is measured as the number of nodes in the system 
increases. The total average of false positives is also measured 
as it is very important for minimizing network usage, and 
resulting in faster query processing if data set does not contain 
any response results. Fifteen users are connected to the system 
and each one executes one hundred point queries and one 
hundred range queries. There are five master nodes, each one 
responsible for three users. Each slave node is responsible for 
ten thousand records meaning that the size of the collection 
increases as the number of nodes increases. Due to the use of 
Bloom filters, point queries are forwarded to slave nodes with a 
very small probability of false positive, resulting in a dramatic 
decrease of resource consumption and lower average latency 
for point queries. Unfortunately for range queries Bloom filters 
cannot be used, but still the A-tree performs faster especially 
for large number of slave nodes showing that the proposed 
algorithm for distributing R-tree nodes is efficient. Figure 5(a) 
and figure 5(b) show the average latency for point and range 
queries respectively revealing that A-tree can handle point and 
range queries efficiently with very low latency, especially for 
point queries.  

In order to evaluate how the number of master nodes affects 
queries’ latency, the same experiment was repeated five more 
times with the difference that ten master nodes exist now in the 
system. Results are shown in figure 5(c) and figure 5(d). Firstly 
we notice that latency is lower for A-tree in contrast to 
EEMINC where latency is higher when more master nodes 
exist in the system. Furthermore we notice that for small 
number of nodes with ten master nodes, latency for range 
queries is almost the same with EEMINC but as the system 
gets larger A-tree performs better. 

Concerning point queries, EEMINC performs worst when 
more nodes exist in the system, in contrast to A-tree where a 
little performance is gained. Table I shows the total average 
number of false positives for range and point queries. False 
positives for range queries are very close but the difference for 
point queries is very high because of the use of Bloom filters. 
Although the difference of false positives rates for range 
queries is not high, the latency is getting higher for more than 
one hundred nodes in the system. Even few less false positives 
can have a huge impact on large systems where possible disk 
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TABLE I. AVERAGE FALSE POSITIVES AS NODES INCREASE WITH TEN 
MASTERS 

#Nodes 
Range queries Point queries 

A-Tree EEMINC A-Tree EEMINC 

100 49813 49707 3 49943 

200 74809 74972 7 74894 

300 99861 99958 10 99931 

400 124702 124830 11 124484 

500 149583 149716 13 149836 

(a) (b) 

(c) (d) 

Figure 5. Average point and range queries latency vs. #nodes: (a) average point queries latency with five master nodes (b) average range queries latency with 
five master nodes (c) average point queries latency with ten master nodes (d) average range queries latency with ten master nodes 

accesses can be avoided as well as network resources. The 
most important conclusion from the above experiments is that 
A-tree scales linearly as system is getting larger and responds 
faster to requests with more master nodes in contrast to 
EEMINC where exponential behavior was recorded. 

Another very important ascpect for a global index 
performanace is how latency is affected by the amount of data 
records handled by each node. In the following lines, the 
performance of A-tree is measured as the data set is getting 
bigger. Although in the previous experiment, the data set was 
getting larger as nodes increase, now the number of nodes 
remains the same and the data stored on each node increase. 
The configuration for this experiment is: five master nodes, 
fifteen users with each one making fifty point queries and fifty 

range queries, the number of slave nodes was set to fifty and 
data size was set from fifteen thousands records to seventy five 
thousands records per slave node, resulting to total 3750000 
records.  

We notice that there is a small increase in latency for A-tree 
as the collection is getting bigger due to high number of false 
positives, especially for point queries. This is due to the fact 
that the Bloom filter, which was set to default size of 30.5 Kb, 
is getting full and false positives probability is getting higher. 
The average latency for range and point queries is shown on 
figure 6. A-tree is still capable of answering both point and 
range queries efficiently and scales as the system and data set 
are getting larger. Despite the fact that false positives rates, for 
both point and range queries, are lower in A-tree than in 
EEMINC, this small increasment for point queries along with 
the fact that data set is larger on every nodes are the 
extenuation for the small increasement of latency. This small 
increase of latency can be easily avoided by using bigger 
Bloom filters and setting the maximum number of bounding 
boxes in updates higher.  

Comparing the results from previous experiments, we 
notice that we have better performance when less nodes are 
used with more records on each of them. This behaviour is 
somehow expceted because when more nodes with less records 
exist, the whole system is not fully utilized. As far as each node 
is not overloaded, it is shown that adding more records to the 
node will lower latencies and increase performance of the 
whole system. 
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(a) (b) 

Figure 7. Average queries latency as number of users increases. (a) with five master nodes (b) with ten master nodes 

 

 
Figure 6. Average queries latency as data set size increases. 

TABLE II. AVERAGE FALSE POSITIVES AS DATA SET SIZE INCREASE 

#Records/
Node 

Range queries Point queries 
A-tree EEMINC A-tree EEMINC 

15000 37325 37339 199 37434 

30000 37189 37212 707 37500 

45000 37049 37123 1509 37500 

60000 36911 36918 2516 37481 

75000 36791 36803 3577 37499 

 
The next experiment’s purpose is to measure latency as the 

number of users on the system increases. The number of users 
in our simulation scenario is equivalent to the number of 
queries being concurrently processed on the system. The 
system size was set to one hundred slave nodes, each one 
responsible for ten thousand records, and five master nodes. 
The other parameters are set to the same values as in previous 
experiments. In this experiment the affection of the number of 
master nodes is also measured. Figure(a) and Figure(b) show 
the results of this experiment for five and ten master nodes 
respectively. According to this experiments, the A-tree also 
scales as the number of users – concurrent queries increases. 
We notice the large difference for point queries latency 
between A-tree and EEMINC for both configurations. 
Conserning range queries A-tree performs slightly faster. It is 
also noticeable that the number of master nodes slighly affect 

the queries latency, driving us to the coclusion that only very 
few master nodes are necessary and that increasing the number 
of master nodes will only gain a little to nothing performance. 
Furthermore, in order to gain more performance and lower 
latency the search procedure on slave nodes should be further 
optimized.  

Another very important aspect is the capacity and speed of 
the network. An efficient index should not be affected very 
much from changes to networks connections and links speed. 
The purpose of next experiment is to evaluate how the links 
speed affect latency. The same network topology shown in 
figure 4 is used with links speed altered. As speed from users to 
a datacenter is mostly an external factor, only the speed of links 
between masters and slaves nodes routers has been changed 
from 1 Gbps to 100 Mbps. For this experiment ten master 
nodes exists. Figure 8(a) shows the average latency for point 
queries for both network configurations. As expected latency is 
higher, because of limited network capacity, but A-tree is not 
affected very much from this change. In constranst to latency 
for range queries, shown in figure 8(b), where A-tree is more 
affected by network change but still performs better especially 
for large systems. 

Figure 9 show the latency for point and range queries for 
both above network configurations. Ten master nodes and one 
hundred slave nodes, each responsible for ten thousand records, 
exist in the system. Each user makes one hundred point queries 
and one hundred range queries. Average latency as the number 
of users in the system increaces is shown in Figure 9 revealing 
that A-tree is not affected very much from network changes as 
more users send requests simultaniously. This behaviour is 
expected as network usage is limited especially for point 
queries.  

VII. CONCLUSIONS AND FUTURE WORK 
In this paper the A-tree is presented. The proposed A-tree is 

a combination of R-tree and Bloom filter and support storing 
and querying large multidimensional data sets in large 
datacenters. Based on the update strategy introduced, it is 
capable of fast processing of point and range queries. Our 
experiments proved that A-tree is an efficient, distributed data 
structure for multidimensional data stored in clouds, which 
scales linearly as the system grows larger and data volume is 
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(a) (b) 

Figure 8. Average queries latency for different network speeds with ten master nodes: (a) average latency for point queries (b) average latency for range queries. 

 

 
Figure 9. Average queries latency as users increase for different networks. 

getting bigger. In addition, the A-tree is capable of handling a 
lot of requests at the same time taking full advantage of 
datacenter resources. As network usage is minimized, the A-
tree performs very well for slow network configurations, 
especially for point queries. 

For future work, the use of dynamic Bloom filters will be 
studied as well as the use of R*-tree. It is expected, that both 
changes will lower false positives’ rates for both point and 
range queries, resulting in a tradeoff between more essential 
space and preprocessing time and faster query processing. We 
are also considering deployment to a real cloud environment 
such as Amazon EC2 for further evaluation and optimizations. 
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