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Abstract—With the emergence of Online Social Networks
(OSNs), as the most popular medium for advertisements, as
source of knowledge and information, the emergence of malicious
contents (viruses, false rumors, etc..) has become a critical issue
that requires immediate attention. In this study we investigate
on blocking the contagion of malicious things dynamically, by
continuously fighting the diffusion near the source of misinfor-
mation under the Susceptible-Infectious-Recovered (SIR) model.
We focus on protecting networked populations by removing key
connections between nodes, and show via experimental results,
that by following the infection the contagion can be controlled
more efficiently and even being stopped in the earliest steps. We
modify a well studied heuristic from the literature of graphs,
and show that our proposed technique significantly outperforms
what we believe the state-of-the-art competitors by successfully
confronting the infection in real networks.

I. INTRODUCTION
Controlling epidemic outbreaks [1], i.e., the diffusion of

“troublesome” contents over the social medium, has received
increased attention over the last decade. Most of the so
far proposed studies focus on immunization techniques that
remove node-users from a network to block the outspread
of undesired propagations [2][3][4]. It has been shown that
removing the bridge-nodes (nodes connected to different com-
munities) or nodes connected to many other nodes (hubs),
can quite often be an effective solution. However with such
methods the immunized entities are completely isolated from
the rest of the networked society, while at the same time
a network’s integrity may be significantly affected. Such
drawbacks prompted the research community towards edge-
based immunization methodologies for controlling epidemic
outbreaks [5][6][7] since the removal of edges is considered
as a more realistic approach. For instance removing connec-
tions between users e.g., friendships in Facebook, is a more
feasible countermeasure than removing individuals from the
entire Facebook society. As another example we may consider
different type of networks e.g., in military communications
shutting down a router may not be an available option.

A similar problem to our case study is the issue of identi-
fying a minimal subset of nodes or link connections between
them, whose removal will minimize the number of potential
infected nodes. Researchers often nominate greedy algorithms
to address the issue or propose approximations on the basis of
greedy strategies [8][9]. While the aforementioned studies and
the current work, focus in deleting network components (e.g.,
nodes or edges) to protect a networked environment, other
studies apply different policies e.g., by utilizing protectors who
will disseminate good information to counter the malicious

Fig. 1. Generalized framework for blocking epidemic outbreaks in Complex
Networks. This article focuses on dynamic strategies and edge removing
mechanisms to hinder the spread of misinformation.

propagation as in [10].
Heretofore we may consider node removal approaches as

a particular case of edge-based techniques, where the deletion
of all connections of a node results in its abscission from
the rest of the network. As a next step we group previous
works, in terms of how they “protect” a network from false
propagations i.e., static or dynamic control strategies. A static
control approach vaccinates network components, prior to the
outbreak, by selectively removing a limited β number of
nodes or connections, based for instance on different centrality
measures or path counting approaches. Although we obtained
a number of good strategies for priorly dealing with an
epidemic, what more can be achieved by dynamically facing
the contagion?

In this article we focus on controlling epidemics by
dynamically choosing which connections to remove as we
closely follow the contagion within the diffusion steps. At each
discrete time step a number of β connections may be removed
from the network as countermeasures from the authorities. For
example consider an event much like KoobFace [11] and a spe-
cialized personnel with the knowledge of the currently infected
accounts. Instead of taking drastic measures to remove all the
connections from the infected users and block the outspread
of the virus, the staff could focus on specific interactions
among all immediate endangered accounts to hinder or stop
the malware from propagating without completely disrupting
the networked environment. However we cannot expect for the
virus to stay idle while the personnel operates to protect the
network and thus we assume that we have a limited number
of actions-time before it further propagates.

By mining the knowledge out of a network’s current
state i.e., origin of infection and susceptible surroundings,
a more profound and efficient selection among all possible
and proximal edges may be adopted, which intuitively will
better hinder the contagion. To the best of our knowledge
little work is done in confronting an epidemic dynamically.
In [12] the authors proposed a dynamic approach for fighting
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Fig. 2. In the current time step (t) the infected nodes are assumed to be ‘a’
and ‘m’ whereas n1 and n2 are the infected sources of the immediate previous
step (t-1) which are now immunized (removed). The dashed lines correspond
to the three hop abstract network images, as seen from the perspective of the
current infected sources.

epidemics, but they focused on strategies for healing already
infected nodes under the susceptible infectious susceptible
(SIS) model. Here we follow the contagion as it evolves and
propagates through node interactions and propose an algorithm
that detects critical connections based on their diffusion capa-
bilities namely, Critical Edge Detector (CED). These edges
will constitute our targets for immunization in our effort to
save the largest possible fraction of a complex network when
bounded by a limited number of actions-deletions per step. So
far the general framework for blocking contagions is shown in
Figure 1. Our analysis lies in the lower flow of the diagram.

The rest of the article is organized as follows: in Section II
we provide a formal description of the addressed issue. Next
in III we detail our proposal. Section IV briefly describes the
competing techniques and the evaluation criteria as well as
the performance of the competing heuristics. Finally in V the
conclusions.

II. PROBLEM FORMULATION
Let G(V,E, ce) denote an undirected Complex Network

of V nodes connected through E links, where each edge is
associated with a positive cost ce for deletion. The dynamic
version of the problem confronts us with the following sit-
uation: at each discrete time step t, we have a number of
immediate vulnerable nodes which we will try to protect,
recovered nodes who were infected in past steps and can no
longer be affected by the malicious propagation, and finally
the infected ones who will now try to infect their susceptible
neighbors. To simulate the diffusion process of undesired data
over G, we utilize the susceptible-infectious-recovered model
(SIR) which unfolds in discrete steps. Nodes who are infected
during the dissemination process are considered as the lost
fraction of nodes. Given a budget β of available deletions per
step −equal cost for the removal of any edge− we search for
those connection whose deletion will result in the least number
of lost nodes at the end of the malicious propagation. As a next
and final constraint we consider that the “authorities” exhaust
all their available resources at each time step i.e., resources
cannot be saved for later use.

III. CRITICAL EDGE DETECTOR (CED)
For our method we focus on the infected nodes of each

step, to create the Infected-Source-Networks (ISNs) emanat-
ing from each individual ‘tainted node’ x at time step t. The
ISNs are created from the susceptible nodes within the n-hop

neighborhood of each infected source x (including x) and the
link-connections between them namely, ISNn

x . Our work is
limited in short distances from the originators in order to fight
the contagion near the source of the problem, and inhibit its
transition as much as possible. An illustrative example is given
in Figure 2. Initially we assume that the infection came from
nodes n1 and n2 at time t-1 who successfully infected nodes
a and m. The 3-hop infected source networks emanating from
the current infected nodes at time t, ISN3

a and ISN3
m, are

shown with green and red dashed lines respectively. Note that
the infected sources n1 and n2 from the previous step (t-1) are
excluded from our selection in all subsequent steps, since they
can no longer contribute in the propagation as the diffusion
model implies (c.f. IV-B2).

To quantify the importance of an edge (i, j) in an ISNn
x ,

we calculate the number of shortest paths (using Dijkstra’s
algorithm) emanating from the infected source x to all other
nodes in the current ISNn

x that (i, j) appears, with respect to
the total number of those paths as follows:

ISNn
x (i, j)t =

spnij(t)

spnt
(1)

spnij(t) is the number of shortest paths that the edge (i, j)
appears at t step emanating from x, and spnt stands for the
total number of those paths.

The concept of Single Source Shortest Path (SSSP) is a
widely used method in the science of networks, well suited for
the facet we are addressing in the present study, as we dynam-
ically deal with a contagion directly at its source to block the
outspread. At this point we should note that by grounding the
source of the infection i.e., pinpointing the malicious sources,
we understand the direction of the propagation. Our proposed
technique uses the course-evolution of the diffusion (towards
the susceptible environs) to its advantage, and locate those
links which will hinder the malicious act to the largest possible
extent. However, not all ISNs are of equal size i.e., in the
number of susceptible nodes or connections. In fact this is
a varying parameter that must be taken into consideration,
since edges located in relatively sparse ISNs, may well be
overestimated for their spreading potential. Thus we need to
include a notion of density for the end-point node. Since we
noted the course of a virus, the end-point node is a potential
direction, e.g., in Figure 2, k is the ending node of m-k. The
density for the end-point-node j is measured by the formula:

dj = sj − Pj +
∑
r

(sr − Pr −Mrj) (2)

where sj is the number of currently susceptible neighbors
of j, Pj is the fraction of nodes out of sj with at least one
infected neighbor, r are the susceptible neighbors of j and Mrj

denotes the common neighbors between r and j. If j leads to
a dense region of susceptible neighbors the importance of the
connection will be boosted accordingly, whereas for sparse
vicinities dj will be lower.

Finally the final index for each edge as accumulated by
CED is given by the formula:

CED(i, j) = ISNn
x (i, j) · dj (3)

The pseudo-code for our technique is given in Algorithm 1.
Henceforth we assume that the infected source networks are
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obtained from the 2-hop neighborhood of the originator i.e.,
ISN2

x .

Algorithm 1 Dynamic strategy for deleting edges
1: procedure EDGE RANKING (CED)
2: for each node x in Infected State at time t do
3: Create the corresponding ISNn

x s at n distance
4: Use Dijkstra algorithm to obtain shortest paths
5: Rate links based on their occurrence
6: end for
7: Calculate dj to obtain the density of end-point node j
8: Calculate CED(i, j) to obtain the final index of (i, j)
9: end procedure

IV. PERFORMANCE EVALUATION
A. Datasets

A summary for the base attributes of the experimented net-
works is listed in Table I. α stands for the epidemic threshold
of transmissibility calculated for each respective network [13],
and k-core illustrates the greatest shells (the core of a network)
as identified by the k-shell decomposition algorithm [14]. The
experimental networks were selected based on the density
(connections) of their core to evaluate the competitors in di-
verse networked environments; Hamsterster: a social network,
Pretty Good Privacy (PGP): secure information interchange
network, Oregon-2: an autonomous system graph from May
26 2001, and finally an email contact network Enron. For
more details on the datasets please refer to http://konect.uni-
koblenz.de/ and http://snap.stanford.edu/data/index.html.

TABLE I. NETWORK BASE ATTRIBUTES
Network No. of Nodes No. of Links k-core α(%) Type

Hamsterster 2,426 16,631 24 2.5 Social
PGP 10,681 24,316 31 5.5 Contact

Oregon-2 11,461 32,730 31 5.5 AS
Enron 36,692 367,662 43 1.5 Email

B. Experimental Design
1) Initiating the Cascade: The origin of the infection i.e.,

the initially infected nodes, is an important feature that affects
the diffusion dynamics. For instance, if the originators are
within a sparsely connected neighborhood, even with a limited
number of available deletion per step, the diffusion is very
likely to be inhibited. Similar performance will be achieved,
if the origin of the infection is placed in the periphery of a
network as identified by the k-core algorithm. Such config-
urations are trivial for our experimentation. On the contrary,
if the originators are nodes in denser regions of a network,
successfully inhibiting the outspread of undesired data will
prove to be a more challenging task.

To this end, in a similar approach to [6], we initiate the
infection from the top-10 most connected nodes (hubs) within
the highest k-cores of each network. It is safe to assume that
initiating the infection from hub-core nodes is no trivial task
−maybe the worst case scenario− since the core represents
well connected node-users who are “buried” deep within the
network structure.

2) Propagation Model: For the diffusion model as noted
in [15], the SIS (like flu) suggests no immunity for the inter-
acting nodes, whereas the SIR offers permanent immunization
(like mumps). Here we study the penetration of a virus in a
networked environment, where immunized nodes cannot be

reinfected and thus focus on SIR which unfolds in discrete
steps:
• S state where a node is vulnerable to infection.
• I state where an infected node will try to infect its

susceptible neighbors and succeed with probability λ.
• R state where infected nodes recover and cannot be

reinfected.
In the initial phase all nodes are in the susceptible state,

except the initially selected nodes in I . Generally, an infected
node at time step t has a single chance to infect its susceptible
neighbors and succeeds with probability λ. Immediately after
the node enters the R state at t+1, and can no longer be
infected in subsequent steps. The process ends when there is
no node left in I .

3) Removing Connections: In this study, we follow the
diffusion dynamically i.e., as it unfolds through node interac-
tions, and thus the links that constitute all possible options for
removal at each time step, are those in direct contact with the
infected sources. As far as the constraint for removing edges
per step is concerned, we take 1% of the total connections
of each network and name this fraction of edges as thres.
The x-axis in each plot represents the percent out of thres cut
in each diffusion step, namely β number of edges. We limit
our experiments to small β values per step, to evaluate the
competitors ability in detecting the most efficient interactions
for blocking malicious diffusions.

4) How to evaluate the performance: In order to obtain
unbiased results, for each method we repeated over 1000
diffusion processes. The error-bars in each plot represent
the confidence for the interval of the mean, i.e., over the
iteration that we repeated the SIR process the true average
value is bounded within the specified range. The probability
of diffusion among interactions (λ), is chosen based on the
epidemic threshold α of each respective network. However in
Hamstester due to its lower connectivity we had to use a
relatively higher value to obtain significant results.

The impact of each method is measured based on the
fraction of the network affected by the false rumor-virus at
the end of the SIR process, i.e., number of nodes in R state
(lost nodes). The evaluation is carried out in two distinct SIR
processes. In the first, we measure the fraction of lost nodes
when no protection algorithm is applied, and in the second the
diffusion is re-initiated to utilize the competing techniques.

C. Competing Methods
The presentation of the addressed issue in this work is

original and thus the selection of appropriate competing tech-
niques is crucial. Here we list our selection in the competing
methods and also exclude those that can not be applied. Note
that only techniques for undirected networks are included.
(i) highly connected nodes are noted by many studies as
influential spreaders, and thus in [7] the strength of connections
is measured by the product of the degrees of the nodes
incident upon a link (aDegree). Note that for this approach
only susceptible neighbors frame the degree of a node, since
these are the nodes we will be trying to protect. For the
current competitor the edges are selected in decreasing order
of aDegree until β is reached at each time step.

Ranking the importance of edges e.g., by using centrality
metrics, is not the only means to select a limited number
of interactions. In [6] the authors use a different approach
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Fig. 3. The strength of the propagation is 6%. The initially infected set is
connected to the immediate vicinity with 548 connections whereas the lost
fraction of nodes for the unblocked diffusion is about 280 nodes. As we
increase in the x-axis CED’s better performance becomes more evident.

by strategically selecting which edges to remove, in order to
decrease the probability of cascade and salvage the largest
number of potential nodes. In a similar approach −although
under a stochastic and different diffusion model− we construct
a strategic deletion of edges to secure the largest number of
immediate and endangered individuals.

(ii) For the first strategy, immediate susceptible nodes are
ranked based on their vulnerability i.e., number of neighbors in
I state. Individuals with the least number of infected neighbors
are firstly treated and so on until the available budget for this
step is exhausted. In order to avoid consuming a significant
amount of resources to save a single individual, for nodes with
vulnerability greater than one we remove one connection at a
time. If one edge is removed from all vulnerable nodes and
there are still available resources we re-initiate the procedure
until β is consumed. Nodes with the same vulnerability are
ranked in decreasing order of their susceptible degree. Note
that nodes with only one infected neighbor are completely
protected in this round. We name this strategy alpha where
we try to decrease the probability of a cascade throughout the
diffusion steps.

(iii) As a second strategy, namely beta, we rank all
susceptible nodes in direct contact with one or more infected
sources in decreasing order of their susceptible degree i.e.,
number of still unaffected neighbors. With this strategy we
try to reduce the number of interaction that lead to the highly
connected individuals in each step. Likewise in alpha we don’t
want to consume most of our resources for protecting specific
individuals and thus we follow the same policy. Note that when
the budget β for deleting edges is sufficient to remove the same
number of connections from all immediate susceptible nodes
(rare occasion), it applies that alpha ≡ beta.

(iv) Finally a random selection of edges (random) is used
as a baseline to create a lower bound of performance. Here a
uniform selection among all possible links is applied.

In [5] the K-EdgeDeletion technique was proposed based
on the leading eigenvalue of a network’s adjacency matrix.
Here the strength of a link (i, j) is determined by the product
of the leading left and right eigenvectors u(i) · v(j) respec-
tively. Although it was proven an effective static strategy for
blocking epidemic outbreaks, to our understanding the eigen-
decomposition of an adjacency matrix cannot be applied in
our case study for the following reasons. Due to the dynamic
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Fig. 4. The strength of the propagation is 4%. The initially infected set is
connected to the immediate vicinity with 410 connections whereas the lost
fraction of nodes for the unblocked diffusion is about 360 nodes. For this
weakly connected network all methods illustrate a good performance.

nature of the addressed issue, in order to apply the aforesaid
technique at each time step, we must either use the entire
remaining network −excluding nodes in R state− and proceed
as the algorithm unfolds, or create a connected component
which would include all infected sources and susceptible
surroundings within a certain hop distance, and finally focus
in the obtained ranking for those links which are directly
connected to an infected source.

Although the second approach may be applicable in the
first steps of the SIR when the initially infected nodes may
be in close distance, in the later steps were the infected sources
become distant to each other we approximately fall in the first
case scenario. Nonetheless applying such adjustments to the
original algorithm will distance our work from its dynamic
nature and thus we do not include K-EdgeDeletion in our
evaluation.

D. Results
1) Increasing in the number of deletions per step: As

a first step to our evaluation we illustrate the results from
Figures 3 to 6. The y-axis represents the fraction of saved
nodes i.e., the percent of node-entities that each respective
method managed to secure, with respect to the unblocked
outcome of the propagation. It can be seen that the proposed
identification technique performs extensively well in most of
the observed cases. Our results indicate that cutting of edges
within certain limited regions of a network (the ISNs) which
reside in many shortest paths, is the most effective solution for
blocking or hindering the infection dynamically.

To better analyze the performance of the competitors,
let us consider the evaluated networks with respect to the
connectivity of their initially infected core. The selection of
the initial infected seed set out of the most connected nodes
within the core shell of PGP and Hamstester, form a
weakly connected set with average degree of 54.8 and 41.1
respectively. It is reasonable to assume for such cases that
by blocking the diffusion directly at its source, a relatively
good performance would be achieved by all methods. The
results illustrated in Figures 3 and 4 confirm this hypothesis.
In PGP CED’s better performance becomes more evident as
we increase in β. When considering Hamstester we focus
on the lower values to conclude on the competing algorithms
since for the highest steps −due to its low connectivity− all
methods manage to significantly block the contamination.

For the Enron and Oregon-2 networks in Figures 5 and 6,
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Fig. 5. The strength of the propagation is 6%. The initially infected set is
connected to the immediate vicinity with 3400 connections whereas the lost
fraction of nodes for the unblocked diffusion is about 1270 nodes. Only the
proposed technique manages to hinder the propagation sufficiently in the later
steps of β.

we analyze a more ambitious case i.e., the average connectivity
of the initially infected nodes is 340 and 1128.5 respectively.
In these scenarios we expect a more challenging behavior.
Indeed, as illustrated, the fraction of saved individuals is
significantly less from the previous network cases. For the
lower values of β: 5,10 and 15% it appears that none of
the evaluated techniques is able to block the contamination
significantly i.e. the saved individuals are less than 5% in
Oregon-2. Only CED manages to save up to about 14% from
the lost individuals when β equals to 25%, while the rest of the
evaluated techniques illustrate similar behavior with blocking
score less than 6%.

Similar results are also reported for the Enron network
only here the competitors illustrate a better performance due
to the virulence of the propagation set at 2% and the signifi-
cantly higher number of available deletions per step. For both
alpha and beta we observe little improvement in the saved
individuals as we increase in β when compared to CED’s. To
our interpretation, although both strategies performed relatively
well for the rest of the experimented networks, it seems that
trying to reduce the probability of a cascade (by decreasing
the overall connectivity that lead to infected sources or to the
most susceptible nodes) as the strategies imply, is not efficient
when applied in the core of a well connected network as in
this particular case.

Overall we attribute CED’s better performance to the
following remarks. First, although there are occasions where
the contagion cannot be completely stopped in the early steps
(due to the infection being rooted deep within a well connected
network), by removing the edges as identified by our approach
we force the malicious propagation towards longer interacting
paths. Thereby more resources can be used in the next steps
to inhibit its transition and stop its outspread to more distant
regions of a network. Second, by measuring the density of the
surroundings of the end-point node, we alleviate traditional
drawbacks of shortest path algorithms, since our method will
discount the significance of otherwise important links which
lead to sparsely connected parts of a network.

2) Increasing in the virulence of the malicious propagation:
In this set of experiments, Figures 7 and 8, we evaluate
the performance of the competitive methods as we increase
the strength of the malicious propagation i.e., increase in λ.
The experimented λ values are chosen near the epidemic
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Fig. 6. The strength of the propagation is 2%. The initially infected set is
connected to the immediate vicinity with 11285 connections whereas the lost
fraction of nodes for the unblocked diffusion is about 2080 nodes. Again the
network is better protected by CED.

threshold. We illustrate the results of PGP and Oregon-2
networks as we categorized them depending on the average
connectivity of their initially infected set from the core. Similar
qualitative results were obtained from the rest of the evaluated
networks. Finally, the largest β value from our experimentation
is selected since increasing in the strength of the propagation
will only make the situation more difficult.

In order to measure the influence capability of nodes in
complex networks, a problem formally known as detecting
influential spreaders in complex network structures [16][17],
the virulence of the diffusion should be kept in relatively low
values. This is due to the fact that for larger infection values,
an epidemic occurs regardless of the characteristics of the node
elected as the origin of the infection. In this study, where
we initiate the infection from multiple sources from the most
connected nodes of the core of each respective network, we
expect that blocking the malicious propagation as λ increases
will become a very challenging task.

The results in Figure 7 indicate, that when the network
is sparsely connected, the infection can still be significantly
mitigated even when the virulence of the diffusion is higher
−but still near− the epidemic threshold. For the lower λ
values aDegree and CED illustrate similar performance,
however as we increase in λ the proposed technique sig-
nificantly outperforms all competing methods. aDegree is
affected by the increase of λ around 6% and henceforth its
performance starts to decent, whereas reducing the probability
of the cascade with both alpha and beta strategies, seems to
have an increasing performance that surpasses aDegree when
above the epidemic threshold. Nonetheless further increasing
in λ will only decrease the fraction of saved nodes that each
respective method manages to secure.

By following the performance of the competitors in
Oregon-2 we observe a different outcome. For this scenario
all methods illustrate a decreasing performance in the saved
individuals as we advance in λ. However the competitors fail
to protect an adequate fraction of the network even bellow the
epidemic threshold. Only the proposed technique bears more
resistance to the virulence of the propagation and is able to
save a significantly larger number of endangered nodes. To
our understanding when λ increases beyond a certain threshold
−different for each network depending on its connectivity−
the diffusion cannot be significantly hindered. This is due to
the fact that even by deleting a large number of immediate
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Fig. 7. The y-axis represents the fraction of saved nodes with regard to the
lost nodes of the unblocked diffusion (113, 190, 280, 385, 511) respectively.
CED illustrates better results by securing a significantly larger part of the
network’s interacting nodes for all λ values.

connections i.e., increase in β, and thus significantly diminish
the available paths from infected nodes to susceptible individ-
uals, when we are bound to the higher values of λ the virus
is very likely to survive even within the now few remaining
interaction.

V. CONCLUSION
In this study we take a first step in confronting the diffusion

of malicious contents over networked populations dynamically,
while we follow the virus as it progresses through node
communications. Most of the so far proposed techniques focus
on static strategies, however we believe that the problem is
dynamic in nature and must be addressed appropriately. We
proposed an algorithm that utilizes well studied heuristics from
the literature of graphs, which was found to be quite effective
in blocking the outspread of the diffusion. We used a number
of representative competitive methods and strategies −what
we believe baseline approaches for the dynamic facet of the
addressed problem− to evaluate the impact of our method.
Our technique was found to be more efficient by securing the
largest fraction of individuals almost in all the observed sce-
narios. Finally we conclude that when increasing the strength
of the prorogation above the epidemic threshold, successfully
hindering the propagation can be a very challenging task
in a well connected network. Nonetheless CED illustated a
more resistant behavior in the increase of the virulence of the
propagation.
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