
MapReduce-based Distributed k-shell Decomposition for online Social Networks

Katerina Pechlivanidou
Electrical & Computer Engineering
CERTH and University of Thessaly

Volos, Greece
kapehliv@inf.uth.gr

Dimitrios Katsaros
Electrical & Computer Engineering
CERTH and University of Thessaly

Volos, Greece
dkatsar@inf.uth.gr

Leandros Tassiulas
Electrical & Computer Engineering
CERTH and University of Thessaly

Volos, Greece
leandros@inf.uth.gr

Abstract—Social network analysis comprises a popular set of
tools for the analysis of online social networks. Among these
techniques, k-shell decomposition of a graph is a popular
technique that has been used for centrality analysis, for
communities discovery, for the detection of influential
spreaders, and so on. The huge volume of input graphs and the
environments where the algorithm needs to run i.e., large
datacenters, makes none of the existing algorithms appropriate
for the decomposition of graphs into shells. In this article, we
develop for the first time in the literature, a distributed
algorithm based on MapReduce for the k-shell decomposition
of a graph. We furthermore, provide an implementation and
assessment of the algorithm using real social network datasets.
We analyze the tradeoffs and speedup of the proposed
algorithm and conclude for its virtues and shortcomings.

Keywords-Map-Reduce; Hadoop; distributed algorithms; k-
shell decomposition; graph algorithms; social networks

I. INTRODUCTION

The tremendous advances in information technologies
and hardware, coupled with the omnipresent connectivity
have created a frenzied development and popularity of online
social networks (OSN) such as Facebook, Twitter,
Instagram. All these online social networks store and process
colossal volumes of data, mainly in the form of pair wise
interactions, thus giving birth to networks, i.e., graphs which
record persons’ interactions.

Analysis and mining of these graphs offers both
operational and business advantages to the OSN owner.
Social Network Analysis (SNA) is comprised by tools and
algorithms for analyzing social networks. Among the
plethora of concepts encountered in SNA, the concept of k-
shell decomposition of a graph [14] is particularly appealing,
because it reveals the internal core structure of a network. If
from a given graph we recursively delete all vertices, and
lines incident with them, of degree less than k, the remaining
graph is the k-core1. K-shell has been used as a centrality
measure, for detecting influential spreaders [2], for
discovering communities [1], for analyzing the Internet
structure [4].

Several algorithms have been proposed for the
computation of it in diverse computational environments,
ranging from single machine main memory [3] to secondary
storage [5] and to small clusters comprised by a few
machines [12], and for types of networks that are unweighted

1We use the terms k-core and k-shell interchangeably.

or weighted [7] and vary from static to slowly changing or to
networks whose topology is acquired in a streaming fashion
[13]. Of all these diverse settings, the case of static networks
(or those whose topology is changing very slowly compared
to the time required to run analytics over the network) is the
most common and encountered in the majority of today’s
online social networks. Therefore, we focus our attention on
static, unweighted networks and an efficient implementation
of the k-shell decomposition of a network.

A. Motivation and contributions
Modern OSNs are comprised by millions of nodes;

therefore any algorithm for the computation of the k-shell
decomposition that relies on a single machine (centralized)
– exploiting solely the machine’s main memory [3] and/or
its disk [5] – is eventually doomed to fail due to lack of
resources.

However, developing a distributed solution is a
challenging task because it must deal with a highly
sequential process, deleting one node (and incident edges)
after the other. The algorithms presented in [12] and [11]
developed distributed solutions, but they can run only on a
small cluster of machines, which is still insufficient, since
modern OSN are maintained by Internet giants such as
Google, LinkedIn and Facebook who own huge datacenters
and operate clusters of several thousand machines. These
clusters are usually programmed by high-performance
middleware of the MapReduce type [6].

Therefore, solutions for the computation of the k-shell
decomposition of a network based on the MapReduce
“programming paradigm” would be necessary. This is
exactly the gap that the present article fills. In summary, the
present article makes the following contributions:

� It develops a distributed algorithm, namely MR-SD
(MapReduce Shell Decomposition) for the computation
of k-shells of a network.

� It presents for the first time in the literature a distributed
algorithm based on the MapReduce “paradigm” and
therefore it is tailored for datacenter environments.

� It assesses the performance of the proposed algorithm in
an experimental fashion using real datasets and analyzes
various tradeoffs in its operation.

The rest of the article is organized as follows: In section
II, we describe the related work; in section III we provide

2014 IEEE 10th World Congress on Services

978-1-4799-5069-0/14 $31.00 © 2014 IEEE

DOI 10.1109/SERVICES.2014.16

30

2014 IEEE 10th World Congress on Services

978-1-4799-5069-0/14 $31.00 © 2014 IEEE

DOI 10.1109/SERVICES.2014.16

30

2014 IEEE 10th World Congress on Services

978-1-4799-5069-0/14 $31.00 © 2014 IEEE

DOI 10.1109/SERVICES.2014.16

30

background knowledge and the proposed algorithm. Section
IV presents the evaluation of the proposed algorithm and
finally section V concludes the article.

II. RELATED WORK

Since its initial introduction in [6], the Map-Reduce
framework and its implementation in Hadoop2 have been
used in many areas related to huge data processing.
MapReduce’s most successful application area is
Information retrieval [10], but it has also been used for
bioinformatics, data mining and databases. The data
management community has contributed fundamental ideas
in the improvement and the extension of MapReduce [8].

One particularly interesting and significant topic in SNA
is that of discovering the most “central” or most
“influential” nodes in a social network. Apart from the
classic centrality measures (degree, closeness, shortest-path
betweenness), the notion of k-shell has attracted the
attention of “data/network” scientists. It was first proposed
in [14] and found wide application in areas such as Internet
topology modeling [4], detection of influential spreaders [2],
discovery of communities [1], etc.

In a straightforward implementation of the k-core
decomposition algorithm, we need to perform recursive
deletions of all vertices and edges incident with them, but
efficient versions of the basic algorithm do exist for various
settings.

There are two categories of algorithms depending on
whether the graph is dynamic (slowly or fast changing) or
static (known in advance and not changing). The literature
on k-shell decomposition for dynamic graphs includes
algorithms that are able to handle only slowly changing
graphs when they fit entirely in main memory [9], for
processing in small clusters with the type of distributed
algorithms described in [11] and for graphs whose topology
is acquired in a streaming mode [13]. For static networks,
when the entire graph can be stored in main memory, the
core decomposition of a graph can be done in time
O(num_of_edges) due to [3]. For larger graphs that have to
be stored in secondary storage the techniques described in
[5] can be used. Moving on to progressively larger networks
that cannot fit into a single machine, the exploitation of a
very small cluster for the k-shell decomposition of a
network can be done as in [12].

Clearly, none of the aforementioned solutions is
appropriate for the type of infrastructure operated by modern
Internet companies such as Google, Yahoo, LinkedIn,
Facebook and Twitter. These Internet giants are operating
huge data centers with clusters comprised of several
thousand low-cost machines. These clusters are usually
programmed by MapReduce-type frameworks.

2 http://hadoop.apache.org

III. PROPOSED DISTRIBUTED ALGORITHM

A. Background
K-shell decomposition of a graph is performed

iteratively. The first step involves removing all degree-1
nodes, along with their link, and indexing these as k=1. In
the resulting graph, all nodes of degree 1 are also considered
to have k=1 and are again pruned. The process is repeated
until there are no nodes of degree 1. Similarly, all nodes
with i or fewer connections are iteratively removed; these
nodes are indexed as k=i. The output of the k-shells
algorithm is a single number for each node: its core
assignment.

Let us mention that a node is said to have k-coreness if it
belongs to k-core but not to (k+1)-core. A k-shell is
composed of all nodes that have k-coreness. However, it is
common to use them alternatively although their definition
differs. Figure 1 illustrates a sample graph and its
decomposition into shells.

B. The MR-SD algorithm
In this section we present the details of the proposed

algorithm (Figure 2). Algorithm 2 (running on the master
node) is the driver routine reading the input and deciding if
the decomposition reached its end; Algorithm 1 is an
auxiliary one, and the MR-SD algorithm (running on slaves)
is the routine performing the k-shell decomposition. Our
Hadoop cluster consists of a collection of slave nodes and
one master node. From here on let nodec denote a node of
the cluster, either a slave or the master node. The base idea
of our algorithm is that each nodec is responsible for
performing the pruning phase of the k-core decomposition
of a collection of nodes of a given network graph and only
some nodesc for combining the intermediate results.

Our algorithm computes the k-cores starting by finding
out the 1-hop neighborhood of each node. This is achieved
by handing an independent and random chunk of the actual
graph to each nodec.g p c

Figure 1k-shell decomposition of a simple graph

313131

 As shown in Algorithm 2, a Map task is now forced. At
this point, each node is considered as the output key and each
neighbor as a single value. When a Reducer receives a key-
value pair, it groups all values (V).

The intuition behind MR-SD algorithm is that each
nodec can only process part of the network graph and that
value k (value of the k-core) must be disseminated
efficiently. Described in this way, the master node of the
cluster is now responsible for updating the k value during
the pruning rounds and for its propagation. Initially, the
master sets k equal to 1, configures a Map-Reduce job, and
announces k to each worker node. We are now ready to
distribute computations to the slaves.

The master node maintains the following variables to
ensure the progress of the algorithm and detect termination:

� k is an integer representing the value of the k-
coreness we currently examine.

� Coresk is a variable containing the nodes that should
be included in the current k-shell.

� Gremaining is a variable that represents the remaining
network graph after a pruning round is performed,
i.e., one execution of the MR-SD algorithm.

� Gin is a variable that contains the actual network
graph provided by the user.

Before a slave starts a Map task, it must first retrieve the
k value. Since the master node is the only node of the cluster
responsible to update k and only at the end of each job, we
guarantee that the value of k that a slave receives is always
up-to-date. As a next step, nodec counts the one-hop
neighbors (i.e., degree) of a node which are stored in V from
previous MapReduce process. Since this information is now
available, the slave has to check if the degree of the node
under consideration has shrunk below the k threshold or is
equal to k. If this should happen, the node is marked by the
slave so that the Reducer can include the node in the current
k-shell and delete it from the remaining network graph.
Moreover, some information is attached (attachedInfo
variable in MR-SD algorithm) to all nodes that are included
in its one-hop neighborhood so that the Reducer can exclude
the current node from their neighborhood. However, if the
preceding check indicates that the degree of the node
exceeds the k limit then the node’s id is collected along with
its one-hop neighbors; the node id is the Key and the one-
hop neighbors the Value of the KV pair collected and send
to the Reducer.

At the beginning of each Reduce task, the slave follows
the same protocol as the Mapper; k value becomes available
to the worker node. Whenever a Reduce is performed, KV
pairs are received. From previous stage of the MR-SD

Figure 2 Flow of the MR-SD algorithm

323232

algorithm K represents the node’s id and V stores its one-
hop neighborhood. There are now three possible scenarios
we examine below:

1. node K was marked in preceding Map task.
2. node K is not marked by previous Mapper.
3. node K comes coupled with additional information

which says that one or more neighbors where pruned
in this pruning round.

In Scenario 1, if a Reducer receives a node that was
marked during the Map task as K, i.e., the degree of the node
is lower than k, it indicates that this node should be included
in the current k-shell by the Reducer. In this case, we collect
K and the k value as the KV pair in this round. Scenario 2
appears when the node that was examined in Map phase of
the MR-SD algorithm does not meet the requirements to be
included in the current k-shell. Although this seems to
require a quite basic collect process of the KV pair, there has
actually some further work to be done. The Reducer is now
obliged to check if there is additional information attached to
the KV pair received. If the node does not come with
additional information then KV pair is collected. Scenario 3
appears in case where there is such information attached
(attachedInfo). The information is about the node that has to
be removed from the one-hop neighborhood of node K.
When receiving this message we exclude the node from the
one-hop neighbors set; the degree is therefore decreasing too.
It is possible at this point that the node remains with an
empty neighborhood; in this case the node has k-coreness
and is therefore collected along with its k-core value. In case
there exists at least one neighbor after the pruning, the node
id and the neighbors ids are collected as KV pair and sent
back to the master in the Gremaining output file.

Termination and Progress
We need to discuss how we presume that Algorithm 2

both detects termination and converges to the correct k-
cores or forces correctly another pruning round. There are
few situations that appear:

After every node has been examined, i.e., all KV pairs
have been received and processed, we have reached the end
of the MR-SD algorithm for this round. The master, who is
also responsible to terminate and progress the k-core
decomposition as mentioned above, receives now either
both output files or just one of them. Let us make this more
specific:

� If new additions to the current k-shell appeared in
Map and Reduce tasks, the master receives the
Coresk file including all node ids that have been
removed previously and the Gremaining file with the
remaining network graph. At this point k value
stays the same for another round.

� If only Gremaining is received, this indicates that k
value has to be updated since no other node has
been added to the current k-shell in previous round.
The master has to increase k value and force another
pruning round.

� Finally, if only the first file (Coresk) is gathered by
the master node, then termination is detected as no
other nodes are left for examination. As a last step,
all intermediate files that have been generated
during previous rounds are now merged into one
final output file (referred as k-cores in Algorithm 2).

In order to understand the way our proposed algorithm
works, we conclude with an example of a pruning round
performed with our proposed algorithm. The example graph
is depicted in Figure 3 and the running of the algorithm in
Figure 4.

Let us assume that we want to calculate the k-cores of
the network in Figure 3. It is a small graph, so k-cores can
be retrieved easily and obviously and one does not need a
cloud to do this, but it is suitable for our example in order to
understand the concept of Algorithm 2 and the MR-SD
algorithm.

It is evident that the first job run should maintain to
exclude nodes 6, 7, 8, 10 and 12 from the network and
include them in the 1-shell.

Figure 3 An example 12 node network

333333

First, the master sets k value to 1 and the Gremaining, which is
the description of the network in Figure 3, is split into
independent chunks; assume that the calculation of one-hop
neighborhood preceded the initialization. In map task of
Mapper 1 there is no node that has degree less or equal to 1.
So Mapper 1 collects simply the KV pairs. Mapper 2 and
Mapper 3 on the other hand, find nodes with degree equal to
one; nodes 8, 10 and12 and nodes 6 and 7 respectively. At
this point they mark them so that the Reducer includes them
in the 1-shell. Moreover, Mapper 2 and 3 attach information
to nodes 5, 9 and 11 to let the Reducers know that they have
to delete nodes 6, 7 and 8 from one-hop neighborhood of
node 5, node 10 from one-hop neighborhood of 9 and node
12 from one-hop neighborhood of 11; the pink boxes
represent the attachedInfo. When Reducers 1 and 2 receive
KV pairs they check if the Key, which represents a node id,
is marked. In case of nodes 1, 2 and 3 and 4 the reducers
simply collect the KV pairs as they appear. For nodes 5, 9
and 11 all nodes that are mentioned in the additional
attached information are deleted from their one-hop
neighborhood; here nodes 6, 7 and 8 are removed from
node’s 5, node 10 from node’s 9 and node 12 from node’s
11 one-hop neighborhood. Now the Reducers check if node
5, 9 or 11 has a non-empty one-hop neighborhood. In case
of node 6, 7, 8, 10 and 12 the Reducers collect the Key and
k value as Value.

IV. EXPERIMENTAL EVALUATION

In this section we provide the results of the experimental
analysis; we describe the hardware, the real complex
networks we have used and the obtained results.

A. The evaluation platform
We tested our algorithm on a cluster which consists of

five nodes, one master node and four slaves. Each node is
equipped with a disk space of 42GB and a 12GB RAM. Each
node is an 8-core Intel CPU based blade running CentOS.
The network switch which connects our network storages
supports a 10-gigabit Ethernet connection. During each
experiment there was no significant interference from other
workloads.

B. The experimental setting
We have already mentioned that the proposed algorithm

is the first one in the literature of k-shell decomposition that
is based on the Map-Reduce paradigm; therefore, there are
no competitors. We initially used the algorithms reported in
[3] and [5], but they soon run out of memory for the large
graphs and never terminated. Therefore, we do not present
results for them. For the evaluation of the proposed
algorithm, we used eight real social network graphs, which
are described in Table 1. They were retrieved from
https://snap.stanford.edu/ and from
wiki.gephi.org/index.php/Datasets . Thus, we have used both
small (a few thousands of nodes) and very large networks (a
few millions of nodes).

Figure 4 An example running of the proposed algorithm

We have performed eight experiments, one for each dataset
as shown in the first column of Table 2. These are also the
datasets used in [1].

As performance measures of the efficiency of the
proposed algorithm, we have used the following quantities:

� [Average CPU time spent (msec)]. It is the time
spent solely by the CPU to perform the
calculations. The obtained results are averaged over
all Map-Reduce tasks.

� [Average Total Execution Time (sec)]. It is the
total execution time of the k-shell decomposition
process. It differs from the previous time in that it
includes also the communication among master and
slaves, the time required to store intermediate and
final results and any other latency incurred. The
obtained results are averaged over all Map-Reduce
tasks.

� [Average Total committed heap usage (Bytes)]. It is
the memory footprint of the algorithm.

For clarity of presentation purposes, we give the results
concerning each dataset in a different plot.

Data sets

Exper Social Network
name

Num of
nodes

Num of
edges

Num
of

Jobs
1 Autonomous

systems AS-733 6474 13895 61

2 DBLP collaboration
network 317080 1049866 360

3 Autonomous
systems by Skitter 1696415 11095298 1305

4 LiveJournal online
Social Network 3997962 34681189 3363

5 Orkut online social
network 3072441 117185083 5918

6 Amazon product co-
purchasing network 334863 925872 87

7 Deaseasome 7533 22052 118

8
Protein Interaction
Network in budding
Yeast

2361 7182 74

Table 1 Real social networks used for the evaluation

343434

Figure 5 Average CPU time vs. number of nodes

Figure 6 Average CPU time vs. number of edges

C. The obtained results
Now we are ready to present and comment the obtained

results. First we will present the averages of the three
aforementioned measures, and then present plots that
concern their precise distribution.

1) Average execution times and memory footprint
Table 2 depicts the average values of CPU time, total

execution time and memory footprint per Map job, per
Reduce job and per dataset. Figure 5 and Figure 6 show that
the execution time depends on the number of edges and not
on the number of nodes. This is expected because the
number of edges is related to the density of the networks,
which defines the number of rounds that the algorithm will
execute.

2) Impact of the number of VMs
Recall that we experimented with a small cluster. This

has consequences on the performance of each worker node.
We observed that when running jobs on a small cluster
combined with very large-sized network graphs some of the
nodesc are obliged to run more than one map task. This case
for instance occurred when we decomposed the social
network in experiment 5; here the max number of Map tasks
exceeded 30 at the beginning. This result corresponds to
more than 7 map tasks per slave during the first rounds of
Algorithm 2 and the MR-SD algorithm and therefore a
greater time. For small to medium sized graphs no
significant workload appeared. However, our proposed
approach manages every time, even with great workload, to
retrieve the k-cores. It is obvious that having a larger
infrastructure a better performance can be achieved since

Average CPU time spent (msec) Average Total Execution Time (sec) Average Total committed heap usage (Bytes)

Experiment Map Reduce Total (Job) Map Reduce Total (Job) Map Reduce Total (Job)

Autonomous
systems AS-733

2061.31 2715.74 4777.05 99.95 9.13 16.18 379584512 189792256 569376768

DBLP
collaboration
network

7696.08 5768.33 13464.42 104.79 10.30 19.33 381046693 192004460 573051153

Autonomous
systems by
Skitter

61377.72 61982.36 123360.08 158.55 71.48 90.83 397844599 199193282 597037881

LiveJournal
online Social
Network

79122.92 28758.76 107881.68 159.53 33.63 56.77 486663048 201195325 687858373

Orkut online
social network

505243.72 304598.03 809841.74 311.50 299.78 339.79 1695512575 157003260 185251583
5

Amazon
product co-
purchasing
network

9803.56 6339.20 16142.76 200.13 10.75 20.06 376372495 191817092 568189587

Deaseasome 2223.05 2718.64 4941.69 175.80 8.87 16.26 379584512 189792256 569376768
Protein
Interaction
Network in
budding Yeast

1559.32 2256.49 3815.81 156.41 8.82 15.00 379584512 189792256 569376768

Autonomous
systems AS-733

2061.31 2715.74 4777.05 99.95 9.13 16.18 379584512 189792256 569376768

Table 2 Average resource consumption (Top) Average CPU time, (Middle) Average total execution time, (Bottom) Memory footprint

353535

map jobs are more efficiently placed over the cluster.
Results can be seen in Figure 6 (averages) and Figure 7 (per
experiment). In Figure 7, the x-axis in each plot depicts the
total committed heap usage per job (in MBs), and the y-axis
depicts the total CPU time spent per job (in msecs). In
general, the reduce tasks cost far less in computation time
than the respective map tasks, which is expected since the
reducers perform mainly aggregation functions.

3) Impact of Network density
The performance of our algorithm depends on the

network density, i.e., the number of network edges. Figure 6
shows that the density impacts exponentially the execution
time. This is expected because the number of jobs increases
with the number of edges.. In Table 2 we can see in details
the performance of the algorithm for each data set. In
particular, we emphasize the impact of the network density
when comparing the results of CPU time of dense networks
(e.g., experiment 5) with those of more sparse social
networks (e.g., experiment 8).

4) Impact of the machine load
The processing of a vast network is difficult until a large

number of nodes are pruned. This means that during the first
pruning rounds, we observe greater resource demands.
Indeed, CPU time measured is greater and a larger heap size
is required. As shown in Figure 8, the workload demands
for large network graphs require an increasing processing
power while the heap size remains actually almost stable
during this interval. The same can be observed for small to
medium networks but to a much lesser extent. Another
interesting outcome is that reduce tasks tend to be more time
consuming in the first 20% to 45% of the pruning rounds
than in the last ones. In fact, the execution time seems to
follow a decreasing exponential trend for very large graphs.
Contrary to large networks, small or medium graphs have a
rather flat execution time during the reduce phase. The latter
observation is depicted in Figure 8.

V. CONCLUSIONS & FUTURE WORK

The problem of k-shell decomposition of an online social
network is a significant task involved in social network
analysis; it can be used for the discovery of influential
spreaders, for community detection, etc. In this article,
motivated by the unsuitability and lack of existing solutions
to deal with this problem when the size of network is large
and the computation takes place in huge clusters such as
those deployed by current Internet giants (Google, Yahoo,
LinkedIn), we designed a MapReduce-based distributed k-
shell decomposition algorithm for social networks. We
addressed the challenges involved in the design of a
parallel/distributed version of a graph decomposition
technique, which is highly sequential in its nature, and
provided an effective and efficient algorithm able to scale to
millions of graph nodes and edges. We implemented the
proposed algorithm in the Hadoop middleware, and assessed
its performance for eight real social networks of varying
size and density. We investigated the performance of the

algorithm in terms of pure CPU time, of total execution time
and memory footprint. We recognized its virtues and
suitability for modern distributed environments.

As a future work, we plan to work on some aspects of it
that involve the communication among slaves so as to
optimize it and also to develop a variation of the algorithm
for annotated networks, e.g., weighted. Finally, we plan to
perform experimentation of our proposed algorithm on a
MapReduce environment of a major cloud service provider
in order to highlight its scalability and achieve further
speedup.

ACKNOWLEDGMENT

The authors acknowledge the support of the THALES
project “Optimal Control of Self Organized Wireless
Networks”, co-financed by the European Union (European
Social Fund - ESF) and Greek national funds through the
Operational Program “Education and Lifelong Learning” of
the National Strategic Reference Framework (NSRF).

REFERENCES

[1] H. Aksu, M. Canim, Y.-C. Chang, I. Korpeoglu, O. Ulusoy, “Multi-
resolution social network community identification and maintenance
on big data platform”, Proc. of IEEE BigData, pp. 102-109, 2013.

[2] P. Basaras, D. Katsaros, L. Tassiulas, “Detecting influential spreaders
in complex, dynamic networks”, IEEE Computer magazine, vol. 46,
no. 4, pp. 26-31, 2013.

[3] V. Batagelj and M. Zaversnik, “An O(m) Algorithm for Cores
Decomposition of Networks”, University of Ljubljana, Department of
Theoretical Computer Science, Ljubljana, Slovenia, Preprint series,
vol. 40, 2002. Available at http://arxiv.org/abs/cs.DS/0310049.

[4] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, E. Shir, “A model of
Internet topology using k-shell decomposition”, Proceedings of the
National Academy of Sciences, vol. 104, no. 27, pp. 11150-11154,
2007.

[5] J. Cheng, Y. Ke, S. Chu, M.T. Ozsu, “Efficient core decomposition in
massive networks”, Proc. of IEEE ICDE, pp. 51-62, 2011.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters”, Proc. Of USENIX OSDI, pp. 137-150, 2004.

[7] A. Garas, F. Schweitzer, S. Havlin, “A k-shell decomposition method
for weighted networks”, New Journal of Physics, vol. 14, 2012.

[8] A. Kala Karun and K. Chitharanjan, “A review on Hadoop — HDFS
infrastructure extensions”, Proc. of IEEE ICT, pp. 132-137, 2013.

[9] R.-H. Li, J.X. Yu, R. Mao, “Efficient core maintenance in large
dynamic graphs”, IEEE Transactions on Knowledge and Data
Engineering, to appear, 2014. Available at
http://arxiv.org/abs/1207.4567

[10] J. Lin and C. Dyer, “Data-Intensive Text Processing with
MapReduce”, Synthesis Lectures on Human Language Technologies,
Morgan & Claypool Publishers, 2010.

[11] D. Miorandi and F. de Pellegrini, “K-shell decomposition for
dynamic complex networks”, Proc. of WiOpt, pp. 488-496, 2010.

[12] A. Montesor, F. de Pellegrini, D. Miorandi, “Distributed k-core
decomposition”, IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 2, pp. 288-300, 2012.

[13] A.E. Sariyuce, B. Gedik, G. Jacques-Silva, K.-L. Wu, U.V.
Catalyurek, “Streaming algorithms for k-core decomposition”,
Proceedings of the VLDB Endowment, vol. 6, no. 6, pp. 433-444,
2013.

[14] S.B. Seidman, “Network structure and minimum degree”, Social
Networks, vol. 5, no. 3, pp. 269–287, 1983.

363636

Figure 8 Map and Reduce task execution time (red is used for Map tasks and green for Reduce tasks) a) Experiment 1, b) Experiment 2, c) Experiment 3,

d) Experiment 4, e) Experiment 5, f) Experiment 6, g) Experiment 7, h) Experiment 8

Figure 7 Heap vs. CPU usage distribution. The size of the radius of each circle is relative to the square root of the ratio of CPU and Heap usage multiplied
by a constant number c. a) Experiment 1, c=0.1, b) Experiment 2, c=0.1, c) Experiment 3, c=0.8, d) Experiment 4, c=5, e) Experiment 5, c=5, f)

Experiment 6, c=0.2, g) Experiment 7, c=2, h) Experiment 8, c=2

373737

