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Abstract—Social network analysis comprises a popular set of 
tools for the analysis of online social networks. Among these 
techniques, k-shell decomposition of a graph is a popular 
technique that has been used for centrality analysis, for 
communities discovery, for the detection of influential 
spreaders, and so on. The huge volume of input graphs and the 
environments where the algorithm needs to run i.e., large 
datacenters, makes none of the existing algorithms appropriate 
for the decomposition of graphs into shells. In this article, we 
develop for the first time in the literature, a distributed 
algorithm based on MapReduce for the k-shell decomposition 
of a graph. We furthermore, provide an implementation and 
assessment of the algorithm using real social network datasets. 
We analyze the tradeoffs and speedup of the proposed 
algorithm and conclude for its virtues and shortcomings. 

Keywords-Map-Reduce; Hadoop; distributed algorithms; k-
shell decomposition; graph algorithms; social networks 

I. INTRODUCTION

The tremendous advances in information technologies 
and hardware, coupled with the omnipresent connectivity 
have created a frenzied development and popularity of online 
social networks (OSN) such as Facebook, Twitter, 
Instagram. All these online social networks store and process 
colossal volumes of data, mainly in the form of pair wise 
interactions, thus giving birth to networks, i.e., graphs which 
record persons’ interactions. 

Analysis and mining of these graphs offers both 
operational and business advantages to the OSN owner. 
Social Network Analysis (SNA) is comprised by tools and 
algorithms for analyzing social networks. Among the 
plethora of concepts encountered in SNA, the concept of k-
shell decomposition of a graph [14] is particularly appealing, 
because it reveals the internal core structure of a network. If 
from a given graph we recursively delete all vertices, and 
lines incident with them, of degree less than k, the remaining 
graph is the k-core1. K-shell has been used as a centrality 
measure, for detecting influential spreaders [2], for 
discovering communities [1], for analyzing the Internet 
structure [4].

Several algorithms have been proposed for the 
computation of it in diverse computational environments, 
ranging from single machine main memory [3] to secondary 
storage [5] and to small clusters comprised by a few 
machines [12], and for types of networks that are unweighted 

                                                          
1We use the terms k-core and k-shell interchangeably. 

or weighted [7] and vary from static to slowly changing or to 
networks whose topology is acquired in a streaming fashion 
[13]. Of all these diverse settings, the case of static networks 
(or those whose topology is changing very slowly compared 
to the time required to run analytics over the network) is the 
most common and encountered in the majority of today’s 
online social networks. Therefore, we focus our attention on 
static, unweighted networks and an efficient implementation 
of the k-shell decomposition of a network. 

A. Motivation and contributions 
Modern OSNs are comprised by millions of nodes; 

therefore any algorithm for the computation of the k-shell 
decomposition that relies on a single machine (centralized) 
– exploiting solely the machine’s main memory [3] and/or 
its disk [5] – is eventually doomed to fail due to lack of 
resources.

However, developing a distributed solution is a 
challenging task because it must deal with a highly 
sequential process, deleting one node (and incident edges) 
after the other. The algorithms presented in [12] and [11]
developed distributed solutions, but they can run only on a 
small cluster of machines, which is still insufficient, since 
modern OSN are maintained by Internet giants such as 
Google, LinkedIn and Facebook who own huge datacenters 
and operate clusters of several thousand machines. These 
clusters are usually programmed by high-performance 
middleware of the MapReduce type [6].

Therefore, solutions for the computation of the k-shell 
decomposition of a network based on the MapReduce 
“programming paradigm” would be necessary. This is 
exactly the gap that the present article fills. In summary, the 
present article makes the following contributions:

� It develops a distributed algorithm, namely MR-SD 
(MapReduce Shell Decomposition) for the computation 
of k-shells of a network. 

� It presents for the first time in the literature a distributed 
algorithm based on the MapReduce “paradigm” and 
therefore it is tailored for datacenter environments. 

� It assesses the performance of the proposed algorithm in 
an experimental fashion using real datasets and analyzes 
various tradeoffs in its operation. 

The rest of the article is organized as follows: In section 
II, we describe the related work; in section III we provide 
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background knowledge and the proposed algorithm. Section 
IV presents the evaluation of the proposed algorithm and
finally section V concludes the article. 

II. RELATED WORK

Since its initial introduction in [6], the Map-Reduce 
framework and its implementation in Hadoop2 have been 
used in many areas related to huge data processing. 
MapReduce’s most successful application area is 
Information retrieval [10], but it has also been used for 
bioinformatics, data mining and databases. The data 
management community has contributed fundamental ideas 
in the improvement and the extension of MapReduce [8].

One particularly interesting and significant topic in SNA 
is that of discovering the most “central” or most 
“influential” nodes in a social network. Apart from the 
classic centrality measures (degree, closeness, shortest-path 
betweenness), the notion of k-shell has attracted the 
attention of “data/network” scientists. It was first proposed 
in [14] and found wide application in areas such as Internet 
topology modeling [4], detection of influential spreaders [2],
discovery of communities [1], etc.  

In a straightforward implementation of the k-core 
decomposition algorithm, we need to perform recursive 
deletions of all vertices and edges incident with them, but 
efficient versions of the basic algorithm do exist for various 
settings.

There are two categories of algorithms depending on 
whether the graph is dynamic (slowly or fast changing) or 
static (known in advance and not changing). The literature 
on k-shell decomposition for dynamic graphs includes 
algorithms that are able to handle only slowly changing 
graphs when they fit entirely in main memory [9], for 
processing in small clusters with the type of distributed 
algorithms described in [11] and for graphs whose topology 
is acquired in a streaming mode [13]. For static networks, 
when the entire graph can be stored in main memory, the 
core decomposition of a graph can be done in time 
O(num_of_edges) due to [3]. For larger graphs that have to 
be stored in secondary storage the techniques described in 
[5] can be used. Moving on to progressively larger networks 
that cannot fit into a single machine, the exploitation of a 
very small cluster for the k-shell decomposition of a 
network can be done as in [12].

Clearly, none of the aforementioned solutions is 
appropriate for the type of infrastructure operated by modern 
Internet companies such as Google, Yahoo, LinkedIn, 
Facebook and Twitter. These Internet giants are operating 
huge data centers with clusters comprised of several 
thousand low-cost machines. These clusters are usually 
programmed by MapReduce-type frameworks. 

                                                          
2 http://hadoop.apache.org 

III. PROPOSED DISTRIBUTED ALGORITHM

A. Background 
K-shell decomposition of a graph is performed 

iteratively. The first step involves removing all degree-1
nodes, along with their link, and indexing these as k=1. In 
the resulting graph, all nodes of degree 1 are also considered 
to have k=1 and are again pruned. The process is repeated 
until there are no nodes of degree 1. Similarly, all nodes 
with i or fewer connections are iteratively removed; these 
nodes are indexed as k=i. The output of the k-shells 
algorithm is a single number for each node: its core 
assignment. 

Let us mention that a node is said to have k-coreness if it 
belongs to k-core but not to (k+1)-core. A k-shell is 
composed of all nodes that have k-coreness. However, it is 
common to use them alternatively although their definition 
differs. Figure 1 illustrates a sample graph and its 
decomposition into shells. 

B. The MR-SD algorithm 
In this section we present the details of the proposed 

algorithm (Figure 2). Algorithm 2 (running on the master 
node) is the driver routine reading the input and deciding if 
the decomposition reached its end; Algorithm 1 is an 
auxiliary one, and the MR-SD algorithm (running on slaves) 
is the routine performing the k-shell decomposition. Our 
Hadoop cluster consists of a collection of slave nodes and 
one master node. From here on let nodec denote a node of 
the cluster, either a slave or the master node. The base idea 
of our algorithm is that each nodec is responsible for 
performing the pruning phase of the k-core decomposition 
of a collection of nodes of a given network graph and only 
some nodesc for combining the intermediate results.

Our algorithm computes the k-cores starting by finding 
out the 1-hop neighborhood of each node. This is achieved 
by handing an independent and random chunk of the actual 
graph to each nodec.g p c

Figure 1k-shell decomposition of a simple graph 
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 As shown in Algorithm 2, a Map task is now forced. At 
this point, each node is considered as the output key and each 
neighbor as a single value. When a Reducer receives a key-
value pair, it groups all values (V). 

The intuition behind MR-SD algorithm is that each 
nodec can only process part of the network graph and that 
value k (value of the k-core) must be disseminated 
efficiently. Described in this way, the master node of the 
cluster is now responsible for updating the k value during 
the pruning rounds and for its propagation. Initially, the 
master sets k equal to 1, configures a Map-Reduce job, and 
announces k to each worker node. We are now ready to 
distribute computations to the slaves. 

The master node maintains the following variables to 
ensure the progress of the algorithm and detect termination: 

� k is an integer representing the value of the k-
coreness we currently examine.  

� Coresk is a variable containing the nodes that should 
be included in the current k-shell.

� Gremaining is a variable that represents the remaining 
network graph after a pruning round is performed, 
i.e., one execution of the MR-SD algorithm.

� Gin is a variable that contains the actual network 
graph provided by the user.  

Before a slave starts a Map task, it must first retrieve the 
k value. Since the master node is the only node of the cluster 
responsible to update k and only at the end of each job, we 
guarantee that the value of k that a slave receives is always 
up-to-date. As a next step, nodec counts the one-hop 
neighbors (i.e., degree) of a node which are stored in V from 
previous MapReduce process. Since this information is now 
available, the slave has to check if the degree of the node 
under consideration has shrunk below the k threshold or is 
equal to k. If this should happen, the node is marked by the 
slave so that the Reducer can include the node in the current 
k-shell and delete it from the remaining network graph. 
Moreover, some information is attached (attachedInfo
variable in MR-SD algorithm) to all nodes that are included 
in its one-hop neighborhood so that the Reducer can exclude 
the current node from their neighborhood. However, if the 
preceding check indicates that the degree of the node 
exceeds the k limit then the node’s id is collected along with 
its one-hop neighbors; the node id is the Key and the one-
hop neighbors the Value of the KV pair collected and send 
to the Reducer.

At the beginning of each Reduce task, the slave follows 
the same protocol as the Mapper; k value becomes available 
to the worker node. Whenever a Reduce is performed, KV
pairs are received. From previous stage of the MR-SD

Figure 2 Flow of the MR-SD algorithm
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algorithm K represents the node’s id and V stores its one-
hop neighborhood. There are now three possible scenarios 
we examine below: 

1. node K was marked in preceding Map task.  
2. node K is not marked by previous Mapper. 
3. node K comes coupled with additional information 

which says that one or more neighbors where pruned 
in this pruning round. 

In Scenario 1, if a Reducer receives a node that was 
marked during the Map task as K, i.e., the degree of the node 
is lower than k, it indicates that this node should be included 
in the current k-shell by the Reducer. In this case, we collect 
K and the k value as the KV pair in this round. Scenario 2 
appears when the node that was examined in Map phase of 
the MR-SD algorithm does not meet the requirements to be 
included in the current k-shell. Although this seems to 
require a quite basic collect process of the KV pair, there has 
actually some further work to be done. The Reducer is now 
obliged to check if there is additional information attached to 
the KV pair received. If the node does not come with 
additional information then KV pair is collected. Scenario 3 
appears in case where there is such information attached 
(attachedInfo). The information is about the node that has to 
be removed from the one-hop neighborhood of node K.
When receiving this message we exclude the node from the 
one-hop neighbors set; the degree is therefore decreasing too. 
It is possible at this point that the node remains with an 
empty neighborhood; in this case the node has k-coreness 
and is therefore collected along with its k-core value. In case 
there exists at least one neighbor after the pruning, the node 
id and the neighbors ids are collected as KV pair and sent 
back to the master in the Gremaining output file. 

Termination and Progress 
We need to discuss how we presume that Algorithm 2 

both detects termination and converges to the correct k-
cores or forces correctly another pruning round. There are 
few situations that appear: 

After every node has been examined, i.e., all KV pairs 
have been received and processed, we have reached the end 
of the MR-SD algorithm for this round. The master, who is 
also responsible to terminate and progress the k-core 
decomposition as mentioned above, receives now either 
both output files or just one of them. Let us make this more 
specific:

� If new additions to the current k-shell appeared in 
Map and Reduce tasks, the master receives the 
Coresk file including all node ids that have been 
removed previously and the Gremaining file with the 
remaining network graph. At this point k value 
stays the same for another round. 

� If only Gremaining is received, this indicates that k
value has to be updated since no other node has 
been added to the current k-shell in previous round.
The master has to increase k value and force another 
pruning round.

� Finally, if only the first file (Coresk ) is gathered by 
the master node, then termination is detected as no 
other nodes are left for examination. As a last step, 
all intermediate files that have been generated 
during previous rounds are now merged into one 
final output file (referred as k-cores in Algorithm 2). 

In order to understand the way our proposed algorithm 
works, we conclude with an example of a pruning round 
performed with our proposed algorithm. The example graph 
is depicted in Figure 3 and the running of the algorithm in 
Figure 4.  

Let us assume that we want to calculate the k-cores of 
the network in Figure 3. It is a small graph, so k-cores can 
be retrieved easily and obviously and one does not need a 
cloud to do this, but it is suitable for our example in order to 
understand the concept of Algorithm 2 and the MR-SD
algorithm. 

It is evident that the first job run should maintain to 
exclude nodes 6, 7, 8, 10 and 12 from the network and 
include them in the 1-shell.

Figure 3 An example 12 node network 
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First, the master sets k value to 1 and the Gremaining, which is 
the description of the network in Figure 3, is split into 
independent chunks; assume that the calculation of one-hop 
neighborhood preceded the initialization. In map task of 
Mapper 1 there is no node that has degree less or equal to 1. 
So Mapper 1 collects simply the KV pairs. Mapper 2 and 
Mapper 3 on the other hand, find nodes with degree equal to 
one; nodes 8, 10 and12 and nodes 6 and 7 respectively. At 
this point they mark them so that the Reducer includes them 
in the 1-shell. Moreover, Mapper 2 and 3 attach information 
to nodes 5, 9 and 11 to let the Reducers know that they have 
to delete nodes 6, 7 and 8 from one-hop neighborhood of 
node 5, node 10 from one-hop neighborhood of 9 and node 
12 from one-hop neighborhood of 11; the pink boxes 
represent the attachedInfo. When Reducers 1 and 2 receive 
KV pairs they check if the Key, which represents a node id, 
is marked. In case of nodes 1, 2 and 3 and 4 the reducers 
simply collect the KV pairs as they appear. For nodes 5, 9 
and 11 all nodes that are mentioned in the additional 
attached information are deleted from their one-hop 
neighborhood; here nodes 6, 7 and 8 are removed from 
node’s 5, node 10 from node’s 9 and node 12 from node’s 
11 one-hop neighborhood. Now the Reducers check if node
5, 9 or 11 has a non-empty one-hop neighborhood. In case 
of node 6, 7, 8, 10 and 12 the Reducers collect the Key and 
k value as Value.

IV. EXPERIMENTAL EVALUATION

In this section we provide the results of the experimental 
analysis; we describe the hardware, the real complex 
networks we have used and the obtained results. 

A. The evaluation platform 
We tested our algorithm on a cluster which consists of 

five nodes, one master node and four slaves. Each node is 
equipped with a disk space of 42GB and a 12GB RAM. Each 
node is an 8-core Intel CPU based blade running CentOS. 
The network switch which connects our network storages 
supports a 10-gigabit Ethernet connection. During each 
experiment there was no significant interference from other 
workloads. 

B. The experimental setting 
We have already mentioned that the proposed algorithm 

is the first one in the literature of k-shell decomposition that 
is based on the Map-Reduce paradigm; therefore, there are 
no competitors. We initially used the algorithms reported in 
[3] and [5], but they soon run out of memory for the large 
graphs and never terminated. Therefore, we do not present 
results for them. For the evaluation of the proposed 
algorithm, we used eight real social network graphs, which 
are described in Table 1. They were retrieved from 
https://snap.stanford.edu/ and from 
wiki.gephi.org/index.php/Datasets . Thus, we have used both 
small (a few thousands of nodes) and very large networks (a 
few millions of nodes).

Figure 4 An example running of the proposed algorithm 

We have performed eight experiments, one for each dataset 
as shown in the first column of Table 2. These are also the
datasets used in [1]. 

As performance measures of the efficiency of the 
proposed algorithm, we have used the following quantities: 

� [Average CPU time spent (msec)]. It is the time 
spent solely by the CPU to perform the 
calculations. The obtained results are averaged over 
all Map-Reduce tasks. 

� [Average Total Execution Time (sec)].  It is the 
total execution time of the k-shell decomposition 
process. It differs from the previous time in that it 
includes also the communication among master and 
slaves, the time required to store intermediate and 
final results and any other latency incurred. The 
obtained results are averaged over all Map-Reduce 
tasks. 

� [Average Total committed heap usage (Bytes)]. It is 
the memory footprint of the algorithm. 

For clarity of presentation purposes, we give the results 
concerning each dataset in a different plot. 

Data sets

Exper Social Network 
name

Num of 
nodes

Num of 
edges

Num 
of 

Jobs
1 Autonomous 

systems AS-733 6474 13895 61

2 DBLP collaboration 
network 317080 1049866 360

3 Autonomous 
systems by Skitter 1696415 11095298 1305

4 LiveJournal online 
Social Network 3997962 34681189 3363

5 Orkut online social 
network 3072441 117185083 5918

6 Amazon product co-
purchasing network 334863 925872 87

7 Deaseasome 7533 22052 118

8
Protein Interaction 
Network in budding 
Yeast

2361 7182 74

Table 1 Real social networks used for the evaluation
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Figure 5 Average CPU time vs. number of nodes 

Figure 6 Average CPU time vs. number of edges 

C.  The obtained results 
Now we are ready to present and comment the obtained 

results. First we will present the averages of the three 
aforementioned measures, and then present plots that 
concern their precise distribution.

1) Average execution times and memory footprint
Table 2 depicts the average values of CPU time, total 

execution time and memory footprint per Map job, per 
Reduce job and per dataset. Figure 5 and Figure 6 show that 
the execution time depends on the number of edges and not 
on the number of nodes. This is expected because the 
number of edges is related to the density of the networks, 
which defines the number of rounds that the algorithm will 
execute. 

2) Impact of the number of VMs
Recall that we experimented with a small cluster. This 

has consequences on the performance of each worker node. 
We observed that when running jobs on a small cluster 
combined with very large-sized network graphs some of the 
nodesc are obliged to run more than one map task. This case
for instance occurred when we decomposed the social 
network in experiment 5; here the max number of Map tasks 
exceeded 30 at the beginning. This result corresponds to 
more than 7 map tasks per slave during the first rounds of 
Algorithm 2 and the MR-SD algorithm and therefore a 
greater time. For small to medium sized graphs no 
significant workload appeared.  However, our proposed 
approach manages every time, even with great workload, to 
retrieve the k-cores. It is obvious that having a larger 
infrastructure a better performance can be achieved since 

Average CPU time spent (msec) Average Total Execution Time (sec) Average Total committed heap usage (Bytes)

Experiment Map Reduce Total (Job) Map Reduce Total (Job) Map Reduce Total (Job)

Autonomous 
systems AS-733

2061.31 2715.74 4777.05 99.95 9.13 16.18 379584512 189792256 569376768

DBLP 
collaboration 
network

7696.08 5768.33 13464.42 104.79 10.30 19.33 381046693 192004460 573051153

Autonomous 
systems by 
Skitter

61377.72 61982.36 123360.08 158.55 71.48 90.83 397844599 199193282 597037881

LiveJournal 
online Social 
Network

79122.92 28758.76 107881.68 159.53 33.63 56.77 486663048 201195325 687858373

Orkut online 
social network

505243.72 304598.03 809841.74 311.50 299.78 339.79 1695512575 157003260 185251583
5

Amazon 
product co-
purchasing
network

9803.56 6339.20 16142.76 200.13 10.75 20.06 376372495 191817092 568189587

Deaseasome 2223.05 2718.64 4941.69 175.80 8.87 16.26 379584512 189792256 569376768
Protein 
Interaction 
Network in 
budding Yeast

1559.32 2256.49 3815.81 156.41 8.82 15.00 379584512 189792256 569376768

Autonomous 
systems AS-733

2061.31 2715.74 4777.05 99.95 9.13 16.18 379584512 189792256 569376768

Table 2 Average resource consumption (Top) Average CPU time, (Middle) Average total execution time, (Bottom) Memory footprint
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map jobs are more efficiently placed over the cluster. 
Results can be seen in Figure 6 (averages) and Figure 7 (per 
experiment). In Figure 7, the x-axis in each plot depicts the 
total committed heap usage per job (in MBs), and the y-axis 
depicts the total CPU time spent per job (in msecs). In 
general, the reduce tasks cost far less in computation time 
than the respective map tasks, which is expected since the 
reducers perform mainly aggregation functions. 

3) Impact of Network density 
The performance of our algorithm depends on the 

network density, i.e., the number of network edges. Figure 6
shows that the density impacts exponentially the execution 
time. This is expected because the number of jobs increases 
with the number of edges.. In Table 2 we can see in details 
the performance of the algorithm for each data set. In 
particular, we emphasize the impact of the network density 
when comparing the results of CPU time of dense networks 
(e.g., experiment 5) with those of more sparse social 
networks (e.g., experiment 8). 

4) Impact of the machine load
The processing of a vast network is difficult until a large 

number of nodes are pruned. This means that during the first 
pruning rounds, we observe greater resource demands.  
Indeed, CPU time measured is greater and a larger heap size 
is required. As shown in Figure 8, the workload demands 
for large network graphs require an increasing processing 
power while the heap size remains actually almost stable 
during this interval. The same can be observed for small to 
medium networks but to a much lesser extent. Another 
interesting outcome is that reduce tasks tend to be more time 
consuming in the first 20% to 45% of the pruning rounds 
than in the last ones. In fact, the execution time seems to 
follow a decreasing exponential trend for very large graphs. 
Contrary to large networks, small or medium graphs have a 
rather flat execution time during the reduce phase. The latter 
observation is depicted in Figure 8.

V. CONCLUSIONS & FUTURE WORK

The problem of k-shell decomposition of an online social 
network is a significant task involved in social network 
analysis; it can be used for the discovery of influential 
spreaders, for community detection, etc. In this article, 
motivated by the unsuitability and lack of existing solutions 
to deal with this problem when the size of network is large 
and the computation takes place in huge clusters such as 
those deployed by current Internet giants (Google, Yahoo, 
LinkedIn), we designed a MapReduce-based distributed k-
shell decomposition algorithm for social networks. We 
addressed the challenges involved in the design of a 
parallel/distributed version of a graph decomposition 
technique, which is highly sequential in its nature, and 
provided an effective and efficient algorithm able to scale to 
millions of graph nodes and edges. We implemented the 
proposed algorithm in the Hadoop middleware, and assessed 
its performance for eight real social networks of varying 
size and density. We investigated the performance of the 

algorithm in terms of pure CPU time, of total execution time 
and memory footprint. We recognized its virtues and 
suitability for modern distributed environments.

As a future work, we plan to work on some aspects of it 
that involve the communication among slaves so as to 
optimize it and also to develop a variation of the algorithm 
for annotated networks, e.g., weighted. Finally, we plan to 
perform experimentation of our proposed algorithm on a
MapReduce environment of a major cloud service provider 
in order to highlight its scalability and achieve further 
speedup.  
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Figure 8 Map and Reduce task execution time (red is used for Map tasks and green for Reduce tasks) a) Experiment 1, b) Experiment 2, c) Experiment 3,     

d) Experiment 4, e) Experiment 5, f) Experiment 6, g) Experiment 7, h) Experiment 8 

Figure 7 Heap vs. CPU usage distribution. The size of the radius of each circle is relative to the square root of the ratio of CPU and Heap usage multiplied 
by a constant number c.  a) Experiment 1, c=0.1, b) Experiment 2, c=0.1, c) Experiment 3, c=0.8, d) Experiment 4, c=5, e) Experiment 5, c=5, f)

Experiment 6, c=0.2, g) Experiment 7, c=2, h) Experiment 8, c=2
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