
Identifying Influential Spreaders in Complex
Multilayer Networks: A Centrality Perspective

Pavlos Basaras, George Iosifidis, Dimitrios Katsaros , and Leandros Tassiulas, Fellow, IEEE

Abstract—Identifying influential spreaders in complex networks is of paramount importance for understanding and controlling the

spreading dynamics. A challenging and yet inadequately explored task is to detect such influential nodes in multilayer networks, i.e.,

networks that encompass different types of connections (e.g., different relationships) among the nodes, hence facilitating a multilayer

structure. Our purpose is to devise a method that can accurately detect nodes able to exert strong influence over the multilayer

network; the method will be based solely on local knowledge of a network’s topology in order to be fast and scalable due to the huge

size of the network, and thus suitable for both real-time applications and offline mining. Based on our belief that a strong influencer is a

node positioned in a well-connected neighborhood, we propose a series of methods which capture in a single number the rich inter- and

intra-layer connectivity of the node. Our simulations showed that the proposed measures can detect effective spreaders in both real

and synthetic networks, under various settings and against various competitors.

Index Terms—Centralities, influential spreaders, epidemic spreading, multilayer networks, complex networks

Ç

1 INTRODUCTION

THE study of complex networks [41], i.e., the discipline
called network science, is experiencing a blossom in

the last decade. A driving reason for this is the abundance
of data coming both from online social networks such as
Facebook, Twitter, and also from more traditional sources
such as the Web, Internet, mobile calling patterns, human
interactions and so on. These online traces have enabled
the development of algorithms for the analysis of the prop-
erties, functioning, and growth of these networks. Among
the many problems addressed in the literature of complex
networks, the identification of influential spreaders, i.e.,
the detection of nodes that can affect a large number of
other nodes, is of paramount importance in hopes of
understanding the spreading dynamics over complex net-
works, for seed selection in influence maximization prob-
lems [25], etc. In simple terms, the problem can be
expressed as the need to locate those nodes, who if acti-
vated, can effectively propagate information (e.g., rumors,
advertisements, products, etc.) to a significantly large sub-
set of network nodes [4], [24], [27], [34], [53], or if isolated,
can efficiently mitigate the diffusion of undesired “things”
(e.g., a virus) [5], [30].

So far, the literature on this topic—and the study of com-
plex networks in general—has focused on single-layer net-
works, where the entities (nodes) and their “communication”
channels (links) are assumed to belong to the same network.
However, the last few years, we are witnessing a phenomenal
initiative in the analysis of new kinds of complex networks,
where the interacting entities are assumed to belong to more
than one network, called layers. These networks are termed
multiplex [9], multisliced [39], multilevel [52], interdepen-
dent [7] or more general, multilayer networks [6], [28]. Online
social networks, financial systems, transportation networks
are such networks to name a few; more detailed examples can
be found in [6], [28]. Research in the realm of multilayer net-
works investigates topics such as centralities [37], communi-
ties [23], growthmodels [47] and so on. Similarly, the study of
spreading processes in multilayer networks has started to
attract significant interest, however the field is still developing
its basic principles [45]. On the other hand, the literature on
developing algorithms for identifying influential spreaders in
multilayer networks is yet very narrowed (cf. Section 6). How-
ever, the spreading of information, rumors, advertisements,
or broadly speaking anything that can be ‘shared’ through
networked populations is rarely isolated into a single net-
work; for instance, information propagation over social net-
works is taking place in a fashion such that a user decides to
share a ‘chunk of information’ through his/her account, in
both Facebook and Twitter.

The identification of influential spreaders in single-layer
networks, after the seminal work [27], has concentrated
around the idea of ‘network decomposition’ using concepts
such as the k-shell, the k-truss [51], the onion decomposi-
tion [21], and so on. All these techniques are iterative and
therefore slow; they require knowledge of global network
connectivity, in order to locate nodes which are highly con-
nected, hoping that they are also good spreaders. However,

� P. Basaras is with the Department of Electrical & Computer Engineering,
University of Thessaly, Volos 382 21, Greece. E-mail: pbasaras@gmail.com.

� G. Iosifidis is with the School of Computer Science and Statistics, Trinity
College Dublin 2, Ireland. E-mail: giosifid@gmail.com.

� D. Katsaros and L. Tassiulas are with the Department of Electrical Engi-
neering & Yale Institute for Network Science, Yale University, New
Haven, CT 06520. E-mail: {d.katsaros, leandros.tassiulas}@yale.edu.

Manuscript received 9 Mar. 2017; revised 4 Oct. 2017; accepted 4 Oct. 2017.
Date of publication 16 Nov. 2017; date of current version 13 Mar. 2019.
(Corresponding author: Dimitrios Katsaros.)
Recommended for acceptance by M. Porter.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TNSE.2017.2775152

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 6, NO. 1, JANUARY-MARCH 2019 31

2327-4697� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3473-4187
https://orcid.org/0000-0003-3473-4187
https://orcid.org/0000-0003-3473-4187
https://orcid.org/0000-0003-3473-4187
https://orcid.org/0000-0003-3473-4187
mailto:
mailto:
mailto:


all these methods are inapplicable in multilayer networks,
because they result in a vector of values for each node [3],
i.e., the value of k-shell, or of the k-truss of the node in each
layer. Thus, the ranking of nodes using these vectors is not
straightforward, unless we define a set of weights for the set
of layers and compute a score out of these weights. Appar-
ently, the introduction of artificial weights and computations
over them is arbitrary and thus not desirable. An alternative
is to address the problem as a “rank aggregation” prob-
lem [18], [32], and fuse the ranking lists produced by each
value; still, the selection of the fusion algorithm will raise
questions about its appropriateness and fairness. On the
other hand, the use of centrality measures, such as the short-
est-path betweenness centrality, presents the same draw-
backs as their counterparts for single-layer networks as
analyzed in [4], whereas the use of a PageRank centrality
measure adopted for multilayer networks as in [20], has the
drawback that its computation requires an artificial ordering
among the layers of the complex multilayer network, there-
fore making this solution to depart from reality. On the other
hand, the elegant and mathematically sound generalization
of PageRank reported in [15] simply suffers from the compu-
tational complexity of the original PageRank, i.e., it is net-
work-wide and iterative, thus time-consuming.

A different line of research on the topic of single-layer
influential spreaders detection was described in [4], where
the concept ofPower Community Index (PCI) (cf. Definition 1)—
and also in [4], [17]—was proposed to detect highly effective
spreaders. The proposed method is localized, requiring only
local (i.e., two hop) neighborhood information, is fast and
proved superior to k-shell. The connectivity of the nodes
identified as highly influential spreaderswith the aid of PCI is
in accordance with the findings of the study [38], which
proved analytically that the most effective influential spread-
ers are those who “. . .are relatively low-degree nodes sur-
rounded by hierarchical coronas of hubs.” In principle, the
generalization of the ideas of PCI for multilayer networks
would be appropriate, because it would be based on local
information of the topology, thus minimizing the computa-
tion cost and eliminating the need for having complete knowl-
edge of the entire network state, hence being a good candidate
even for real-time applications over massive multilayer com-
plex networks.

This article investigates the problem of identifying influ-
ential spreaders over complex multilayer networks, by
introducing a family of centrality-like measures tailored for
local computation only, and able to locate nodes in dense
areas of the multilayer network with many intra- and inter-
layer links facilitating the rapid evolution of a diffusion pro-
cess. The article makes the following contributions:

� It thoroughly investigates the topic of identifying
influential spreaders in multilayer networks by
maintaining and exploiting the multilayer structure,
i.e., without blending and/or weighting—and thus
eliminating—the layers as done by [2] (such an
approach has already been proven inadequate and
inefficient [15]).

� It proposes a family of localized measures that
effectively and efficiently address the problem of
influentials identification by incorporatingmultilayer

characteristics (existence and density of intra- and
inter-layer connections). The proposed methods can
be straightforwardly adapted to any type of multi-
layer network.

� It evaluates the proposed techniques in a wealth of
real and semi-synthetic multilayer networks using as
competitors all the major high-performing measures,
i.e., PageRank, Betweenness, Degree, k-core and
their multilayer variations.

� It concludes that one of the proposedmethods, namely
mlPCI is (almost) always the best-performingmethod
irrespectively of the size and characteristics of the
investigated complex networks, whereas the tradi-
tional ones such as PageRank and Betweenness cen-
trality fail to achieve competitive performance.

The remainder of this paper is organized as follows.
Section 6 briefly contemplates related articles. In Section 2
we provide formal definitions and notations for multilayer
networks. Section 3 describes and exemplifies the proposed
methods, whereas Section 4 outlines the experimentation
settings, datasets, competitors and performance measures.
In Section 5 results are demonstrated, and finally Section 7
concludes the article.

2 PRELIMINARIES

We are interested in two types of networks, (i) generic mul-
tilayer networks, and (ii) multiplex networks. We adopt a
graph-theoretic notation and terminology, similar to the one
presented in [6]. On the other hand, tensors comprise a simi-
larly powerful, and more compact way to represent multi-
layer networks; they have been used extensively for the
representation of such networks, and for the calculation of
centralities and communities in them, e.g., [14], [40]. How-
ever, since the measures we introduce in Section 3 make use
only of local (around each node) information and they can
be very easily described with graph-theoretic terms, we pre-
fer to use the graph-theoretic representation. The rest of the
section reviews the notation (Table 1) of multilayer net-
works and the spreading model.

2.1 Monoplex, Multiplex and Multilayer Networks

A Single or Monoplex network is represented as a graph
Gi(Vi; Ei), where Vi is the set of nodes andEi is the set of edges
which connect those nodes. Edges can be directed or undi-
rected, weighted or unweighted. A multilayer network can be
described as a combination of graphs, G1;G2; . . . ;GjLj, and a

TABLE 1
Notation for Multilayer Networks

Notation Description

Gi Amonoplex network i
Vi The set of nodes of the monoplex network i
Ei The set of edges of the monoplex network i
P Amultilayer network
L The set of layers of the multilayer network
G A set of monoplex networks: Gi, i 2 ð1; NÞ
E A set of edges between different monoplexes
�ii Spreading rate at layer i
�ij Spreading rate from layer i to j
kin, kout in-degree, out-degree
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set of interconnections between nodes in separate graphs.
Edges connecting nodes of a single graph are featured as
intra-edges, whereas edges connecting nodes of different
graphs are notated as inter-edges. Formally, we describe amul-
tilayer network as PðG; EÞ, where G ¼{Gi; i ¼ 1; 2; ::; jLj} is a
set of graphs, i.e., the layers of P, and E ¼ fEij � Vi � Vj;
i; j 2 {1; 2; . . . ; jLj}; i 6¼ j} is the set of inter-edges between
nodes of different layers, i.e., different graphs. Fig. 1 depicts a
four layermultilayer complex network.

Multiplex networks are a special case of multilayer net-
works, where nodes are clones (counterparts) of themselves
in each layer, i.e., V1 ¼ V2 ¼ � � � ¼ VjLj ¼ V . For multiplex
networks the only inter-connections allowed are between a
node and its counterparts in the remaining layers. Formally,
Eij ¼{ðv; vÞ; v 2 V } for all i; j 2 f1; 2; . . . ; Ngwith i 6¼ j.

2.2 Diffusion in Multilayer Networks

Similar to other studies e.g., [54] we use the Susceptible-
Infectious-Recovered (SIR) model, which models the penetra-
tion of a virus (information, product, rumor), and it has
three possible states: a) Susceptible (S), b) Infectious (I) and
c) Recovered (R):

� Susceptible (S) state, where a node is vulnerable to
infection.

� Infectious (I) state, where a node tries to infect its sus-
ceptible neighbors, and succeeds with probability �.

� Recovered (R) state, where a node has recovered and
can no longer be infected.

A susceptible (S) node may be a user that is interested in
certain information/product. Infectious (I) individuals are
those who are already influenced, and try to “convince” their
susceptible neighbors to follow the same action. Finally,
recovered (R) nodes are those nodes who, e.g., have bought
the product and can no longer be affected. The diffusion
process ends when there are no nodes left in the I state.
Hence, influence is measured by the number of nodes in the
R state at the end of a diffusion process.

In multilayer networks the propagation is expected to dif-
fuse over the different layers at different speeds, i.e., different

� per layer [6], [28]. However the different spreading rates
within the various layers is not the only rate that we need to
study. Spreading among different layers should also be taken
into consideration. Thus, we experience intra-infection proba-
bilities, i.e., infection rate in a single layer i (�ii), and inter-
infection probabilities, i.e., infection rate from a node in layer i
to its inter-connection in layer j (�ij). In multiplex networks
nodes are clones in the different layers, hence for this special
case �ij ¼ 1. In our model, and without loss of generality [4],
[24], [27] we assume that an infected source has a single
chance to infect its susceptible neighbors, and immediately
after it falls to the R state. This is the worst-case scenario to
benchmark a method, since the longer a source node is
infected the more probable to infect its neighbors. If we allow
for (very) long infection periods, then the diffusion process
will expand to very large parts of the network (or even to the
whole network), irrespectively of the seeding method, the
infection probability, the network topology, etc.

Therefore, the question to be answered is which are those
nodes, who if initially activated/incentivised, can trigger a cascade
of new adoptions and maximize the spread.

3 PROPOSED METHODS TO IDENTIFY HIGHLY

INFLUENTIAL SPREADERS

Understanding influence in multilayer structures is signifi-
cantly different from that of monoplex networks; agents
(nodes) are subject to different environments which quite nat-
urally have different rules, i.e., ways (paths) to spread infor-
mation, different spreading rates, etc. Such characteristics
introduce new challenges in the domain of influence ranking,
and hence new techniques that incorporate those aspects are
necessary. In [4] we introduced the m-Power Community Index
(m-PCI) of a node, that combines the degree of the focal node
with the degree of its direct neighbors. The intuition inferred
from the understanding that a node in a dense neighborhood,
in principle, can affect a large number of other nodes, i.e.,
exert strong influence. The proposed technique in addition to
its local computation cost, successfully identified influential
spreaders. Later in [38], it was proved that such connectivity
results in the ‘best’ influential spreaders.

In our current work, we raise and answer the following
question: can we devise a locally-computed measure, that will
characterize a node’s vicinity, for their density in both, intra and
inter connections? We believe that identifying nodes with
strong connectivity in many layers, will reveal potent enti-
ties linked to different connected environments, thus able to
exert strong influence over the multilayer network. To put
our interest into the test, we devise a number of measures
that follow our main idea, and evaluate them in a number
of real and semi-synthetic multilayer networks.

3.1 The Family of Multilayer PCI Measures

For the sake of article’s self-completeness, we start with the
definition of the original measure, i.e., (m-PCI), and then
give its multilayer generalizations.

Definition 1 (Power Community Index, m-PCI [17]). The
m-PCI index of a node v is the maximum number k, such that
there are at least k neighbors of this node with degree larger
than or equal to k in the m-hop neighborhood of v.

Fig. 1. A multilayer network consisting of four layers L1, L2, L3 and L4.
Nodes with the same ID in different layers depict clones of the same
node.

BASARAS ETAL.: IDENTIFYING INFLUENTIAL SPREADERS IN COMPLEX MULTILAYER NETWORKS: A CENTRALITY PERSPECTIVE 33



By setting m ¼ 1, we get a restricted version of the algo-
rithm, namely PCI. PCI coincides with the well-known
h-index [22], and therefore m-PCI generalizes the h-index for
single layer networks. PCI is actually a centrality measure,
and it was originally used for the purposes of cooperative
caching in wireless ad hoc networks. Later in [4] it has been
applied to the identification of influential spreaders; similarly,
the h-index has beendescribed as a centralitymeasure [8], [29]
and used in the context of influentials [35], [43].

Next, we provide the generalization of PCI (and thus of
the h-index) to multilayer networks.

Definition 2 (Minimal-layers PCI, mlPCIn). The mlPCIn
index of a node v is the maximum number k, such that there are
at least k direct neighbors of v with the number of links
towards at least n layers greater than or equal to k.

From Fig. 1 with node D as an example: mlPCI1ðDÞ ¼
mlPCI2ðDÞ ¼ mlPCI3ðDÞ ¼ 3 and mlPCI4ðDÞ ¼ 0. To com-
bine the distinct n values ofmlPCIn into a single dimension,
we propose a simple aggregation. In particular, for a node v
we definemlPCIðvÞ as follows:

mlPCIðvÞ ¼
X

n

mlPCInðvÞ: (1)

mlPCI by definition bares no strict limitation with regard
to either limited, or large number of layers. The indicator will
handle cases where nodes are well connected to all layers, to a
few or even just one layer accordingly, which indicates the
dynamics of Definition 2. According to mlPCI index, nodes
well connected inmany layers, i.e., nodes assigned high index
scores in the range of the n values, will be better “rewarded”
from nodes that are well connected, but, in fewer layers. With
this understandingwe believe thatmlPCI will be a good indi-
cator for the spreading potential of nodes.

Simple aggregation can be considered as a baseline
method to combine the different values of mlPCIn. How-
ever, since larger n implies connection to more layers, a
scaling factor could be used with respect to n in order to
handle the vector elements differently. Nonetheless, to
devise an appropriate method for handling those values is
no trivial task. Several factors need to be taken into consid-
eration and further combined with respect to potentially
different characteristics introduced by the different layers,
e.g., number of nodes, connectivity, global clustering coeffi-
cient, etc. Such characteristics can introduce a different
view to mlPCIn and provide a different ranking for the
network nodes. In this article we focus on the simple
aggregation introduced in Equation 1, i.e., agnostic to layer
characteristics.

Next, we present a set of special cases of Definition 2.

� Layer-agnostic PCI (laPCI). By ignoring layer informa-
tion (i.e., ignoring n) in Definition 2, we get a special
case of mlPCIn which we call Layer-agnostic PCI,
laPCI. In Fig. 1, and considering node D as our focal
node, the neighbors that contribute to its laPCI index
are nodes K, B, F and T with a total of 6, 9, 12 and 16
links respectively in the different layers. Thus we have
four neighbors each of which has at least as many links
to the different layers, i.e., laPCIðDÞ ¼ 4. laPCI gives
credit to a node whose neighbors have many

connections in different layer(s), however, it makes no
distinction on how those connections are distributed
over those layers. This implies that a node may accu-
mulate a large laPCI value by being well connected in
a few layers, and at the same time sparsely connected
(or even disconnected) to the remaining ones.

� All-layers PCI (alPCI). We obtain another special case
of mlPCIn by setting n in Definition 2 equal to the
number of layers; we call this special case as the
All-layers PCI, alPCI. This approach demands that
the neighbors of the focal node have at least k
neighbors in all layers. Considering node P of
Fig. 1, the neighbors that contribute to its alPCI are
nodes G and I each of which has at least two links
in all layers, thus alPCIðP Þ ¼ 2. alPCI will detect
nodes strongly connected to all layers of the multi-
layer network that we believe is key ingredient for
highlighting the most efficient intra- and inter-layer
spreaders. However, this measure will be very
restrictive for nodes that lack interconnectivity
towards all layers. This may be a problem for multi-
layer networks composed of many layers, where it
would be quite difficult to detect many nodes with
particularly high alPCI index.

� Layer-symmetric PCI (lsPCI). Finally, by setting n ¼
k ¼ ‘numberoflayers ’ in Definition 2 we get the so-
called Layer-symmetric PCI, lsPCI. This measure is a
combination of three aspects: (a) the inter- and
intra-degree of the focal node, (b) the inter and
intra-connections of its inter- and intra-neighbors,
and (c) the layers; all these are nicely “condensed”
into a single value. lsPCI alleviates the strictness of
alPCI: “to all layers” no longer applies, and can be
quite effective when dealing with a large number of
layers. For limited number of layers we expect
lsPCI to act complementary to other methods, since
nodes will be ranked from a limited range of values.
In Fig. 1, for node D it applies that lsPCIðDÞ ¼ 3,
since nodes B, F and T have at least three links in
three layers.

Although we have presented our definitions for undi-
rected networks, their implementation to directed ones is
straightforward, i.e., by matching the k attribute to the out-
degree of each respective node.

In the next section, we conduct an experimental evalua-
tion of the proposed family of measures providing detailed
information about the competitors, the datasets, and the
performance measures.

4 EVALUATION SETTINGS

4.1 Competitors for Multiplex Networks

Additive PageRank for multiplex networks (addPR). Pag-
eRank [31] has been used several times for the identification
of influential spreaders [44]. In [20] the original PageRank
algorithm is extended for multiplex networks requiring
though a “predefined” ordering of the layers. We examine
here the so-called additive Multiplex PageRank, in which the
effect of layer i on layer j is exerted by ‘adding’ some value
to the centrality the nodes have in layer j in proportion to the
centrality they have in layer i. Since the authors do not
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provide layer ordering methodology, we order layers in
decreasing order of their largest eigenvalue. Our choice is
driven with respect to the fact that a larger eigenvalue
implies faster information dissemination.

Versatility PageRank (verPR) and Versatility Betweenness
Centrality (verBC). A fundamentally different flavor in
extending PageRank for multiplex networks has been
described in [15], which, using a tensorial notation, pro-
vides a generalization of the original PageRank for multi-
plex networks, called the Versatility PageRank. Counting
the number of shortest paths that pass through a node
(i.e., Betweenness centrality) has been widely used as a
competing technique for ranking the influence potential of
nodes. In [15] the authors generalize this concept for multi-
plex networks, describing the Versatility Betweenness.
Both techniques are implemented as competitors.

Multiplex k-core percolation methods (Core and sumCore).
We include the k-core percolation for multiplex struc-
tures [3], [13] in the competitors lists (Core). However, in
the evaluation we found only limited values for Core. This
is due to the fact that Core will follow the coreness of a
node’s least connected edge type, regardless of how well
connected a node may be in the remaining layers. Thus, we
also include a variation of Core according to which we cal-
culate the shells for each layer separately and then add
those values; we name this version as the sumCore index.

Degree centrality for multiplex networks (aggDeg). We
employ a straightforward interpretation of degree centrality
for multiplex networks, i.e., the aggregation of the intra
neighbors of the focal node in all layers; we call it aggDeg.

4.2 Competitors for Multilayer Networks

The work presented in [11] proposes a generalization of the
k-core algorithm that incorporates �ii and �ij within the defini-
tion of the technique. However, this is not a characteristic that
any method should “know” a priori, and hence, we exclude
this method from our list. Also, due to the unique characteris-
tic of multiplex networks, i.e., nodes are clones in the different
layers, the Additive PageRank (addPR), presented in the pre-
vious section, cannot be applied here. Though, we tested the
Versatility PageRank and Versatility Betweenness proposed
in [15], and Core from [13]. Moreover, in order to provide a
complete analysis, we apply the ‘traditional’ methods, i.e.,
PageRank, Betweenness centrality, Degree centrality, and
k-core by projecting the multilayer network in its aggregated
form, implementing in essence the proposals in [2].

4.3 Summary of Competitors

Table 2 summarizes the competitors implemented in this
article. Each method’s name is comprised by two parts; the

latter part discloses the method, e.g., PR stands for
‘PageRank’, BC stands for ‘Betweenness Centrality’, Core
for ‘k-core’, ‘Deg’ for ‘Degree’, whereas the former part
describes the ‘flavor’ of the method, e.g., ‘vers’ stands for
‘versatility’, ‘add’ stands for ‘additive’, ‘agg’ stands for
‘aggregated’ (i.e., in the aggregated network), ‘sum’ stands
for ‘summation’ (i.e., summation of values resulting from
the calculation of a measure in the different layers).

4.4 Datasets

For the evaluation of the competing methods we used sev-
eral real and synthetic datasets to compare the algorithms
in diverse networked environments.

4.4.1 Real Datasets

Table 3 depicts the basic attributes of the experimented mul-
tiplex networks. For more details, readers are referred to:
http://deim.urv.cat/�manlio.dedomenico/data.php. We
extracted part of the original networks in such a way that all
nodes have counterparts in all layers.

4.4.2 Semi-Synthetic Datasets

For synthesizing artificial networks we follow a similar
approach with the authors of [11]. Specifically, we consider
real monoplex networks from [33], e.g., several Internet peer-
to-peer networks, and synthesize their interconnectivity.
Table 4 illustrates the real networks used as the different
layers of the synthesized multilayer networks. EgV corre-
sponds to the largest eigenvalue of each respective network.
We generated two types of multilayer networks: (i) a multi-
layer network composed of layers with similar size, i.e., Simi-
lar Layers Network (SLN) and (ii) a multilayer network formed
of different-sized layers, i.e.,Different Layers Network (DLN).

The multilayer network of the first type is composed of the
networks/layers (3)–(6) (4 similar-sized layers), whereas the
second multilayer network is composed of the networks/
layers (1)–(3) (i.e., 3 different layers). For the latter case the dif-
ferent networks differ in the number nodes, edges and net-
work type. We present plots about the out-degree

TABLE 2
A Summary of Competing Methods Evaluated

Multiplex networks Multilayer networks

aggDeg � aggDeg
addPR [20] aggPR [31]
verPR [15] verPR [15]
verBC [15] verBC [19]
sumCore [this article] aggCore [27]
Core [13] Core [13]

TABLE 3
Multiplex Networks

Networks N E jLj Type Nature

Sacchpomb 875 18214 3 Directed Biological
Drosophila 1364 7267 2 Directed Biological
Sacchcere 3096 185849 5 Directed Biological
Homo 3859 77483 3 Directed Biological
NYClimateMarch 4150 45334 3 Directed Twitter
MoscowAthletics 4370 33411 3 Directed Twitter

TABLE 4
Layers of Semi-Synthetic Networks

No. Network Nodes Edges Type EgV

1. wiki-Vote 7,115 103,689 social 45.1
2. cit-HepTh 27,770 352,807 citation 10.8
3. p2p-Gnutella04 10,876 39,994 p2p 4.4
4. p2p-Gnutella05 8,846 31,839 p2p 4.3
5. p2p-Gnutella06 8,717 31,525 p2p 4.7
6. p2p-Gnutella08 6,301 20,777 p2p 5.1
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distribution of these networks in the ‘Network properties’ sec-
tion of the Appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TNSE.2017.2775152.

4.4.3 Generating Interconnections

Since we make use of real networks to represent the layers
of the semi-synthetic multilayer structure, we have to
decide how to generate the interconnections among layers.
We developed a synthetic multilayer network generator
which satisfies the following three needs:

� It can define howmany interlinks, i.e., inter-neighbors,
a nodemay have.

� It can define how those links are distributed over the
layers.

� It can define how links are distributed in each spe-
cific layer.

We apply the Zipfian distribution in our interconnectiv-
ity generator. The desired skewness is managed by the
parameter s 2 ð0; 1Þ. The generator uses one Zipfian distri-
bution per parameter of interest:

� sdegree 2 ð0; 1Þ in order to generate the frequency of
appearance of highly interconnected nodes.

� slayer 2 ð0; 1Þ in order to choose how frequently a spe-
cific layer is selected.

� snode 2 ð0; 1Þ in order to choose how frequently a spe-
cific node is selected in a specific layer.

Finally, we need to decide the range of values for the dif-
ferent distributions. For slayer and snode the selection is
straightforward since all layers and all nodes within a layer
must be available options. Note that the different layers are
allowed to have different preferences, i.e., skewness
towards different network-layers. Following the review
of [28] we understand that inter-connections are rarer than
the intra-connections. In our simulations, we limit the inter-
degree of nodes within (0, d � log2

P
i Vi) for all i ¼ 1; 2; ::N

layers where d ¼ 1; 2; 3 or 4. Hereafter we apply the notation
SLNd(sdegree, slayer, snode) in order to refer to the generated
networks. More algorithmic details and a brief validation of
the generator can be found in the Appendix available online
of this paper.

4.5 How to Evaluate the Performance

In our experimentation, in order to evaluate the ranking
ability of each competitor, we calculated the correlation of

the competitors with respect to the spreading power (SP )
of each node (i.e., the number of nodes influenced), when
initiating the SIR process from this node as the single ori-
gin of the diffusion process. The correlation is measured
through Kendall’s Tau (t) “b” rank correlation coeffi-
cient [26]; the t value between two equi-sized ranked lists
is computed as follows:

t ¼ nc � nd

nðn� 1Þ=2 ; (2)

where nc is the number of concordant pairs, nd is the number
of discordant pairs, and the denominator is the total number
of pairs of n items in the lists. Some more details are pro-
vided in the Appendix available online. In order to obtain
unbiased results, for each node, the average SP is used
over 500 SIR processes.

We found that the average is a proper representative for
the following reason: we evaluated the ranking ability of the
competitors with respect to the standard deviation of the dis-
tribution around the average spreading power of each node.
Inmore detail, all competitors were rankedwith respect to: (i)
the average spreading power (SP ), (ii) the average spreading
power minus the standard deviation (SP � std), and (iii) the
average spreading power plus the standard deviation
(SP þ std), when �ii is the epidemic probability. Hence for
each competitor we obtained three values of t. We found out
that these values differ from each other beyond their third
decimal point, as shown in Table 5, where each cell’s value is
the ratio between the correlation (t) of a competitor, e.g.,Deg,
and the technique which scored the largest t (i.e., mlPCI),
when using the respective values of SP for two networks,
namely Homo and Sacchpomb. Similar results were observed
in the remaining networks, and thus, we draw the correlation
of each competitor against the average spreading power.

4.6 Setting Parameters

Table 6 illustrates an overview of the experimented parame-
ters, range and default values. In our evaluation in multi-
plex networks we illustrate how the different spreading
rates per layer (�ii) affect the competing methods. Specifi-
cally, we compute the epidemic probability �c [46] for each
layer, and experiment around this value. For example in
Fig. 2a, zero in the x-axis sets �ii of all layers at their respec-
tive epidemic thresholds, while �0:2 sets the spreading rate
per layer at 20 percent bellow that value etc. Similar nota-
tions are used for the semi-synthetic networks, where we
also investigate on the impact of the inter spreading rate
(�ij) and on the density of the generated interconnections
(d). To decide the spreading rate between the different
layers, we calculate the epidemic threshold of the

TABLE 5
Stability of Ranking with Respect to the Average

Spreading Power

Homo Sacchpomb

avg-std avg avg+std avg-std avg avg+std

aggDeg 0.9839 0.9859 0.9879 0.9899 0.9869 0.9887
sumCore 0.9162 0.9142 0.9112 0.9781 0.9804 0.9806
verBC 0.7020 0.7013 0.7011 0.8020 0.7972 0.8015
addPR 0.8494 0.8457 0.8421 0.8590 0.8649 0.8602
verPR 0.8495 0.8560 0.8529 0.9498 0.9501 0.9530
Core 0.7713 0.7725 0.7717 0.4363 0.4394 0.4340

The values represent the ratio between the correlation (t) of a competitor, and
the best performing method (i.e.,mlPCI).

TABLE 6
Experimentation Parameters

Network Type Rate Range Default

Multiplex �ii��c
�c

�0.2 to 0.6 0

Multilayer �ii��c
�c

�0.2 to 0.2 0
�ij��c

�c
�0.3 to 0.3 0

d 1 to 4 2
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aggregated network and likewise experiment around this
value. We choose to use the same �ij among all layers in
order to give the same “weight” to all interconnections.
When evaluating the impact of one parameter, the remain-
ing parameters are set to their default values.

5 RESULTS

5.1 Ranking Influence in Real Networks

In this section we investigate on the performance of the com-
peting techniques in multiplex networks. For our first and
most evident observation we elect mlPCI as the most prom-
ising technique for the identification of influential spreaders.
As illustrated in Fig. 2, mlPCI has the strongest correlation
with influence in almost all evaluated scenarios, that is, the
largest t. By combining the connectivity that neighboring
nodes posses in the different layers asmlPCI suggests, from
just one, to all layers of the multiplex network, we show that
the proposed algorithm can take advantage of multiplexity
more efficiently than the competing techniques.

In plots (d-f) of Fig. 2, aggDeg performs similarly to
mlPCI, whereas their in-between performance deviates in
(a), (b), and (c). Its worst performance is illustrated in
Fig. 2b where the competitor’s correlation with influence
falls to the fifth place. aggDeg “sees” the network in its
aggregated form, i.e., as a monoplex network, and hence
disregards a wealth of knowledge regarding the different
layers. For instance a node which accumulated most of its
aggDeg value from a single layer, is not distinguished from
a node of the same index but equally connected to all layers.
Nonetheless, these nodes will have different spreading
potential. Moreover, although a node with many connec-
tions can be an influential one, it is also a misleading charac-
teristic if the node is positioned in the periphery of the

network. This claim has been proven for monoplex net-
works [27], and it was expected to apply in multiplex struc-
tures as well.

Focusing on alPCI we observe varying results, i.e.,
medium performance, as in Fig. 2a or Fig. 2b, or low correla-
tion with influence as illustrated in Fig. 2c or Fig. 2e. At this
point we should reminisce that alPCI is a very strict defini-
tion which demands connectivity to all layers. Although in
terms of spreading capability such characteristic would
prove invaluable, in our simulations we found relatively
low values for alPCI. Fig. 3 illustrates the distribution of
alPCI values in the evaluated networks. It can be observed
that when we are bound to a poor distribution, i.e., when
nodes are not strongly connected to all layers as in Drosoph-
ila network (Fig. 2c), we obtain the worst case performance
for alPCI. Contrary, when nodes are better connected to all

Fig. 2. Rankings capabilities (Kendall’s Tau b) of all competing techniques in real multiplex networks with respect to �ii. It can be observed that all
competing algorithms exhibit similar trends, i.e., either increasing or decreasing trend as the intra-spreading probability changes. mlPCI illustrates
the largest correlation with influence in almost all networks. WhilemlPCI shows a relatively stable behavior, i.e., it is (almost) always at the top of the
ranking chain, the remaining algorithms do not posses that property as their rank changes in the different networks, e.g., aggDeg is 2nd in Homo and
6th in MoscowAthletics2013.

Fig. 3. Distribution of alPCI values for all networks. It can be observed
that for most networks the majority of nodes has relatively low alPCI val-
ues, whereas the largest indexes are appointed to only a few nodes.
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layers, the correlation of alPCI with influence increases,
e.g., as in the Sacchcere network (Fig. 2f). Of particular
importance are Drosophila and Sacchpomb networks where
we observe a large portion of network nodes with zero
alPCI index. These are the cases where several nodes act
only as receivers (not spreading) in a layer, i.e., zero out-
degree. Such instances can be related to lurking behaviors
in social networks where nodes only “hear” but never
spread information [50]. However, alPCI requires spread-
ers to all layers, hence, by definition these nodes will be
“overlooked”. Although the above cases contribute nega-
tively in the evaluation of the proposed mechanism, our
results show that finding nodes strongly connected to (as)
many layers (as possible) is a key factor for the identification
of influential spreaders. For lsPCI we also observed varia-
tion to its performance. This is due to the relatively low
number of layers evaluated (2, 3 or 5), and thus limited
range of indexes obtained for ranking the multilayer nodes.

Moving to the evaluation of sumCore, we observe that
the competitor is ranked second in (a) and (b) of Fig. 2,
whereas in Fig. 2e it competes with aggDeg for the second
place. However, in the remaining networks the competitor
performs differently. From Fig. 4 it can be observed that the
largest sumCore values for the Twitter networks are
about 10, that is, a large number of nodes distinguished for
their influence capabilities from a mere of ten different val-
ues (ties are solved via largest aggDeg). Although this is a
shortcoming shared also by alPCI, from Fig. 4 it can be con-
cluded that as we obtain a better distribution for the
sumCore values, that is when nodes are ranked more from
their sumCore index than their aggDeg, the competitor’s
performance drops, as it is ranked fourth or lower in our
simulations e.g., Fig. 2d or Fig. 2f. However, this is an oppo-
site behavior from what we observed for alPCI, thus,
sumCore cannot be considered a strong indicator for the
spreading potential of a node. Furthermore, a relatively
poor performance can be observed for Core, which can be
explained by the fact that the competitor follows the core-
ness of a node’s least connected edge type, regardless of
how well connected this node might be in the remaining
layers. This characteristic has a negative impact in perfor-
mance of the technique.

verPR shows an interesting performance. In Figs. 2d, 2e,
2f the technique illustrates a very competitive behavior, i.e.,
is ranked as 3rd or 4th best method in the ranking chain of
the competitors; however, in Figs. 2a, 2b its performance
drops. This observation can be attributed to the change in
the distribution of in-out neighbors; when these quantities
are positively correlated (see Fig. 12 in the Appendix avail-
able online), then verPR exhibits very good performance.
When compared to the addPR, verPR’s performance is
either similar or significantly higher, e.g., Figs. 2d and 2f
respectively. This observation concludes that verPR can
identify more effective spreaders than addPR.

By definition addPR instructs an ordering of layers where
a node gains more centrality in a layer if it is important in
previous ones, regardless of the node’s ability to attract
important nodes in the current layer. Although such attri-
bute can be beneficial for a node when it lacks centrality in a
layer, but, is well connected in others, it is also a very
restrictive characteristic that requires an optimal selection
for the sequence of layers, i.e., the order that layers are being
processed, overall, should be beneficial to all nodes of a net-
work. Nonetheless, the decision for such ordering is no triv-
ial task especially as the size (in nodes) and the number of
layers increases. But apart from this shortcoming, its rela-
tive low performance is explained by the nature of the origi-
nal PageRank when used for influential detection, which
assumes that content spreads randomly in the network that
is not valid [44].

verBC inherits the weaknesses of the original between-
ness algorithm. As an example, consider a node which is
unique for reaching a portion of network nodes in a certain
area. Clearly, that node will be part of many shortest paths,
hence, it will accumulate a large verBC score. However, if
spreading in this area is unfavorable, e.g., nodes are
sparsely connected, or the target area reached by this
unique node is relatively small, the spreading power of that
node will not justify its high verBC score in the ranking pro-
cess. On the other hand nodes that do not reside in any
shortest path will acquire a zero index of verBC. Nonethe-
less such nodes may be (directly) connected to hubs, and
thus “indirectly” affect a significant number of network
nodes. It is straightforward that in such occasions the per-
formance of the competitor will be negatively affected.

Evidently, the competing algorithms will not be equally
influenced from network characteristics, i.e., methods that
require global knowledge of the network topology are more
depended to network topology than local approaches. For
instance, by definition, verPR, addPR and verBC will be sig-
nificantly more influenced than the rest of the competing
techniques from the distribution of in-out degree (it is illus-
trated in Fig. 12 in the Appendix available online), especially
when a large number of nodes with low values in either kin
or kout are present. To our understanding such characteristics
also contribute to their overall significantly lower perfor-
mance. This is yet another reason for selecting methods that
require only local knowledge of the network topology.

Examining the curves of the illustrated results, we
observe similar trends for the competing methods, i.e.,
either increasing or decreasing within a specific range of �ii

values. The observed abrupt changes in t, as illustrated for
example in Fig. 2f for the Sacchcere network from 0.3 to 0.4,

Fig. 4. Distribution of sumCore values for all networks. According to the
illustrated distributions, we observe two groups: (Drosophila, MoscowAth-
letics2013, NYClimateMarch) and (Homo, Sacchpomb, Sacchcere).
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or in Fig. 2d, is due to a significant amount of newly influ-
enced nodes with respect to those from the previous �ii

value. In contrast to monoplex networks where spreading is
of single dimension, in multiplex networks a node can
become influenced because it’s counterpart was “reached”
in another layer. In other words, although there is an influ-
ence rate �ii per layer, the actual spreading rate can be sig-
nificantly higher when accounting for multiplexity.

Our evaluation so far strengthens our belief for finding
influential spreaders in multilayer networks, by imprinting
within the proposed measures the density of inter- and
intra-connections in the immediate vicinity of the focal
node. mlPCI, combines those k neighbors connected in just
one layer, those k neighbors residing in two layers and so
on up to those k neighbors connected to all layers. It allevi-
ates the shortcoming introduced by alPCI and at the same
time can be as restrictive as an application requires by set-
ting our focus to at least as many layers as necessary. In
addition to its local computation complexity, mlPCI illus-
trated the largest correlation with influence in almost all
evaluated networks for all respective spreading rates, and is
thus our primary selection.

5.2 Ranking Influence in Semi-Synthetic Networks

5.2.1 Interconnections and Influenced Nodes

We start our evaluation by noting the different “rules” that
apply for these type of networks with respect to the multi-
plex structures. First, there are no counterpart nodes, i.e.,
nodes are different entities, which means that there exists a
spreading probability in order to reach nodes in other
layers, i.e., �ij. Furthermore, successfully propagating over
an inter-link, only affects one node at one specific layer and
not all layers of the multilayer network as in the previous
evaluation. The above considerations indicate that we are
bound to a significantly different environment, hence, we
expect to encounter different results.

First, we examine the effect of the generated interconnec-
tions in the diffusion process. We should note that although
our generator gives a particular trend on how interconnec-
tions are distributed over the layers, the topological charac-
teristics of an inter-neighbor will also play a vital role in the
diffusion process. Specifically, an interconnection to a node
which resides within a well connected neighborhood will
favor the spreading process, whereas the opposite will
occur if interlinks are ”wasted” over nodes with poor inter/
intra connectivity. Fig. 5 illustrates the cascade size per layer
in several networks, i.e., the influence exerted by any ini-
tially infected node falls within the illustrated range. It can

be observed that the way in which interconnections are dis-
tributed over the layers plays a major part in the SIR
dynamics; as anticipated for SLN2(0.3,0.3,0.3) and DLN2

(0.3,0.3,0.3) networks, the cascade size is significantly
higher. This is due to the fact that there is no excessive
skewness for the inter-degree assigned to the participating
nodes (sdegree), nor towards which layer those interconnec-
tions are guided (slayer), or to the selection of nodes within
the target layer (snode). Such configuration will provide a
favorable environment for the spreading process, and thus
influence a larger portion of network nodes. The opposite
scenario is illustrated for SLN2(0.8,0.8,0.8) and DLN2

(0.8,0.8,0.8). Similarly, having similar distribution for the
inter-degree of nodes, e.g., by setting sdegree at 0.3 (or 0.8),
and vary in the remaining parameters, shows that increased
skewness has negative effect on the percentage of influ-
enced nodes.

5.2.2 Impact of Inter Connections and Intra Diffusion

Probability

Fig. 6 illustrates the performance of the competitors in the
semi-synthesized networks when evaluating the impact of
�ii. In coherence with our conclusions in real networks, we
elect mlPCI as the most promising technique for measuring
influence in multilayer networks. It can be observed that
mlPCI is at the higher values of t for almost all spreading
rates, however, the ordering for the remaining techniques has
changed. Specifically, laPCI can be considered as the second
best method, performing almost as good asmlPCI in Figs. 6a,
6g or 6h, and as the next best solution in the remaining net-
works. laPCI implies k neighbors towards any layers, how-
ever, these nodesmay reside inmany, or, in just one layer. For
occasions where the latter holds, and nodes are assigned a
large laPCI index, there is strong possibility that an epidemic
will arise in the multilayer network, since within these k
neighbors, nodes connected to different layers are likely to
exist. The same logic applies to nodes with a large aggDeg
index as for example in the Wiki-Vote network (details in
Fig. 13 in the Appendix available online). The difference
between the twomeasures that discriminates the performance
of laPCI, is that those k neighbors that form the node’s index,
is the result of “filtering” that is applied in the focal node’s
vicinity, that discriminate a highly connected node within a
strongly connected neighborhood, from nodes residing in
sparser vicinities. This inherent characteristic governs all pro-
posedmethods, which in our view enables the proposed tech-
niques to detectmore efficient spreaders.

Of particular importance is the performance of verPR in
the SLN networks. Apart from the fact that it has increased
correlation with influence with respect to its performance in
the DLN networks, Fig. 6b illustrates an interesting result, i.e.,
verPR outperforms mlPCI when �ii is larger than the epi-
demic probability. To explain this behavior we need to con-
sider the distribution of the inter-connections. By setting snode
at 0.8, we “send” many interconnections to a certain portion
of network nodes within the corresponding layer, that is, in
terms of verPR, specific nodes are inter-pointed by many
others. These nodes will accumulate a large verPR index due
to their interconnections, thus rendered as efficient cross-layer
spreaders detected by verPR. It is due to this intrinsic charac-
teristic of the competitor that we observe its efficient ranking

Fig. 5. Maximum cascade size per layer subject to the distribution of
interconnections. It can be observed that when all parameters are set to
0.3 the cascade size is maximum, while the opposite occurs, when all
parameters are set to 0.8.
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in these specific networks. In Fig. 6d, where interconnections
aremore constrainedwith sdegree set at 0.8, verPR does not out-
perform the proposed methods, however, as �ii increases the
distance in their performance decreases. In the DLNnetworks
the performance of verPR is far inferior to all methods with
the exception of verBC. This gap in performance from the
demonstrated results in Figs. 6a, 6b, 6c, and 6d, can be
explained by comparing the kout distribution of inter and intra
links in each respective network type, i.e., in the latter, there is
significant difference in magnitude between the inter and
intra neighbors. Evidently from Figs. 11, 12, and 13 (see the
Appendix available online), the impact of interconnections in
the DLN examples will be considerably smoother, which
explains the behavior of the competitor.

In all the experiments concerning multilayer networks,
Core seems (almost) uncorrelated to the spreading power of
nodes (i.e., almost zero t). This behavior is explained
directly by the definition of the algorithm; nodes would get
a Core value different than one, only if they have

connections to all layers. This happens only for very few
cases in our generated networks, and thus practically all
nodes get the same Core value. This results in the phenome-
non that we observe. By examining the performance of
aggCorewe observe varying results, i.e., below the 5th place
in the ranking chain of the competitors, e.g., 6th in Fig. 6e
and 10th in Fig. 6c. Nonetheless we cannot expect aggCore
to be a challenging competitor since it projects all layers in a
single dimension and thus neglects the layered structure of
the network.

For verBC it is straightforward that the shortcomings dis-
cussed in the previous section also apply in the current frame-
work. Generally, when there are fewer paths to the different
layers (sdegree ¼ 0:8), the limited shortest paths work in favor
of the competitor that shows a relative increase in perfor-
mance, e.g., comparing Figs. 6a, 6b, and 6c. However, if either
snode or slayer is set to 0.8 we observe decrease in t as illustrated
from Figs. 6a to 6b. It can be concluded that we cannot accu-
rately distinguish the spreading power of nodes by counting

Fig. 6. Rankings capabilities (Kendall’s Tau b) of all competing techniques in real networks with synthesized interconnections with respect to �ii. In
coherence to our results in multiplex networks, mlPCI illustrates the largest t in almost all evaluated scenarios, whereas laPCI can be considered
as the 2nd best performing method. As also depicted in Fig. 2, the competitors illustrate similar trends in performance, i.e., increasing or decreasing
when �ii changes. Of particular importance is the performance of verPR in (b) and (d), where due to the distribution of interconnections the competi-
tor shows increased correlation with influence. Core is almost uncorrelated with influence in these networks, because it assigns to almost all network
nodes the same index value.
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the number of shortest paths that pass through them. As
described in [15], the performance of aggPR (aggBC) coin-
cideswith that of verPR (verBC).

Setting slayer at 0.8, denotes a possible preference devel-
oped between the layers, that is, most interconnections are
“guided” from a layer to a specific other(s), while the remain-
ing layers acquire limited inter-links from that particular
layer. As illustrated from the results, this parameter has a soft
impact to all competitors with the exception of alPCI. Particu-
larly in Figs. 6b, 6c, and 6d, due to this setting, alPCI failed to
provide an acceptable ranking, since a significant portion of
network nodes were assigned zero alPCI, or in other words
nodeswere not inter-linked to all layers. In theDLNnetworks,
although less nodes where assigned a zero value, still, the
obtained indexes where significantly low and overlapping.
For example in DLN2(0.8,0.8,0.8), most alPCI values were
below 6. In these scenarios we can understand the reasons for
its questionable performance, however, alPCI can still oper-
ate in one more way, i.e., as an additive rank rather than a
solo rankingmethod. This aspect can be related to Figs. 6f, 6g,
and 6h where a limited range of alPCI values (ties are solved
via the largest aggDeg) rank a large number of network nodes,
or in other words, nodes are ranked more from their aggDeg
index than from their alPCI. Such combination, results in dis-
tinguishing highly connected nodes that have interlinks to all
layers, from those that do not posses that property. lsPCI
operates similarly to alPCI since its indexes are limited by the
number of layers. Thus, the results illustrated in Fig. 6 is the
outcome of ranking nodes according to lsPCI, while breaking
ties via the largest aggDeg index. Nonetheless we expect that
for multilayer networks composed of more layers, lsPCI’s
efficiencywill be distinguished further.

Typically, as �ii increases above the epidemic probabil-
ity, the identification of influential spreaders becomes more
difficult for any algorithm to detect. This is due to the fact
that for large �ii values, that is, as �ii deviates significantly
from the epidemic probability, an epidemic occurs regard-
less of the characteristics of the initially infected node [1].
Even if the initially infected node is not an influential one,
at broad spreading rates there is high possibility that an
influential will be “reached” as the spreading progresses,
and thus result in epidemic propagation. Hence true conclu-
sion can only be drawn near the epidemic probability.

It is straightforward to understand that the way intercon-
nections are distributed over the different layers, and to the
nodes within those layers, plays a vital role in the diffusion
dynamics, and thus, in the performance of the competitors.
Hence, for any algorithm in order to be characterized as an
efficient technique for the detection of those powerful
spreaders, intra and inter connections must be incorporated
and combined in the most efficient of ways in order to pre-
dict the probability of an epidemic outbreak. Robustness to
either limited or increased number of inter-links is also a
necessity. Furthermore, it can be concluded that traditional
approaches that project the multilayer network to a single
dimension cannot predict the actual spreading power of
nodes in these complex structures.

5.2.3 Impact of Inter Connections and Inter Diffusion

Probability

In Fig. 7, we investigate on how the competitors behave in
the increase of the inter-layer spreading probability. To this
end we choose to have a favorable distribution regarding the
inter-degree of nodes, i.e., sdegree ¼ 0:3. First, the ranking

Fig. 7. Rankings capabilities (Kendall’s Tau b) of all competing techniques in real networks with synthesized interconnections with respect to �ij.
mlPCI remains at the top of the ranking chain. verPR’s performance is better in the SLN networks where interconnections are more dense (when
compared to the intra-connections) with respect to the DLN networks, and particularly is at its best when snode or slayer is 0.8. It can be observed that
measuring the influence capabilities of a node by counting the number of geodesics that pass through that node (aggBC, verBC) does not yield com-
petitive results.
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obtained from the previous section has remained relatively
unchanged. This observation strengthens the evaluation of
mlPCI which illustrates a robust behavior to the different
spreading rates used in our simulations. Examining the
trends of the illustrated curves, it can be observed that all
competing methods become more effective as �ij increases.
Focusing on Figs. 7a, 7b, and 7c, we observe that as �ij

increases above the epidemic probability, the distance in per-
formance of aggDeg with mlPCI and laPCI starts to
decrease, and coincides at 0.3. However, similarly to our pre-
vious discussion, true influential spreaders can only emerge
near the epidemic threshold, where we observe that mlPCI
has the largest t compared to the remaining techniques.

In Figs. 7d, 7e, and 7f, the performance ofmlPCI is distinct
even when �ij is above the epidemic probability. The basic
difference between these networks and those in Figs. 7a, 7b,
and 7c lies in the distribution of inter-intra kout (Figs. 11, 12,
and 13 in the Appendix available online). Specifically, in the
DLN networks, nodes are muchmore intra-connected in their
focal layer than inter-connected to different layers while for
the SLN networks, intra and inter connections are more com-
parable. Hence, for the DLN networks, the inter-connections
will have a smoother impact on the spreading dynamics.

Our evaluation so far illustrates that the interplay
between the different layers affects the competing algo-
rithms differently. For instance snode at 0.8 affects the perfor-
mance of verPR positively—also illustrated in the previous
section—as depicted for example in Figs. 7b and 7c.
verBC’s performance decreases when either slayer or snode is
set to 0.8, and in fact it is lower, when both parameters are
set at 0.8. This observation is most evident in Figs. 7a and 7c.

Similarly to Fig. 6b, due to slayer ¼ 0:8, alPCI is unable to
rank nodes in the SLN2(0.3, 0.8, 0.8) network (Fig. 7c). This
is due to the fact that nodes are not interconnected towards
all layers. Nonetheless, from Figs. 7d, 7e, and 7f, we can
observe that even when alPCI ranks nodes with a limited
number of different indexes, by breaking ties via the largest
aggDeg policy, we obtain a significant improvement in t.

The above considerations are vital ingredients for building
a successful recipe that will detect influential nodes in multi-
layer networks. It is our belief that all these characteristics
must be imprintedwithin a technique in hopes of understand-
ing and predicting the spreading power of nodes. mlPCI
inherently filters a node’s near vicinity, i.e., those “k” neighbors
at least “k” connected from just one to all layers of the multilayer
network, which as shown in the majority of the illustrated
results, separates it from the rest of the competing algorithms.

5.2.4 Impact of Increasing Interconnections (d)

Our final section illustrates the performance of the competi-
tors as we increase in the density of interconnections (see
Figs. 8 and 9). Reminisce that all spreading rates are set to
the epidemic probability, however, as d increases, the epi-
demic probability of the aggregated network decreases, i.e.,
�ij decreases. This observation is evident in the SLN net-
works even at the initial values of d. For instance when
sdegree is set to 0.3, the largest eigenvalue is about 10, 15, 21
and 27 for d ¼ 1; 2; 3 and 4 respectively. Evidently, the
increase of the largest eigenvalue, and thus the decrease of
the epidemic probability, is confoundedly significant. For
sdegree ¼ 0:8, we observe a smaller increase, e.g., 8.5 for
d ¼ 2, however such behavior is anticipated due to the dis-
tribution of inter-connections. In [46] the authors state that
the epidemic probability of the aggregated network is
smaller than that of the individual layers. This observation
is coherent with our study in the SLN networks (Table 4),
however, for the DLN case, where the multilayer network is
composed of layers with different number of nodes, edges,
degree distribution etc., we found that for d 	 2 the epi-
demic probability followed the eigenvalue of Wiki-Vote
(about 45), that is, the layer with the largest eigenvalue.
Even when we increased d up to 4, we did not observe a sig-
nificant increase, e.g., 47 and 49 for d ¼ 3 and 4 respectively.
This is due to the large difference in the distribution of kout
of the inter and intra neighbors.

In particular, examining Figs. 8 and 9, we observe simi-
lar results with our previous discussions. Evidently, the
algorithms perform differently in the SLN networks with
regard to their performance in the DLN scenarios. The for-
mer depicts a decreasing correlation with influence as d
increases, with the exception of verPR, whereas the latter
shows a more complex behavior. At this point we should
note that in the SLN networks, the increase of d employs a
growing number of interconnections that surpass that of
the intra-links for d > 2. In terms of alPCI, this attribute is
not advantageous, since nodes will be indexed for their k
neighbors to all layers, thus their rank is bounded to the
limits of their intra-connections. On the contrary in the
DLN networks which are not governed by such rule,
alPCI has increased correlation with influence, performing
similar to mlPCI when d 
 3, i.e., when nodes have more
connections to all layers.

Fig. 8. Increasing in the number of interconnections in the SLN networks.
It can be observed that all methods illustrate a decreasing trend as d
increases. Setting snode at 0.8 and thus assigning to a specific set of
nodes many interconnections, works in favor of verPR which exhibits an
exceptional performance in this case.

Fig. 9. Increasing in the number of interconnections in the DLN networks.
As interconnections increase alPCI yields better results, i.e., from 4th
when d ¼ 1 to 1st when d ¼ 4. Its performance is different from the SLN
networks because for the DLN networks, the distribution of inter-kout is
still significantly lower (even for d ¼ 4) from that of intra-kout (compare
Figs. 10 and 11 with Fig. 13 in the Appendix available online) which does
not hold for the SLN networks.
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6 RELATED WORK

The literature in the identification of influential spreaders in
multilayer networks is yet limited, and thus,we briefly review
several approaches that are a benchmark for the detection of
those spreaders in single-layer networks. A large amount of
research is focused in the structural properties of a network
for detecting influential spreaders, since the topological char-
acteristics of a node affects the diffusion dynamics. To this
end, betweenness centrality is often employed to decide the
spreading power of a node [10], [27]. The degree centrality is a
local and quite effective method, that is often intertwined
with a node’s spreading potential. The k-core decomposi-
tion [27] that discriminates nodes in cores (shells) with respect
to their (least) connectivity exploited several shortcoming of
the degree centrality and introduced a series of methods
which in their turn focused on various drawbacks of k-core.
Specifically, in [53] the authors noted that due to the pruning
nature of the algorithm, a lot of information regarding the
connectivity of a node is completely neglected. Hence they
introduced a parameterized method which accounted for the
fraction of its discarded degree. In [34] the authors further dis-
tinguished the spreading potential of nodes assigned within
the same shell, by considering their distance from the core
nodes of the network. Later in [24], it was shown that nodes
with more connections to the core nodes, reveal more capable
spreaders. Other network decomposition methods include
the k-truss [36], [51], the onion method [21] etc. Focusing on
measures that require local knowledge of a node’s character-
istics, in [10] the authors aggregated the number of nearest
and next nearest neighbors of a node. Similarly in [44] the
authors focus only to the nearest neighbors. In [4] another
local measure was proposed that distinguishes nodes that
reside in dense neighborhoods. Currently, there are various
studies investigating epidemics and spreading processes on
multilayer networks [12], [16], [45], [46], [54], cascading fail-
ures e.g., [48], node ranking e.g., [20], [49], and so on, but very
limited work in the identification of influential spreaders. The
works most closely related to the current article, i.e., to influ-
entials detection, are those reported in [2], [3], [11], [15] and a
detailed critique of them appeared in Section 1; here we
briefly mention them. The blending of all layers into a single
one and then application of traditional options for influentials
detection is proposed in [2]. A generalization of the k-core is
proposed in [3] but it results in a vector of values that can not
be used in a straightforward manner for detecting effective
influential spreaders. In [11], the authors proposed an called
KS, which follows the intuition of [24], i.e., aggregates the
shell indexes of its neighbors, and moreover combines the
intra and inter layer spreading rates. However, to our under-
standing, incorporating the unknown spreading rates, of (and
between) the layers, is not realistic. In [15] very elegant meth-
ods based on tensor analysis are proposed. Finally, we need
to mention that two of the measures proposed in this work
has been used for building connected dominating sets inmul-
tilayer ad hoc networks [42].

7 CONCLUSION

Multilayer complex networks have recently been the focus
of intense study in the realm of network science. Real
instances of them include transportation networks, online

social networks, power networks and so on. Diffusion pro-
cesses, such as spreading processes, cascading failures,
cooperative behavior are significant fields of study. Among
them, the identification of influential spreaders is a signifi-
cant task due to its application in immunization strategies,
advertising and so on.

This article investigated the problem of identifying influ-
ential spreaders over multilayer complex networks, since
we are currently ‘embedded’ in multiple networks concur-
rently, e.g., in the case of online networks, we have an
account at Facebook, Linkedin, Twitter, etc. and we spread
our ideas/product-preferences using all of them. The article
explained the lack of proposals so far for carrying out this
task, and explained the inadequacy of the corresponding
techniques proposed for the same problem in the case of
single-layer complex networks because they do not take
into account the existence of multiple layers and/or gener-
ate solutions that do not allow the straightforward ranking
of nodes for selecting the most influentials.

Then, it proposed a family of measures for describing the
strategic position of a node within a multilayer network.
These measures condense into a single number the connec-
tivity of the node with respect to nodes belonging to the
same layer as well as to the rest of the layers. The calculation
of these measures requires only information of the connec-
tivity of the surrounding nodes, and not iterative computa-
tions with knowledge of the network-wide topology thus
making it scalable, and quickly computable. Moreover, this
feature makes them suitable both for online (e.g., response
to evolving infections) as well as offline mining tasks (e.g.,
selection of best ‘promoters’), due to the huge size of under-
lying networks.

The experimental evaluation of the proposed methods
carried out against all major competitors proposed so far for
either single-layer or multilayer networks, i.e., degree,
betweenness centrality, PageRank and k-core for single and
multilayer/multiplex networks. The complex networks
used for the evaluation spanned a wide variety of network
structure and size, and a network generator was also devel-
oped and used so as to test a wide range of topology charac-
teristics. The final outcome of the evaluation marked mlPCI
as the best performing measure for almost each and every
dataset used. Its success can be attributed on building on
the shortcomings and embedding the benefits of the mem-
bers of its family proposed in this article; it achieved to sum-
marize the connectivity around a node in a concise and
quite accurate way, even though it refrains from examining
the whole network topology with time-consuming iterative
decomposition procedures.
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