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AC C E P T E D FROM OP E N CALL

INTRODUCTION

The proliferation of cellular networks and the
penetration of Internet services are changing
many aspects of mobile computing. Constantly
increasing mobile client populations utilize
diverse mobile devices to access the wireless
medium, and various heterogeneous applica-
tions are being developed to satisfy the eager
client requirements. In these environments,
seamless and ubiquitous connectivity as well as
low client-perceived latencies are two funda-
mental goals. The first goal calls for smart tech-
niques for determining the current and future
location of a mobile, and the second calls for
effective techniques for deducing future client
requests for “information pieces” (i.e.,
objects/records from databases, multimedia
files, URLs, etc.).

LOCATION AND REQUEST PREDICTION IN
WIRELESS NETWORKS

Location (request) prediction is the task of
exploiting the past movements (requests) in
deducing what the future locations (requests)
will be. Therefore, location (request) prediction
can improve the network performance (reduce
the user’s latency). The ability to determine the
mobile client’s (future) location can significant-
ly improve the wireless network’s overall per-
formance in a number of different ways.
Consider, for instance, the handover procedure
in a cellular network covering a metropolitan

city; instead of relying on reactive approaches
(i.e., allocating appropriate resources during
the handover), we could come up with proactive
approaches (i.e., allocating resources before
needed) so as to bypass, instead of correct, the
negative effect of handover [1]. Additionally,
methods like Shadow Cluster [2] could benefit
from location prediction, by refraining from
allocating resources to all neighboring cells, but
instead allocating resources only to the most
probable-to-move cells. Finally, location predic-
tion could be exploited in call admission con-
trol techniques and also in sequential paging
schemes [3] to reduce the combined paging
cost. Apart from the impact on the network
infrastructure, the task of prediction can be
employed in improving the performance of
many modern data dissemination-based appli-
cations (Digital Video Broadcasting-Handheld,
services such as that offered by the DirectBand
Network) that are offered by commercial com-
panies and rely on IEEE 802.11 or third-gener-
ation (3G) wireless networks. In such kinds of
applications, clients access the data by monitor-
ing the broadcast channel until they get the
required information, which increases access
latency. Although client-side caching of fre-
quently accessed data could reduce the prob-
lem, it is not a panacea, and prefetching can be
used to further reduce the access latency.

As an example exhibiting the benefits of both
location and request prediction, consider the
scenario where a mobile client, roaming inside
the coverage area of a cellular network, submits
transactions to a distributed database system
(Fig. 1). This database system (by making a sim-
plifying assumption) uses the cellular system’s
base stations for communicating with the mobile
and as its distributed servers as well. To achieve
fast response times (i.e., no need for costly
remote accesses and expensive handovers) and
fault tolerance (i.e., data availability), a cost-
effective solution would be selective and dynam-
ic allocation of resources (i.e., needed data,
bandwidth) in those sites (base stations) the user
would visit soon. Such a scheme would require
on the system’s side the ability to predict both
information needs and the trajectory of the
mobile client.
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Discrete sequence modeling and prediction is

an important goal and a challenge for pervasive
computing. Mobile clients’ data request forecast-
ing and location tracking in wireless cellular net-
works are characteristic application areas of
sequence prediction in pervasive computing.
This article presents information-theoretic tech-
niques for discrete sequence prediction. It sur-
veys, classifies, and compares the state-of-the-art
solutions, suggesting routes for further research
by discussing the critical issues and challenges of
prediction in wireless networks.
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Unifying Location and Request Prediction — The issues
of location and request prediction have been
treated in isolation, but pioneering works [3, 4]
are paving the way for treating both problems
homogeneously; they have exhibited the possi-
bility of using data compression methods in car-
rying out prediction. The unifying principle is
that they model the respective state space as
finite alphabets comprising discrete symbols. In
the mobility tracking scenario, the alphabet con-
sists of all possible sites (cells) the client has
ever visited or might visit. In the request predic-
tion scenario, the alphabet consists of all the
data objects requested by the client plus the
objects that might be requested in the future.
Both location and request prediction are related
to the ability of the underlying network to
record, learn, and predict the mobile’s “behav-
ior.” The success of the prediction is presup-
posed and is boosted by the fact that mobile
users exhibit some degree of regularity in their
movement and/or access patterns [3]. A “smart”
network can record the movement (request) his-
tory and then construct a mobility (data access)
model for its clients.

This article provides a unifying framework
for all the methods dealing with the location
prediction and request forecasting using infor-
mation-theoretic structures; the framework
treats them as (variable/fixed length) Markov
chains and presents the different families of
methods, categorizing the state-of-the-art algo-
rithms into their respective families. An impor-
tant objective of the article is to include not
only the algorithms that are familiar in the wire-
less communications community, but also tech-
niques that have been developed in other
disciplines such as computational biology,
machine learning, and the World Wide Web, in
order to achieve cross-discipline understanding
and proliferation of ideas. The purpose of the
categorization is to reveal the shortcomings and
advantages of each method and identify routes
for further research.

THE DISCRETE SEQUENCE
PREDICTION PROBLEM

In quantifying the utility of the past in predicting
the future, a formal problem definition is need-
ed. Let Σ be an alphabet, consisting of a finite
number of symbols s1, s2, …, s|Σ|, where | ⋅ | stands
for the length/cardinality of its argument. A pre-
dictor accumulates sequences of the type ai = αi

1,
αi

2, …, αi
ni, where αi

j ∈ Σ, ∀i,j, and ni denotes the
number of symbols constituting ai. Without loss
of generality, we can assume that all the knowl-
edge of the predictor consists of a single
sequence a = α1, α2, …, αn. Based on a, the pre-
dictor’s goal is to construct a model that assigns
probabilities for any future outcome given
“some” past. Using the characterization of the
mobility/request model as a stochastic process
(XXt)t∈N, we can formulate this goal as follows.

Definition 1 (Discrete Sequence Prediction prob-
lem). At any given time instance t (meaning that
t symbols xt, xt–1, …, x1 have appeared, in reverse
order), calculate the conditional probability

P~[XXt+1 = xt+1 | XXt = xt, XXt–1 = xt–1, …],

where xi ∈ Σ, ∀xt+1 ∈ Σ. This model introduces a
stationary Markov chain, since the probabilities
are not time-dependent. The outcome of the
predictor is a ranking of the symbols according
to their P~. Predictors that use this kind of pre-
diction model are termed Markov predictors.

The “history” xt, xt–1, … used in the above
definition is called the context of the predictor,
and it refers to the portion of the past that influ-
ences the next outcome. The history’s length
(also called the length or memory or order of the
Markov predictor) is denoted by l. Therefore, a
predictor that exploits l past symbols will calcu-
late conditional probabilities of the form

P~[XXt+1 = xt+1 | XXt = xt, XXt–1
= xt–1, …, XXt–l+1 = xt–l+1]. (1)

Some Markov predictors fix, in advance of
the model creation, the value of l, presetting it in
a constant k in order to reduce the size and
complexity of the prediction model. These pre-
dictors and the respective Markov chains are
termed fixed length Markov chains/predictors of
order k. Therefore, they compute conditional
probabilities as above, considering only the
events from t up to t – k + 1, with k < l.
Although it is a nice model from a probabilistic
point of view, these Markov chains are not very
appropriate from the estimation point of view.
Their main limitation is related to their struc-
tural poverty, since there is no means to set an
optimized value for k.

Other Markov predictors deviate from the
fixed memory assumption and allow the order of
the predictor to be of variable length (i.e., to be
a function of the values from the past). These
predictors compute conditional probabilities of
the form of Eq. 1, but l is a function of time;
that is, l = l(xt, xt–1, …).

These predictors are termed variable length
Markov chains; the length l might range from 1
to t. If l = l(xt, xt–1, …) ≡ k for all xt, xt–1, …, we
obtain the fixed length Markov chain. The vari-
able length Markov predictors may or may not
impose an upper bound on the considered
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Figure 1. Example mobile transaction. The switching center may allocate
more resources and relocate some data (E, D) to the rightmost cell, since the
mobile host is expected to move there. The current cell (zoomed leftmost cell),
while the mobile host waits for datum A to arrive in the broadcast channel,
may prefetch data C and B, since he forecasted their future use. In many
cases, due to the broadcast scheduling algorithm, data B, C may arrive earlier
than A, but their next appearance may be far from A’s appearance. Therefore,
prefetching reduces the overall latency.
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length. The concept of variable memory offers a
richness in the prediction model and the ability
to adjust itself to the data distribution. Unfortu-
nately, it is not a straightforward problem to
choose in a data-driven way the function l = l(⋅).

THE POWER OF MARKOV PREDICTORS

The issue of prediction in wireless networks
has received attention in the past years, exploit-
ing techniques like learning automata, Kalman
fil tering ,  and pattern matching .  Learning
automata [1] are simple, but they are not con-
sidered very efficient learners because of the
need to devise appropriate penalty/reward poli-
cies and their slow convergence to the correct
actions. Kalman filtering-based methods [5]
construct a mobile motion equation relying on
specific distributions for velocity, acceleration,
and direction of movement. They cannot be
used for request prediction, only for location
prediction, and their performance largely
depends on the stabil ization time of the
Kalman filter and knowledge (or estimation) of
the system’s parameters.  Finally,  pattern
matching techniques have been used for loca-
tion prediction [5]. They compile mobility pro-
fi les and perform approximate similarity
matching, using the edit distance, between the
current and stored trajectories in order to
derive predictions. For the edit distance, it is
hard to select a meaningful set of edit opera-
tions, assign weights on them, and so on.

Therefore, why are Markov predictors more
appropriate for carrying out location prediction/
request prediction, and why is this prediction
amenable to Markovian prediction? Their most
profound advantage is their generality. They are
domain independent and a simple mapping from
the “entities” of the investigated domain to an
alphabet is all that is required. Thus, they are
able to support both location and request pre-
diction. Markovian prediction relies on the short
memory principle, which says that the (empirical)
probability distribution of the next symbol, given
the preceding sequence, can be quite accurately
approximated by observing no more than the last
few symbols in that sequence. This principle fits
reasonably and intuitively with how humans are
acting when traveling or seeking information. A
mobile user usually travels with a specific desti-
nation in mind, designing its travel via specific
routes (e.g., roads). This “targeted” traveling is
far from a random walk assumption, and is con-
firmed by studies with real mobility traces [6].
Similarly, almost all request traces exhibit strong
spatial locality, which describes correlated
sequences of requests.

FAMILIES OF MARKOV PREDICTORS
Markov predictors create probabilistic models
for their input sequence(s) and use digital search
trees (tries) to keep track of the contexts of inter-
est, along with some counts used in the calcula-
tion of the conditional probabilities P~. In the
rest of this article, we use the sample sequence
of events a = aabacbbabbacbbc, with length
equal to |a| = 15. The appearance count of subse-
quence s = ab is E(s) = E(ab) = 2, and the nor-
malized appearance count of s is equal to E(s)
divided by the maximum number of (possibly
overlapping) occurrences a subsequence of the
same length could have, considering the a’s
length, i.e., 

The conditional probability P~(b|a) of observ-
ing a symbol (e.g., b) after a given subsequence
(e.g., a) is defined as the number of times that b
has shown up right after subsequence a divided
by the total number of times that the subse-
quence has shown up at all, followed by any
symbol. Therefore,

THE PREDICTION BY PARTIAL MATCH SCHEME
Prediction by Partial Match (PPM) is based on
the universal compression algorithm reported in
[7]. For the construction of the prediction
model, it assumes a predetermined maximal
order, say k, for the generated model. Then, for
every possible subsequence of length of 1 up to
k + 1, it creates or updates the appropriate
nodes in the trie. The PPM predictor for the
sequence aabacbbabbacbbc is depicted in Fig. 2.
The maximum context the PPM predictor can
exploit is k, though all intermediate contexts
with length from 1 to k – 1 can be used. The
interleaving of variable length contexts does not
mean that this scheme is a variable length
Markov predictor, because the decision on the
context length is made beforehand and not in a
data-driven way.

Apart from this basic scheme, a number of
variations have been proposed that attempt
to reduce the size of the trie by pruning some
of its paths based on statistical information
derived from the input data [8]. Apparently,
these schemes are off l ine,  making one or
multiple passes over the input sequence in
order to gather the required statistical infor-
mation.

THE LEMPEL-ZIV-78 SCHEME
The virtues of the Lempel-Ziv-78 predictor (LZ78)
were investigated very early in the literature [3,
4]. The algorithm LZ78 [9] makes no assumptions
about the maximal order for the generated
model. It parses the input sequence into a num-
ber of distinct subsequences, say s1, s2, …, sx,
such that ∀j (1 ≤ j < x), the maximal prefix of
subsequence sj, is equal to some si for some 1 ≤ i
< j. The LZ78 predictor for the sequence aabacb-
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Figure 2. A PPM Markov predictor for the sequence aabacbbabbacbbc.
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babbacbbc is depicted in the left part of Fig. 3.
However, LZ78 for this example is not able to
produce a prediction for the test context ab (i.e.,
there is no subtree under the darker shaded
node).

The LZ78 predictor is  an online scheme,
lacks administratively tuned parameters such
as lower bounds on appearance counts, and is
a characteristic paradigm of a variable length
Markov predictor. Although strong results do
exist that prove its asymptotic optimality and
superiority over any fixed length PPM predic-
tor, in practice various experimental studies
contradict this result because of the finite
length of the input sequence. The original LZ78
prediction scheme was enhanced in [3, 10]
such that  apart  from a considered subse-
quence which is going to be inserted into the
trie, all its suffixes are inserted as well (right
part of Fig. 3).

THE PROBABILISTIC SUFFIX TREE SCHEME
The Probabilistic Suffix Tree predictor (PST) was
introduced in [11], and although it specifies a
maximum order for the contexts it will consider,
it is actually a variable length Markov predictor
and constructs its trie for an input sequence as
follows. It uses five administratively set parame-
ters: k, the maximum context length, Pmin, a min-
imum normalized appearance count, r, which is a
simple measure of the difference between the
prediction capability of the subsequence at hand
and its direct father node, and γmin and α, which
together define the significance threshold for a
conditional appearance of a symbol. Then for
every subsequence of length of 1 up to k, if it
has never been encountered before, a new node
is added to the trie, provided that a set of three
conditions hold. The subsequence abcd will be
inserted into the trie of the PST iff:
a)En(abcd) ≥ Pmin and
b) There exists some symbol, say x, for which the

following relations hold:

The PST predictor with k = 3, Pmin = 2/14, r =
1.05, γmin = 0.001, α = 0 for the sequence
aabacbbabbacbbc is depicted in Fig. 4.

THE CONTEXT TREE WEIGHTING SCHEME

The Context Tree Weighting predictor [12] (CTW)
is based on the idea of exponentially combining
many Markov chains of bounded order; the orig-
inal proposition dealt with binary alphabets only.
CTW assumes a predetermined maximal order, say
k, for the generated model and constructs a
complete binary tree T of height k. Each node s
maintains two counters, as and bs, which count
the number of zeros and ones, respectively, that
have followed context s in the input sequence so
far. Additionally, each context (node) s main-
tains, apart from the pair (as, bs), two probabili-
ties, Pe

s and Pw
s. The former, Pe

s, is the
Krichevsky-Trofimov estimator for a sequence to
have exactly as zeros and bs ones. The latter
probability, Pw

s, is the weighted sum of some val-
ues of Pe. The CTW predictor for the sample bina-
ry sequence 010|11010100011 is depicted on the
left of Fig. 5. With Pe

R and Pw
R denoting the

Krichevsky-Trofimov estimate and the CTW esti-
mate of the root, respectively, we can predict the
next symbol with the aid of a CTW as follows. We
make the working hypothesis that the next sym-
bol is a one and update the T accordingly, obtain-
ing a new estimate for the root P′wR. Then the
ratio

is the conditional probability that the next sym-
bol is a one.

For the case of non-binary alphabets, Volf
[13] proposed the Decomposed CTW (DeCTW).
Assuming that the symbols belong to alphabet Σ
with cardinality |Σ|, it considers a full binary tree
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Figure 3. (Left) An LZ78 Markov predictor for the sequence aabacbbabbacbbc; (right) an LZ78 predictor
enhanced according to [3, 10].
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Figure 4. A PST Markov predictor for the sequence aabacbbabbacbbc.
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with |Σ| leaves. Each leaf is uniquely associated
with a symbol in Σ. Each internal node v defines
the binary problem of predicting whether the
next symbol is a leaf on v’s left subtree or right
subtree, “attaching” a binary CTW predictor to
each internal node (Fig. 5).

COMPARISON OF PREDICTION SCHEMES

Implicitly or explicitly, all Markov predictors are
based on the short memory principle, which says
that the probability distribution of the next sym-
bol can be approximated by observing no more
than the last k symbols in that sequence. Some
methods fix in advance the value of k (e.g., PPM,
CTW). If the selected value for k is too low, it will
not capture all the dependencies between sym-
bols, degrading its prediction efficiency. On the
other hand, if the value of k is too large, the
model will overfit the training sequence. There-
fore, variable length Markov predictors (e.g.,
LZ78, PST) are in general more appropriate from
this point of view. This was the motivation for
subsequent enhancements to PPM and CTW to con-
sider unbounded length contexts (e.g., the PPM*
algorithm).

On the other hand, variable length predic-
tors face the problem of which sequences and
lengths should be considered. PST attempts to
estimate the predictive capability of each sub-
sequence in order to store it in the trie, which
results in deploying many tunable parameters.
LZ78 employs a prefix-based decorrelation pro-
cess, which results in some recurrent structures
being excluded from the trie, at least at the
first stages.  This characteristic is  not very
important for large sequences, but may incur a
performance penalty for short sequences; for
instance, the pattern bba is missing in both
variants of LZ78 in Fig. 3. Although this exam-
ple is by no means a kind of proof that LZ78 is
inferior to the other algorithms, it is an indica-
tion of how an individual algorithm’s particu-

larities may affect its prediction performance,
especially in short sequences. Despite their
superior prediction performance, PPM schemes
are far less commonly applied than algorithms
like LZ78, which is favored over PPM algorithms
for its relative efficiency in memory and com-
putational complexity.

From Table 1 we can gain some insights
regarding which method is more appropriate for
which type of application. To the best of our
knowledge, we found no study that compares all
families mentioned in this article for the location
prediction orsssss the request prediction issue
with both synthetic and real data, although a
worthwhile study containing comprehensive
experiments with real data is reported in [6].
Aiming to provide suggestions for policy selec-
tion, we select two primary dimensions; the first
dimension reflects the type of problem (i.e.,
location or request prediction), and the second
reflects the “network part,” where the prediction
is carried out (i.e., fixed resource-rich network
servers or resource-starved mobile hosts).

For data-consuming applications, some very
important intuitive and experimentally con-
firmed results exist, which state that:
• User request sequences are of considerably

varying length, where quite large sequences
have significant non-zero probability (Univer-
sal Law of Mobile Web Surfing).

• User interests vary significantly with time (not
“strong” stationarity).

• Many alternative paths exist that lead to the
same datum; thus, the regularity patterns are
“blurred” by noise.
Due to the not so strong stationarity and the

existence of many alternative symbols (in request
prediction scenarios), the possibility of using LZ78
types of predictors is not very high. Due to the
variance in the length of the individual client’s
access sequence, the rest of the variable-order
Markov predictors are more appropriate; PST
would be a perfect choice under the assumptions

nn

                                                                 

Figure 5. (Left) A CTW Markov predictor for the binary sequence 010|11010100011; (right) a sketch of the
DeCTW Markov predictor for the sequence aabacbbabbacbbc.
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that the procedure is performed offline and runs
on a resource-rich server or laptop.

If energy conservation is the main issue in
these applications (e.g., PDAs), the choice of
PPM style predictors seems more appropriate
since they are online, but they sacrifice some
prediction performance (due to the relatively
small and fixed order model employed) for
reduced model complexity. The third observa-
tion may make all prediction methods ineffi-
cient, since it violates the “consecutiveness”
property of appearance of the symbols in the
patterns upon which all described Markov pre-
dictors rely. In such cases the modified Markov
predictors described in [8] can be employed, but
these algorithms are offline and require substan-
tial resources (memory, power) to be executed.
Therefore, they could only be used by fixed net-
work servers.

Location prediction is considered a more
manageable problem than request prediction,
because of fewer alternatives in possible contexts
(i.e., hexagonal architecture of cellular systems,
few fixed access points in wireless LANs) and
the “strong” stationarity (i.e., few habitual routes
in campuses/cities, few travel paths in urban
regions — road network).

For location prediction applications, several
families of Markov predictors could be used,
each in some specific scenarios . For dynamic
tracking of mobile hosts (with the tracking appli-
cation running in either the network server or
the mobile host), PPM and LZ78 methods are
appropriate. The small order PPM model and
enhanced LZ78 [3] are expected to achieve the
best performance because of the undoubted
validity of the stationarity assumption. Indeed,
the study in [6] confirmed this intuitive result.
These variants are a perfect fit for dynamic
resource allocation before handovers as well.
For location area design applications, where we
are interested in discovering “long-standing”
repetitive user routes, the process is offline, and
therefore methods like PST or [8] are appropriate
and less vulnerable to statistical deviation.

To support the aforementioned design guide-
lines we performed a performance comparison
of the major Markov predictors, as described in

[3, 7, 11, 13]. We generated synthetic sequences
of 500 symbols each (drawn from a 26-symbol
alphabet), falling into four categories:
• With strong stationarity and short (relative to

the order of PPM, DeCTW) patterns
• With strong stationarity and longer (relative to

the order of PPM, DeCTW) patterns
• With strong stationarity, but high variance in

the patterns’ length
• With piecewise stationarity (see next section)

All patterns were blurred with “white” noise.
The average prediction precision of each Markov
predictor for each category of sequences is
depicted in the four areas of Fig. 6.

We can easily see the low performance of the
enhanced LZ78 algorithm while the sequences are
at their beginnings, and how it considerably
improves its performance while more symbols
are accumulated. PPM in general performs superi-
or to all its competitors when the patterns’
length is smaller than its order and this situation
is reversed when there is high variance in the
patterns’ length, in which case PST prevails. Final-
ly, none of the predictors performs satisfactorily
for the piecewise stationary sequences.

FURTHER RESEARCH

The classical result about the duality between
lossless compression and prediction implies that
any universal lossless compression algorithm can
be used to carry out prediction. Although quite a
lot of theoretical lossless compression schemes
do exist in the literature, only a few of them
have been implemented for practical purposes.
This is due to the need to effectively combine
prediction efficiency, computational complexity,
and low implementation effort. These three
“dimensions” limit the range of possible alterna-
tive practical prediction models. In this direc-
tion, the Burrows-Wheeler (BW) lossless
compression scheme offers significant opportuni-
ties for combining the excellent prediction ratios
of PPM and the low complexity of schemes based
on LZ78. This compression scheme is composed
of three steps: the Burrows-Wheeler Transform
(BWT), a Move-To-Front transform, and a vari-
ant of Run-Length Encoding and entropy coding

nn

                                         

Table 1. Qualitative comparison of discrete sequence prediction models.

Prediction method Overheads Particularity

Family Variant Markov class Train Parameterization Storage

LZ78 [3] Variable Online Moderate Moderate
May miss patterns

PPM

[9] Variable Online Moderate Moderate

[7] Fixed Online Moderate Large Fixed length

[8] Fixed Offline Heavy Large High complexity

PST [11] Variable Offline Heavy Low Parameterization

CTW
[13] Fixed Online Moderate Large

Binary nature
[12] Fixed Online Moderate Large

Location prediction is
considered a more

manageable problem
than request 

prediction, because
of the fewer 

alternatives in 
possible contexts

and because of the
“strong” stationarity.
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The main difference between BW compres-
sion and its context-based competitors (CTW, PPM,
LZ78, PST) is that the latter methods encode each
symbol knowing the left context of its appear-
ance, which helps estimate the probability of the
symbol occurrence. In BW schemes, first, the
right context is exploited, and second, the infor-
mation regarding the contexts is lost after the
BWT stage. Recovering contextual information
could make BW appropriate for prediction in
wireless settings, but unfortunately no full solu-
tion to this problem has been described yet. So
far, there is no practical prediction scheme
based on the BW scheme.

The cornerstone for building the Markov pre-
dictors described in this article is the stationarity
assumption, which implies time-homogeneous
transition probabilities. Under this assumption,
the trie of each predictor grows node by  node,
increasing the respective node counters; that is,
identical subsequences are “aggregated”
(mapped) into the same node of the trie. Under
the stationarity assumption, Markovian predic-
tion is well understood. By completely removing
the notion of stationarity, it is obvious that we
can hardly have any prediction capability, since
the fundamental tenet of predictability is violat-
ed (i.e., some degree of ergodicity).

Between these two extremes lies the more
realistic case of piecewise stationarity, where the
sequence of symbols is treated as a series of
nonoverlapping segments, each having been gen-
erated by a stationary source. It is supposed that
the system has no knowledge about the number
of these segments, their duration, or the kind of
change between them (abrupt or slowly varying).
Clearly, the removal of the full stationarity
assumption makes the procedure for creation of
predictors mentioned in the previous paragraph
not appropriate at all or of reduced value. For
instance, in the simplest case of a mobile client

whose roaming patterns change gradually, the
predictors tend to favor the “old habits” of the
client and will adapt to changing conditions very
slowly. Therefore, the assumption of non-time-
homogeneous transition probabilities makes the
current predictors inefficient and raises some
design challenges for any new scheme to address
this assumption. Although research works exist
dealing with piecewise stationarity [14], these
works mainly focus on memoryless sources and
have not considered Markov sources.

Markov predictors could still achieve predic-
tion efficiency for piecewise stationary sources,
but they should be armed with some smart mech-
anisms. For instance, an enhanced LZ78 scheme is
presented in [3, 10], which inserts into the trie
all proper suffixes of a discovered subsequence
(an LZ78 word). Indeed, this improvement is
shown to outperform the classic LZ78 decorrela-
tion scheme. Although not explicitly mentioned
as such in [3], this enhancement can be seen as a
method of modeling intra-word correlations, that
is, an approach to account for the fact that full
stationarity might not be valid for the sequence,
in which case the original decorrelation proce-
dure finds the wrong words. This technique
seems appropriate in cases of abrupt changes
between stationary segments, but does it really
help for piecewise stationary slowly varying
sequences? Also, the enhancement reported in
[15] takes a first step toward addressing this
issue, but in many real applications, such as in
daily movement patterns of mobiles, it may be
that the stationary segments repeat. How could
we discover (segment the sequence) and exploit
such repeating statistics? As mentioned, “full
aggregation” (i.e., accumulating counts in nodes)
is not helpful; partial (controlled) or no aggrega-
tion could be considered as well, but in any case
novel prediction algorithms should be designed,
since, as [6] concluded, there is a significant gap

nn

                               

Figure 6. Performance evaluation of major Markov predictors.
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between the performance of the examined
Markov predictors and an “optimal” offline pre-
dictor.

SUMMARY

Designers of modern wireless networks are
increasingly confronted with the issues of provid-
ing seamless and ubiquitous connectivity in a
system-independent manner, as well as providing
low access latency to data-hungry applications.
Smart wireless networks could deduce future
client locations and allocate resources in
advance, in order to mitigate the negative effect
of handovers and perform paging in a cost-effec-
tive manner. Similarly, smart agents running on
mobile clients could forecast future client data
needs and preload the respective data from the
broadcast channel while waiting to get explicitly
requested information pieces.

This article presents the issues of location
and request prediction in wireless networks in a
homogeneous fashion, characterizing them a dis-
crete sequence prediction problems, and surveys
the major Markovian prediction methods. The
article by no means serves as an exhaustive sur-
vey, but as a vehicle to promote understanding
and proliferation of ideas. We explain the virtues
of Markov predictors and show important yet to
be addressed research issues. We envision pre-
dictive model design as a fertile research area.
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