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Abstract: The Internet of Battlefield Things is a newly born cyberphysical system and, even though
it shares a lot with the Internet of Things and with ad hoc networking, substantial research is required
to cope with its scale and peculiarities. This article examines a fundamental problem pertaining to
the routing of information, i.e., the calculation of a backbone network. We model an IoBT network as
a network with multiple layers and employ the concept of domination for multilayer networks. This
is a significant departure from earlier works, and in spite of the huge literature on the topic during
the past twenty years, the problem in IoBT networks is different since these networks are multilayer
networks, thus making inappropriate all the past, related literature because it deals with single layer (flat)
networks. We establish the computational complexity of our problem, and design a distributed algorithm
for computing connected dominating sets with small cardinality. We analyze the performance of the
proposed algorithm on generated topologies, and compare it against two—the only existing—competitors.
The proposed algorithm establishes itself as the clear winner in all experiments concerning the dominating
set from a size-wise and an energy-wise perspective achieving a performance gain of about 15%.

Keywords: dominating sets; multilayer networks; Internet of Battlefield Things; ad hoc networking

1. Introduction

The progress in IoT inevitably impacted upon the modern battlefield, which is pop-
ulated by thousands of “things”, such as humans, sensors, vehicles, unmanned aerial
vehicles (UAVs), aircrafts, etc. carrying out various tasks including environmental sensing,
communicating, acting in isolation and/or in cooperation [1,2]. Therefore, the Internet
of Battle(field) Things [1] or the Internet of Military Things (IoMT) was born, which
interconnects “devices” aiming to meet multiple and diverse missions, to operate in a
(semi)autonomic mode, and to execute battlefield operations supporting end-to-end control
and command; its ultimate goal is to carry out a commander’s intent in a safe, responsive
and resilient manner. Thus, IoBT presents at the same time all of the following significant
and very challenging characteristics [3] which distinguish it from traditional IoT:

• Diversity in tasks and aims. There will be many networks operating simultaneously to
achieve a particular goal, e.g., tracking, surveillance, attack.

• Operation in dynamically changing and resource starving environments. Some “devices” of
the IoBT network might be energy-starving (sensors, drones), others might not have
energy issues (armored vehicles), others might be obliged to travel in non-chartered
territories (e.g., planes).

• Extreme device heterogeneity. IoBT networks are expected to include from tiny little
sensors to some as big as armored fighting vehicles.

• High variance in network’s density and size. An IoBT network might be comprised e.g., by
the cluttered network of a swarm of drones, or by the “union” of the ad hoc network
of a battalion’s soldiers and the ad hoc network of a tank platoon.
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The so-called assured synthesis is one of the major challenges identified for IoBT, and in
particular the recruitment and network composition [3] tasks. The former task is about the
discovery of cyberphysical assets, the human assets and their particularities, and also about
the resilience to adversaries. The latter task is about the issue of dictating the nodes that
must be considered in order for the requirements and constraints of the planned mission to
be satisfied.

1.1. Related Literature

The Internet of Battlefield Things concept emerged some five years ago [1,4], and since
then research is conducted in designing backbones [5,6], in designing reconfigurable and
secure IoBT networks [7], in developing solutions for enemy localization [8], in control-
ing/monitoring communication links, in combating attacks at nodes [9], in detecting
malware and fake news [10,11], and in protecting human assets [12,13].

The past literature on designing backbones for routing support in wireless ad hoc net-
works comprises the most closely related work to the present article. This literature is literally
enormous during the past two decades [14–16]. However, the same issue in the realm of
military/IoBT networks is different; these networks are actually multilayer networks [5,7]
(see Figure 1), and therefore this past literature is in principle inappropriate, because it con-
centrates only on single layer networks. Moreover, we showed in ([5] Theorem 1), that these
algorithms usually produce suboptimal solutions in the sense that, instead of announcing
as a dominator a node with a few interlayer links, they tend to announce someone with
many intralayer links. Finally, the work in [17] deals with domination in multiplex networks
which is a far more restricted version of multilayer networks, since interlayer links exist only
between clones of the same node in different layers; moreover, that work does not establish the
computational complexity of their problem.

Figure 1. A sample multilayer IoBT ad hoc network.

The very first algorithm for calculating a backbone for multilayer military networks
is described in [5], where a distributed backbone establishment algorithm, namely clPCI
was presented. It is based on the concept of connected dominating sets (CDS). The concept
of a CDS was selected for the following reasons: (a) only/mainly distributed algorithms
are appropriate in the battlefield, and despite the fact that finding a Minimum CDS is
a NP-complete problem even in the centralized setting, there exist some very efficient
distributed algorithms for the problem; (b) the battlefield requires resilient solutions, and
fortunately the scientific knowledge on how to build a multi-connected, multi-dominating
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CDS is quite mature [18]; and finally (c) an IoBT is composed by many energy-starving
devices, and therefore energy-aware solutions (e.g., sleep scheduling) is almost mandatory;
again, the theory on how to create multiple dominating sets, i.e., domatic partitions [19] is
quite rich. Until before the introduction of clPCI for constructing a connected dominating
set in a distributed fashion for multilayer networks, there was no prior work on the topic.
This complete lack may be attributed to the mistaken assumption that a multilayer network
is equivalent (from the perspective of computing a CDS) to a single layer network after
ignoring layer information.

Multilayer networks have also been used in biological sciences in order to model
interacting networks. In [20], FAST-MDSM is developed to calculate a dominating sets in
multilayer networks. However, this algorithm is centralized, and it results in an unconnected
dominating set, incurring also a high computation cost because it runs as an integer pro-
gramming problem (Calculating a minimum (connected) dominating set after formulating
it as an integer programming model is a mature technique [21]). In conclusion, all afore-
mentioned algorithms consider only single layer networks, with the exception of [5], and
of the centralized FAST-MDSM which comprises a departure from this literature.

1.2. Motivation and Work’s Contributions

In [5] we dealt with the heterogeneity of an IoBT network and modelled it as a mul-
tilayer network. We proved analytically that if we treat it as a plain union of independent
subnetworks, then we do not reap efficient solutions for facilitating fast information routing.
So, despite the past, very rich literature on the domination concept in ad hoc networks,
the problem in IoBT networks is different, since these are multilayer networks and consid-
ering them as a single (flat) network or considering each layer in isolation and calculating
dominating set produces either suboptimal or bad solutions. Therefore, the whole past
literature is in principle inappropriate. Later, we incorporated in this first work energy
issues [6], and we devised algorithms with fact-finding methods to address aspects of social
sensing, e.g., characterize human assets/sources. We note here, that in [5] we developed
distributed, communication-efficient algorithms based on the concept of node domination
for choosing a set of nodes to be a backbone for a multilayer network, i.e., the IoBT network.
In the biological sciences area, the work described in [20] developed centralized algorithms
for computing dominating sets in multilayer networks.

Nevertheless, neither the algorithms developed in [5] (and of course in [6]) nor
those developed in [20] can adequately serve the purposes of an IoBT backbone network.
The main issue with the former algorithms is that they do not produce very compact
network spanners, so there is plenty of room for improvement with regard to the pro-
duced connected dominating set. This is very significant if we wish to design solutions
scalable to enormous IoBT networks. The two main disadvantages of the latter algorithm
is its centralized nature, and thus it can not work in IoBT, and additionally because it
produces unconnected spanners, and therefore it can not guarantee network-wide flow of
information. Thus, our article contributes the following:

• It establishes the computation complexity (NP-completeness) of the problem of calcu-
lating a minimum connected dominating set for multilayer networks.

• It presents a new distributed algorithm, namely the Cross layer Connected Dominating Set
(CCDS) for calculating connected dominating sets for IoBT networks, by applying an
efficient mechanism to reduce the size of the dominating set.

• It enhances FAST-MDSM [20] so as to produce connected dominating sets thus getting
a new algorithm called FAST-CMDSM, and compares our proposed algorithm against
the only existing competitors, namely the algorithm in [5] and FAST-CMDSM.

The rest of this article is organized as follows: Section 2 formulates the problem and
proves its complexity, and Section 3 develops distributed solutions for it. Section 4 evaluates
the competing algorithms, and finally, Section 5 summarizes the article.
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2. Formulation of the Problem

A dominating set (DS) [22] of a graph (i.e., the set of dominators) is defined as a subset
of the nodes with the property that the rest of the nodes are adjacent (i.e., 1-hop neighbors)
from some dominator(s). If the network induced by the DS is additionally connected, then
the DS is called connected DS (CDS). In the IoBT setting, we seek for minimum CDS (MCDS),
i.e., CDS with minimum cardinality. We treat an IoBT network as a multilayer network, i.e.,
as a multilayer graph [5,7]. We assume that there exist only bidirectional links (In principle,
the paper ideas can be applied to networks with unidirectional links as well). A multilayer
network comprised of n layers is a pair (GML, EML), where GML = {Gi, i = 1, . . . , n} is
a set of networks (Gi, Ei) (i.e., with Gi nodes and Ei links), and a set of interlayer links
EML = {Ei,j ⊆ Gi × Gj; i, j ∈ {1, . . . , n}, i 6= j}. Figure 1 illustrates such a network,
where we can see a layer of soldiers, a layer comprised by helicopters, the intralayer links
connecting “nodes” of the same layer, and interlayer links connecting “nodes” belonging to
different layers.

Apparently, the requirement of calculating a CDS with minimum cardinality stems from
scalability issues [3]. Additionally, from the discussion in Section 1 and in ([3] Section III.B),
where “. . . resilience and latency requirements for synthesizing a near-optimal network” [3]
are emphasized, we conclude that the more nodes with many interlayer links are included
in our IoBT backbone the better it is. The inclusion of many nodes with “a lot” of interlayer
links supports low-latency communication among layers; we can consider them as the hubs
encountered in the literature on complex networks that reduce the “degrees of separation”.
Moreover, the existence within the backbone of many nodes with “a lot” of interlayer links,
reduces the danger of partitioning among layers. Therefore, we provide Definition 1 for
the problem of calculating a MCDS for IoBT networks, and establish its computational
complexity (Proposition 1) in the centralized setting, closing a gap in the literature which is
open since [5] and it was not dealt with in [23].

Definition 1 (Multilayer MCDS problem for IoBT). Solve the MCDS for a multilayer graph
in a distributed manner, i.e., calculate the set MCDSML comprised by the minimum number of
nodes with the following properties: (a) their induced subgraph is connected (with intra and/or
inter-layer links) and the rest of the nodes are adjacent to one node (or more) belonging to MCDSML,
(b) maximize the number of dominators with many interlayer links, (c) knowing only the k-hop
neighborhood of each node; we work with k = 2 here. (Working with broader neighborhoods
(i.e., k > 2) would cause a severe broadcast storm problem [24] in order to acquire the topology
deploying successive rounds of “beacon” messages).

In the rest of this section, we will investigate and establish the computational complex-
ity of the centralized version of our problem for connected dominating sets. In particular,
we will define the decision and optimization version of the examined problem, and then es-
tablish their complexities. The validity of these results for the case of connected dominating
sets calculated in a distributed fashion is straightforward.

MULTILAYER CONNECTED DOMINATING SET PROBLEM
INSTANCE: A positive integer K, and a multilayer network consisting of n layers, i.e., a
set of n pairs (Gi, Ei), where Gi is the node set of a usual network and Ei is a set of edges,
for 1 ≤ i ≤ n, and a set of interlayer links EML = {Ei,j ⊆ Gi × Gj; i, j ∈ {1, . . . , n}, i 6= j}.
QUESTION: Is there a dominating set of size K for (GML, EML), i.e., a subset V′ ⊆ (∪Vi)
with |V′| = K such that for all u ∈ (∪Vi)−V′ there is some vj ∈ (∪Vi) for which (u, vj) ∈
((∪Ei) ∪ EML), and moreover the induced subgraph defined by V′ is connected?

MULTILAYER MINIMUM CONNECTED DOMINATING SET PROBLEM
INSTANCE: A multilayer network consisting of n layers, i.e., a set of n pairs (Gi, Ei),
where Gi is the node set of a usual network and Ei is a set of edges, for 1 ≤ i ≤ n, and a set
of interlayer links EML = {Ei,j ⊆ Gi × Gj; i, j ∈ {1, . . . , n}, i 6= j}.
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QUESTION: What is the minimum cardinality dominating set for (GML, EML), i.e., what is
the minimum cardinality subset V′ ⊆ (∪Vi) such that for all u ∈ (∪Vi)−V′ there is some
vj ∈ (∪Vi) for which (u, vj) ∈ ((∪Ei) ∪ EML), and moreover the induced subgraph defined
by V′ is connected?

We can now proceed to establish the computational complexity of the second problem.
Our proof method will also establish the complexity of the first problem as well. The result
is described in Proposition 1, but firstly we remind some background on proving the
computational complexity of problems. So, a problem is NP-complete if the following two
conditions hold:

(a) we can prove that the problem belongs to the class of NP problems, and
(b) we can

(b1) either transform in polynomial-time a known NP-complete problem to the
problem at hand ([25] p. 45), or

(b2) prove that the problem at hand contains a known NP-complete problem as a
special case ([25] p. 63, Section 3.2.1); this is called the “restriction” approach to
proving NP-completeness.

We will now construct the proof that the problem of finding a minimum connected
dominating set for (V, Ei) is NP-complete. Recall that our problem is an optimization
problem, i.e., “. . . finding the minimum dominating set”.

Proposition 1. The Multilayer MDS problem is NP-complete.

Proof. Our proof consists of three steps: (a) Transform the problem into a decision version,
(b) Prove that it belongs to the class of NP problems. (c) Establish its NP-completeness
complexity by following the “restriction” approach, i.e., by showing that our problem
contains a known NP-complete problem as a special case.
[STEP 1. Transform our optimization problem into the decision version of the same
problem.]
Without violating the validity of the proof, we will work with the decision version of the
problem:

Given an integer k > 0, does our multilayer network contain a connected dominating set of
cardinality equal to k?

Apparently, the smallest k for which the answer to the above problem is ‘yes’ is the
size of the minimum connected dominating set of our multilayer network.

From the perspective of computational complexity, the two problems are equivalent
(see item (b1) above): With the use of binary search, we need to solve the decision version
for O(log(| ∪i Gi|)) different values of k, i.e., which is a polynomial time of searches.
[STEP 2. Proving that the decision problem belongs to the NP class.]
The MULTILAYER CONNECTED DOMINATING SET PROBLEM is clearly in NP, as given
a graph (GML, EML), a set S ⊆ ∪iGi of nodes, and a number k, we can test if S is a connected
dominating set of (GML, EML) of size k or less by first checking if its cardinality is less than or
equal to k and then checking if every node in (GML, EML) is either in S or adjacent to a node
in S. This process clearly takes polynomial time, i.e., O(| ∪i Gi|+ | ∪i Ei|+ |EML|). Should
we wish to check whether S is actually connected, we can resort to any polynomial-time
algorithm, e.g., breadth/depth first search. Therefore, the MULTILAYER CONNECTED
DOMINATING SET PROBLEM is indeed in NP.
[STEP 3. Proving that the decision problem contains a known NP-complete problem as a
special case.]
The third step of our proof involves proving that the MULTILAYER CONNECTED DOM-
INATING SET PROBLEM contains as a special case the problem of finding a connected
dominating set for a single layer graph G(V, E)—a known NP-complete problem ([25]
p. 190, Problem GT2).
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We state the following corollary:

Corollary 1. From ([5] Theorem 1), it follows immediately that if we wish to connect with each
other two connected dominating sets of two separate graphs by adding a single edge among the two
graphs, then we will need at most 2 more nodes (one from each separate graph) to be included in the
single “united” connected dominating set.

We assume the existence of a single layer graph G(V, E), and we construct a multilayer
graph (GML, EML) with two layers, where GML = {G1, G2} = {(V, E), (V, E)} and EML

is any non-empty set of interlayer edges between G1 and G2. Then, we erase all but one
interlayer edges from EML. We assume that this edge is the (α, β) with α ∈ G1 and β ∈ G2.

Then, the problem of finding whether the graph (GML, EML) contains a connected
dominating set of size 2k + |{α, β}| = 2k + 2 is in an obvious one-to-one correspondence
with the problem of finding whether the graph G(V, E) contains a connected dominating
set of size k + 1. Note here, that there is no need—from the computational complexity
perspective—for the size-2k + 2 connected dominating set of (GML, EML) to be a double-
size clone of the size-k + 1 connected dominating set of G(V, E), and thus the two problems
do not need to be an exact duplicate of each other.

Thus, the MULTILAYER CONNECTED DOMINATING SET problem is NP-complete.

3. Proposed Heuristic Distributed Algorithms
3.1. Distributed CDS in a Multilayer Network

The calculation of a MCDS by any heuristic algorithm means in practice that we
are seeking for “strategically” positioned nodes in the network topology having many
connections in order to decrease the size of the obtained CDS. In the case of IoBT networks,
we seek for such nodes but with the additional property that they should have many
interlayer links. So, the use of the clPCI centrality measure [5] is a perfect fit. We exploit
clPCI and incorporate it into a distributed algorithm for calculating a CDS; we name this
distributed algorithm as the Cross layer Connected Dominating Set algorithm (CCDS). CCDS
is composed by the CDS construction task, and the redundant relay node pruning task. As it
is common in almost any distributed algorithm for wireless ad hoc networks, each node
learns the topology of its neighborhood with the exchange of beacon messages. In CCDS,
each node learns its 2-hop neighborhood N2(u); then, it calculates its clPCI and broadcasts
it to its neighbours and, by mutuality of the distributed algorithm, it becomes aware of its
neighbors’ clPCI values.

The initial CDS construction task is a source-initiated relay node selection type of
algorithm, and is divided into the neighbor prioritization subtask and the construction subtask.
Each node u prioritizes (i.e., sorts) its 1-hop neighbors in decreasing order of their clPCI
values and progressively selects from this sorted list neighbors to include in its relay set R(u)
those neighbors that have the largest clPCI value and that cover at least one new node in
the respective 2-hop neighborhood N2(u), until all N2(u) is covered. Then, the pruning task
follows, in order to reduce (if possible) the size of its relay set R(u). CCDS uses the restricted
pruning Rule k because it is more efficient in reducing the relay node set than several existing
schemes that still ensure full broadcast coverage. Differently from this scheme, we exploit
connectivity information as this is quantified by clPCI in order to establish a total order
among nodes that participate in the CDS. CCDS’s pseudo-code is Algorithm 1.
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Algorithm 1: CCDS

precondition :Known clPCI index values of nodes in (N(u)) ∧ (N2(u))
postcondition :Completed MCDS election process
remarks :mlNetwork G = (V, E) where V and E are vertex & edge set, R(u) : relay

node set of node u ∈ V, M(u) : (T)rue/(F)alse indicator for node u being a
DS node.

1 repeat
2 Add to R(u) node l ∈ N(u) which has the largest clPCI and covers at least one new

node in N2(u);
3 until each node in N2(u) is covered by node(s) in R(u)
4 Announce R(u);
5 if selected as a relay node then
6 M(u) = T; Announce status change;
7 Build Sconstrained

(u) = u1, u2, . . . , un | uk (1≤k≤n) ∈ N(u) ∧ N2(u), M(uk (1≤k≤n)) = T,
clPCI(u) < clPCI(uk (1≤k≤n));

8 if Sconstrained
(u) is subject to N(u) ⊂ N(u1) ∪ N(u2) · · · ∪ N(un) and

u1, u2, . . . , un form a connected graph then
9 M(u) = F; Announce status change;

10 Return; /* CDS Pruning */
11 end
12 end

3.2. Centralized CDS in Multilayer Networks

The centralized FAST-CMDSM algorithm consists of the MDS discovery task, the CDS
construction task, and the redundant DS node pruning task. The calculation the minimum
dominating set (MDS) is treated as an Integer Programming problem [20]. The CDS
construction task aims at adding in the DS the least possible—per node—number of nodes,
such that the 2-hop neighborhood of each node is covered, and as result the multilayer
network is connected in the sense that any pair of nodes can communicate via the DS.
In the last task, we remove any redundant DS nodes by seeking alternative paths, and we
substitute information flow via these paths. FAST-CMDSM’s pseudo-code is Algorithm 2.
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Algorithm 2: FAST-CMDSM
precondition :All nodes are designated as dominators
postcondition :Completed MCDS election process
remarks :mlNetwork G = (V, E) where V and E are vertex & edge set, M(u) :

(T)rue/(F)alse indicator for node u to being a DS node, Vm : DS node set,
MDSV : Minimum DS node set of V, CDSV : Connected DS node set of V.

1 repeat
2 if ∃ uj (1≤ j ≤n) ∈ V |
3 d(uj) = 1 & ui (1≤ i ≤n, i 6= j) ∈ N(uj) then
4 M(ui (1≤i≤n)) = T;
5 if ui (1≤i≤n) /∈ Vm then
6 Add node ui (1≤i≤n) to Vm;
7 end
8 end
9 until all nodes at every layer have been examined

10 repeat
11 if M(uj (1≤j≤n)) = T then
12 if ∃ ui (1≤i≤n) ∈ N(uj) & M(ui (1≤i≤n)) = T then
13 M(uj (1≤j≤n)) = F;
14 continue;
15 else
16 if uj (1≤j≤n) /∈ Vm then
17 Add node uj (1≤j≤n) to Vm;
18 end
19 end
20 end
21 until no more nodes are added to Vm
22 MDSV = Minimize ∑n

i=1 xi
23 Subject to xi + ∑n

j (uj ,ui)∈Ek
xj ≥ 1 ∀ ui ∈ Vk (1≤k≤n)

24 repeat
25 Add to CDSV the least possible nodes from N(u) that are needed to cover N2(u)

neighborhood
26 until any node u ∈ MDSV has been examined
27 CDSV = Vm

⋃
(CDSV − (CDSV

⋂
Vm))

28 Use Pruning in order to decrease the size of the CDSV

3.3. Computation and Communication Complexities
3.3.1. Complexities of CCDS

CCDS requires 7 rounds of communication among nodes to complete. In each round,
at most one packet is sent over the wireless channel.

• The 2-hop neighborhood information used by the relay node set election process is
collected via two rounds of information exchanges.

• In round 1, each node advertises its ID and builds its 1-hop neighbor set based on the
advertisement of its neighbors.

• In round 2, each node advertises its 1-hop neighbor set and identifies links among
1-hop neighbors.

• In round 3, each node calculates its clPCI index value and advertises it together with
its 2-hop neighbor set. Then, it identifies links among 2-hop neighbors.

• In round 4, each node calculates and advertises its own relay node set and updates
1-hop neighbor status.

• In round 5, the restricted Rule-k is applied to each relay node and each one of them
advertises its status.

• In round 6, each node advertises its updated relay node set
• In round 7, the composition of the updated relay node set is advertised (if needed).
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The computation complexity of its comprising parts is: O(∆2) for the clPCI calculation,
and O(∆3) for the relay node set election process and for the pruning phase, where ∆ is the
maximum node degree found in the network.

3.3.2. Complexities of FAST-CMDSM

FAST-CMDSM is a centralized algorithm and so its communication complexity is not
an issue for investigation.

FAST-CMDSM’ s computation complexity is exponential, similar to all branch-and-
cut integer programming solvers.

4. Performance Evaluation

Competing Algorithms. We compare the proposed algorithms, namely CCDS and
FAST-CMDSM, but in order to explain the usefulness of their pruning procedures, we
develop and include in our comparison their annotated with an asterisk version of them,
namely CCDS∗ and FAST-CMDSM∗; these versions are simply the same algorithms but
without activating the pruning procedure. Solely for illustrative purposes we include the
experimentation, and FAST-MDSM algorithm which constructs minimum but unconnected
DS; we proved in [5] that any (unconnected) DS of size ‖DS‖ can be turned into a CDS
by adding 2× ‖DS‖ additional nodes in the DS in the worst case. Table 1 summarizes the
competing algorithms.

Table 1. Competitor characteristics.

CDS Pruning Complexities
Competitor Calculation Heuristic CPU a / Comm b

CCDS Distributed X ∆3 / 7
CCDS∗ Distributed - ∆3 / 7

FAST-CMDSM Centralized X exp / c

FAST-CMDSM∗ Centralized - exp / c

FAST-MDSM Centralized - exp / c

a ∆ is the maximum node degree; b Number of transmitted messages per node; c Not applicable due to its
centralized nature.

Simulation testbed. Due to the lack of available, real military networks, and the
inability (The requirement of modern battlefields is to able to operate ad hoc networks
consisting of an order of magnitude more nodes; for instance a battalion would need
a thousand nodes. e.g., https://www.darpa.mil/news-events/2013-04-30 (accessed on
15 May 2022)). of wireless testbeds and emulation environments for ad hoc networks to
deal with several hundreds of nodes, we developed a generator for multilayer networks in
MATLAB. The details of our generator can be found in [6,23], and here we present its basic
features. The construction of a multilayer network is driven by the average node degree,
by the nodes’ number per layer (i.e., the so-called layer size), and the number of layers.
The interconnection of the layers is driven by: (a) the number of a node’s links towards
nodes in different layers, and (b) the distribution of the interconnections to the nodes within
a particular layer. We apply the Zipfian distribution to our connectivity generator. Skewness
is managed by parameter s ∈ (0, 1). We make use of four distinct Zipfian distributions, one
per parameter of interest:

• sdegree: to generate the frequency of appearance of highly interconnected nodes,
• slayer: to choose how frequently a specific layer is selected,
• snode: to choose how frequently a specific node is selected in a specific layer.
• sweight: to choose how uniformly the energy is distributed in the nodes.

We call these parameters as the topology skewness, and represent it as a sequence of
four floats, meaning that sdegree = 0.5, slayer = 0.5, snode = 0.5 and sweight = 0.5 (which are
the default settings we used to create the datasets).

https://www.darpa.mil/news-events/2013-04-30
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Performance measures. The competitors are compared in terms of the cardinality
of the CDS; apparently an algorithm is more efficient than another, if it generates a CDS
having smaller cardinality [16]. Moreover, an algorithm that establishes a (per node) relay
set with larger residual energy is naturally considered to be more efficient in terms of
energy than another algorithm whose per node relay set has less residual energy.

Datasets. We created networks which vary with respect to the topology density,
the network diameter, the number of network layers and their size. The topology density’s
impact on the performance is evaluated with 4-layer networks. Each layer consists of
50 nodes, and the mean node degree is 3, or 6, or 10, or 16, or 20. The network diameter’s
impact on the performance is evaluated with 4-layer networks as well. Each layer consists
of 50 nodes, and the mean node degree is 6. The diameter of each layer is 3, or 5, or 8, or 12,
or 17. The number of layers’ impact is examined in networks with 2, or, 3, or 4, or 5, or 7
layers. Each layer consists of 50 nodes, and the mean node degree is 6. The increase in the
layer size’s impact is evaluated with 4-layer networks. The “base” layer consists of 50 nodes,
and each next layer is larger than the previous by 10%, or 20%, or 30%, or 50%, or 70%.
The mean node degree in each layer is 6. Table 2 records all the independent parameters.

Table 2. Experimentation parameters values.

Parameter Range Default

avg. node degree (D) 3, 6, 10, 16, 20 6
network diameter (H) 3, 5, 8, 12, 17 5

number of network layers (L) 2, 3, 4, 5, 7 4
size of a layer relative to its adjacent layers 10%, 20%, 30%, 50%, 70% -

4.1. Experimental Evaluation

Each experiment was repeated 5 times. The variation around the mean was so neg-
ligible that the error bars are hardly recognizable in the plots. We conduct experiments
with sdegree, slayer, snode, sweight parameters into 0.5− 0.5− 0.5− 0.5 (Medium skewness),
and 0.1− 0.1− 0.1− 0.1 (Low skewness), and 0.9− 0.9− 0.9− 0.9 (High skewness) setting,
respectively.

4.1.1. Impact of Topology Density

Firstly, we consider the impact of topology density on the performance of each competi-
tor. In Figure 2 we evaluate, for medium skewness, the per layer size of the CDS. The main
conclusion is that the size of the CDS is practically a decreasing function of the node den-
sity. This happens because the higher the network density is, the greater the coverage
capability of the network nodes becomes, and therefore the size of the CDS gets smaller.
In the case we succeed medium skewness, there is no clear winner between CCDS and
FAST-CMDSM as the topology becomes denser (degree ≥ 6) and both competitors present
similar performance (<10% variance). The explanation is that in such topologies, there exist
multiple redundant paths towards nodes, and thus both pruning mechanisms work equally
well. On the contrary, in sparse topologies (degree = 3) FAST-CMDSM is up to 15% more
efficient. This is due to the fact that during the pruning process, the redundant paths are less
in sparse topologies, and their discovery requires knowledge of the topology further away
than 2-hops, which is beyond the capabilities of localized algorithms deployed in wireless
ad hoc networks. Apparently, the centralized nature of FAST-CMDSM provides a clear
advantage, since its pruning task has a broader overview of the topology. If we exclude
the pruning task, then CCDS∗ and FAST-CMDSM∗ present similar performance (less than
10% variance) when degree ≤10, and the performance of the latter is up to 15% better to the
former when degree >10. However, these results are not good news, because both algorithms
do not perform well in terms of the—per layer—CDS size; i.e., the—per layer—CDS size is
up to 98% of that of the total number of nodes in that layer. This is considered natural in
multilayer networks when the traditional methods are used (2-hop neighborhood coverage).
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DS redundancy justifies the use of the pruning mechanism (up to 88% and 85% CDS size
reduction for CCDS and FAST-CMDSM, respectively, in this particular case).
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Figure 2. Impact of topology density (Medium skewness).

We expanded our experiments in case of low skewness. The results, depicted in Figure 3
show that there are no important differences regarding the efficiency, between CCDS and
FAST-CMDSM, when topology becomes denser (degree ≥ 6). As mentioned above, this
happens because pruning mechanisms work well, when nodes have multiple ways to
connect with one another. When degree = 3 (sparse topologies), CCDS is about 10% less
efficient than FAST-CMDSM, something which is justified due to the centralized control
of the FAST-CMDSM. In this case, the reduction size of CDS is about 90% for CCDS
algorithm and up to 88%.

In case of high skewness (see Figure 4), when degree ≥ 10, both the proposed algo-
rithms behaves in a quite similar way (less than 10% variance), too, regarding the size
of CDS. Here, FAST-CMDSM outperforms CCDS, due to the centralized control of the
first one which makes the procedure of finding surplus paths easier inside the Multilayer
network. Examining the case when topology is sparse (degree = 3), we see that CCDS is
less efficient than the other pruning proposed algorithm, bearing in mind that due to the
lack of enough connections, it is more difficult for a distributed algorithm to find minimum
DS. Also, when degree = 6, CCDS continues to outperform FAST-CMDSM, but both
algorithms create DS with smaller size than the above implementations do. So, in this case
the efficiency of the proposed algorithms are up to 86% and up to 82% for both CCDS and
FAST-CMDSM, respectively.
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Figure 3. Impact of topology density (Low skewness).
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Figure 4. Impact of topology density (High skewness).

So, as it is also shown in Figure 5 which shows CDS sizes aggregated over all layers, for all
the parameters tested, the results are quite similar regarding both CCDS and FAST-CMDSM
algorithm, with the corresponding results with parameters 0.1− 0.1− 0.1− 0.1 to be a little
more efficient, probably due to the more uniform distribution this case implements.
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Figure 5. Impact of topology density (CDS size aggregated over all layers).

4.1.2. Impact of Network Diameter

In Figures 6–8, we evaluate the effect of the network diameter in the size of the CDS.
The main conclusion is that as the network diameter increases the size of the resulting
CDS increases, and this observations is valid for all competitors. In case of medium
skewness (Figure 6), the diameter increases and also the topology gets sparser. So, we
have fewer, longer (in hops), and less redundant paths. In that way, the selection of 1-hop
neighbor nodes that cover the N2 neighborhood of a particular node requires more 1-hop
neighbors. Now, in terms of the competitors’ performance, we see that in bushy topologies
(diameter ≤ 5) CCDS presents up to 18% smaller CDS compared to FAST-CMDSM. This
gain is attributed to the employment of the clPCI by CCDS and which helps in getting
a better pruning. On the other hand, in bushy topologies an unfortunate erase from the
CDS of a strategically located DS node will probably result in keeping a lot of (practically
“useless”) DS nodes just to ensure connectivity. When diameter = 8 or diameter = 12 the
competitors have similar performance (less than 10% variance). As expected, in long and
skinny topologies (diameter = 17) FAST-CMDSM outperforms CCDS by 16%, due to its
centralized nature. Examining the pruning-free versions of the competitors, we see that
both of them practically exhibit the worst-case behaviour, i.e., almost all nodes are selected
as DS nodes; the performance of the pruning mechanism for CCDS and FAST-CMDSM
regarding the CDS size reduction is up to 83% and 79%, respectively.

In case of low skewness as it is illustrated in Figure 7, we can also say that when
diameter ≤ 5, CCDS algorithm outperforms FAST-CMDSM and when diameter = 8 or
diameter = 12, both proposed algorithms have similar performance (less than 10% vari-
ance). Finally, we see that for diameter = 17, FAST-CMDSM has a better performance
than CCDS, due to the benefits of its centralized form, in long paths. So, in this case, CDS
reduction is up to 85% for CCDS and 81% for FAST-CMDSM.

Finally, when the interconnectivity generator parameters are 0.9− 0.9− 0.9− 0.9 (high
skewness), as it is depicted in Figure 8, we observe a general increase in CDS size, due to
the fact that the degrees of the nodes have a great variance in this case and as a result, more
nodes needed to join the DS. When diameter = 3, CCDS has better performance than the
other proposed algorithm, due to the fact that we have smaller paths to check and as a
result the distributed algorithm can discover easier the redundant paths (2-hop coverage).
When diameter = 5, or diameter = 8, FAST-CMDSM starts to have a better performance,
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as it creates CDS with smaller size. This is expected, since the centralized control of this
algorithm contributes efficiently in finding the redundant paths. The longer the diameter is,
the better performance FAST-CMDSM has as it is shown in Figure 8. To sum up, in this
case, CCDS can achieve up to 81% reduction in the size of total CDS, while FAST-CMDSM
can achieve 79%. As a summary, we provide Figure 9 to show average performance of the
competitors.
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Figure 6. Impact of network diameter (Medium skewness).
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4.1.3. Impact of the Number of Layers

We investigated the impact of the network layers’ number on the competitors. In Figure 10
we show the per layer CDS cardinality for the competing algorithms (for medium skewness).
The first observation we make is somewhat counter-intuitive: we see that the per layer CDS
cardinality is independent on the number of layers(!) even though we would expect to be a
decreasing function of the number of layers, because when a multilayer network has more
layers, then it will (most probably) have more connections among layers (i.e., interlayer
links), and thus the network will become more dense. So, even though we expected an
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increase in the coverage capability of the nodes, this does not happen, and it is attributed
to the generic topology of the network. Turning now our focus on the competitors, we
observe that with 5 or less layers both CCDS and FAST-CMDSM perform very good
(10% or less variance). However, CCDS is the best of the two presenting a 14% better
performance. Overall, the obtained results are consistent with our earlier which state that
both competitors perform very good in dense networks. In general, the main reason for
CCDS’ superior performance with respect to FAST-CMDSM’ s performance is the very
effective pruning mechanism. When looking at the version of these algorithms without
the pruning mechanism, we see that as expected they perform poor; in particular the
performance of the pruning mechanism for CCDS and FAST-CMDSM regarding the CDS
size reduction is up to 79% and 75%, respectively.
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Figure 10. Impact of number of layers (Medium skewness).

Next, we present the case where the parameters of the interconnectivity generator are:
0.1− 0.1− 0.1− 0.1 (low skewness). We see in Figure 11, that both the proposed algorithms
achieve similar performance, with the CCDS algorithm to be a little bit more efficient (less
than 10% variance). The total reduction in CDS size is up to 80% for CCDS and up to
78% for FAST-CMDSM. The last experiment in this section is conducted by setting the
respective interconnectivity generator variables to: 0.9− 0.9− 0.9− 0.9 (high skewness). In
this case, when number of layers is less than 4, FAST-CMDSM outperforms CCDS, while
when the number of layers is greater than 4, then the two proposed algorithms are barely
equally efficient, as it is shown in Figure 12. Specifically, the total reduction provided by
this experiment is up to 74% for CCDS and up to 73% for FAST-CMDSM (1% variance).
In Figure 13 we show the competitors average performance.
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Figure 11. Impact of number of layers (Low skewness).
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Figure 12. Impact of number of layers (High skewness).
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Figure 13. Impact of number of layers (CDS size aggregated over all layers).

4.1.4. Impact of Layer’s Size Increase

Here we consider the impact of layer’s size increase on the competitors’ performance;
we evaluate the per layer size of the CDS for medium skewness, and depict the results
in Figure 14. A first, generic observation is that the cardinality of CDS increases with
increasing layer size. This is easily explained by the fact that the as the size of each
layer increases, so does the need for more nodes to act as connectors, and consequently
we get a larger CDS. Looking at the performance of the competitors, we note that an
increase in the size of each subsequent layer by 30% or less results in having CCDS to
outperform FAST-CMDSM with a margin from 11% up to 16%. The basic reason behind
that is the dense topology, with the consequence that many redundant paths remain within
the vicinity of CCDS (i.e., 2-hop), and therefore the pruning process eliminates many
redundant dominators. On the contrary, an increase in the size of each subsequent layer by
50% or more results in having the centralized FAST-CMDSM outperform CCDS from 18%
up to 21%. This is expected, since the large difference in the cardinality of the layers
implies a large number of interlayer links, and therefore the calculation of the redundant
paths by the pruning process requires a broader/global view of the topology, which is
only available to the centralized FAST-CMDSM algorithm and not the distributed CCDS
algorithm. As a last comment to this experiment, we see that the versions without pruning
of the algorithms select almost all nodes as dominators; in particular the performance of
the pruning mechanism for CCDS and FAST-CMDSM regarding the CDS size reduction
is up to 80% and 83%, respectively.

Conducting the experiment by changing the set of variables in the interconnectivity
generator to 0.1− 0.1− 0.1− 0.1 (almost uniform distribution), we observe that CCDS is
the champion algorithm, because of the dense topologies formed, as it is shown in Figure 15.
In this case, CCDS achieves 82% reduction in the total CDS size, while FAST-CMDSM
achieves 80%. The last experiment in this section is conducted by setting the respective
interconnectivity generator parameters to: 0.9− 0.9− 0.9− 0.9 and the results are presented
in Figure 16. In this case, we have a barely arbitrarily-formed distribution (high skewness).
We see that while increasing the number of nodes, set in every layer, the CCDS algorithm
remains our best option, as it is justified above. In this case, CCDS achieves 76% reduction
in the total CDS size, while FAST-CMDSM achieves 75%.
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Figure 14. Impact of increasing layer cardinality (Medium skewness).
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Figure 15. Impact of increasing layer cardinality (Low skewness).
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Figure 16. Impact of increasing layer cardinality (High skewness).

Comparing the experiments, done, by changing the values in variables of skewness,
we conclude that having a more uniform distribution (Low Skewness) is the best scenario,
in which, our algorithms achieves their highest efficiency. This happens because this type
of distribution, normalizes well the degree of every node in every layer, which means
less nodes are important for the coverage of the network and this results in smaller CDS
size. On the other hand, when we have high skewness, nodes are arbitrarily connected
which means, more nodes in total DS are needed in order to cover the whole network
properly. Furthermore, in every case, CCDS is the more efficient algorithm to use, bearing
in mind that in every section, it provides better reduction from FAST-CMDSM, except for
the one in which we examine low skewness and our variables are set to 0.5 in which
FAST-CMDSM outperforms CCDS (3% variance).

4.1.5. Energy Awareness of the Competing Algorithms

We repeated all experiments taking now into account the residual energy of each node,
and we show here the obtained results which concern the aggregated over all network
layers performance of the competitors. In Figure 17, we report the results for medium
skewness and we see that CCDS selects the most energy efficient CDS in, almost, any case,
followed by FAST-CMDSM. We end up in the same conclusion about CCDS algorithm’s
energy consumption regarding both the experiments of low and high skewness, as it is
depicted in both Figures 18 and 19, respectively.
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Figure 17. Energy awareness of the competitors (Medium skewness).
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Figure 18. Energy awareness of the competitors (Low skewness).
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Figure 19. Energy awareness of the competitors (High skewness).
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4.1.6. Results’ Summary

In Table 3 we provide a summary of CCDS average performance gain (percentage-
wise) over the second best performing distributed algorithm across the independent pa-
rameter space.

Table 3. Results’ summary.

Parameter Avg Performance Gain of CCDS

topology density ≈12%
network diameter ≈8.5%
number of layers ≈14%

layers’ heterogeneity ≈18%

5. Conclusions

The Internet of Battlefield Things is a new cyberphysical system originating from the
Internet of Things, but at a much larger scale, and with stringent robustness and latency re-
quirements. Its most significant and challenging goal is to carry out commander’s intent in
a safe, responsive and resilient manner. This article investigated the issue of building small
and resilient backbones for IoBT networks. We abstracted the topology of an IoBT network
as a multilayer graph, and we resorted to the concept of dominating sets to achieve our goal.
Then, we presented a distributed algorithm for calculating connected dominating sets with
small-cardinality in this multilayer network context. We implemented and contrasted our
proposed algorithm to two state-of-the-art algorithms for computing connected dominating
sets for multilayer networks using generated topologies. Our algorithm showed constantly
better performance against these competitors across a range of topologies with various rep-
resentative features. Our future research involves algorithmic issues of detecting multiple
MCDS for energy conservation via sleep-scheduling.
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