
https://doi.org/10.1007/s10489-022-04195-8

Model reduction of feed forward neural networks
for resource-constrained devices

Evangelia Fragkou1 ·Marianna Koultouki1 ·Dimitrios Katsaros1

Accepted: 21 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Multilayer neural architectures with a complete bipartite topology have very high training time and memory requirements.
Solid evidence suggests that not every connection contributes to the performance; thus, network sparsification has emerged.
We get inspiration from the topology of real biological neural networks which are scale-free. We depart from the usual
complete bipartite topology among layers, and instead we start from structured sparse topologies known in network science,
e.g., scale-free and end up again in a structured sparse topology, e.g., scale-free. Moreover, we apply smart link rewiring
methods to construct these sparse topologies. Thus, the number of trainable parameters is reduced, with a direct impact on
lowering training time and a direct beneficial result in reducing memory requirements. We design several variants of our
concept (SF2SFrand, SF2SFba, SF2SF5, SF2SW, and SW2SW, respectively) by considering the neural network topology
as a Scale-Free or Small-World one in every case. We conduct experiments by cutting and stipulating the replacing method
of the 30% of the linkages on the network in every epoch. Our winning method, namely the one starting from a scale-free
topology and producing a scale-free-like topology (SF2SFrand) can reduce training time without sacrificing neural network
accuracy and also cutting memory requirements for the storage of the neural network.

Keywords Scale-free · Network science · Model reduction · Training · Feed forward neural networks · Deep learning

1 Introduction

The tremendous success of deep learning in various
domains such as image understanding, speech recognition,
and data analysis, in general, has made neural networks
among the most successful machine learning methods.
Feed-forward networks comprised of fully connected layers
of neurons form the basis for many of these popular neural
architectures [11]. The connections among neurons are

The research work is supported by the Hellenic Foundation for
Research and Innovation (HFRI) under the 3rd Call for HFRI PhD
Fellowships (Fellowship Number: 5631)

� Dimitrios Katsaros
dkatsar@e-ce.uth.gr

Evangelia Fragkou
efragkou@e-ce.uth.gr

Marianna Koultouki
mkoultouki@e-ce.uth.gr

1 Department of Electrical and Computer Engineering,
University of Thessaly, Volos, Greece

weighted, and the task of any neural training process is to
set the value of these weights appropriately to minimize the
value of a selected performance (error) function. For fully
connected neurons, the number of weighted connections
is quadratic concerning the number of neurons. Thus, the
computational complexity of a training algorithm such
as the popular back-propagation for a deep architecture
will be a significant challenge for adopting a particular
neural architecture. Recent trends such as tiny deep learning
[28] and the deployment of deep learning in modern IoT
environments such as the modern battlefield [26] make
the development of fast neural network training methods
as significant as their inference accuracy and even more
critical.

There are various directions in speeding up the train-
ing process of a multilayer neural network, and they will
be presented in more detail in Section 2. In summary, past
efforts focused: a) on developing faster approaches than the
traditional steepest descent optimization algorithm, b) on
developing variations of back-propagation, e.g., with adap-
tive/different learning rates, c) on the technique of dropout,
d) on neural network topology pruning/sparsification, and
e) on hardware-based solutions.

/ Published online: 21 October 2022

Applied Intelligence (2023) 53:14102–14127

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-04195-8&domain=pdf
mailto: dkatsar@e-ce.uth.gr
mailto: efragkou@e-ce.uth.gr
mailto: mkoultouki@e-ce.uth.gr


Model reduction of feed forward neural networks for resource-constrained...

In this work, we develop methods for defining how
neurons from adjacent layers are connected to each other,
or to tell it in different words, we define methods for
altering the topological structure of the neural network
before, during, and after its training. Here, starting from
the observation that biological neural networks are not fully
connected but sparse, and they are scale-free or small-
world [4], we investigate the usefulness of network science
concepts, and in particular, the use- fulness of the theories
concerning complex network growth models in speeding up
a neural network training. Network science is the discipline
that studies complex networks and their properties, and it
has already proven its value in online social networks [3],
wireless networking, and other fields, in being - apart from a
“descriptive” discipline an arsenal for developing solutions
for many problems. In particular, we examine the impact
of scale-free and small-world topologies (instead of the
traditional bipartite fully-connected ones) on the training
speed and the accuracy in training data of a neural network.

1.1 Motivation and contributions

The emergence of fields such IoT networks and TinyML
which necessitate the need of having a learning process
appropriate for running in resource-starving devices e.g.,
sensors, have issued significant research questions – among
others – on how to reduce the number of parameters
(weights) of a neural network; such a reduced model implies
a reduction of both the computational power needed to set
these weights for instance via backpropagation, and also
a reduction in the storage (memory) requirements [5] that
this huge set of weights generates for the small/tiny device
hosting the training process. Therefore, techniques falling
into the generic family of model reduction and being termed
as neural network sparsification [15] have been a very
intense area of investigation. Indeed, topology sparsification
has proved itself as a very promising technique for speeding
up neural network training. The efficacy of this family
of methods is supported by the fact that among the vast
number of trainable weights that a neural topology has, only
a moderate percentage of them differs significantly from
zero; in other words the near-zero-weight links that connect
neurons could be erased. Indeed some methods adopt such
sparsification decisions after the training phase, in order to
speed up the inference (operating) phase of the network
[12].

This paper addresses the problem of neural model
reductions from a novel perspective. We get inspiration
from findings that actual biological neural networks are
scale-free [4]. Thus, we explore network science tools to
reduce the number of connections (weights), according to
a specific rule. We take a principled approach in the sense
that we seek to produce a particularly structured topology,

e.g., a scale free topology starting from another structured
topology, e.g., a small-world topology. The only prior work
investigating such an approach is reported in [22]; however
their starting point is a ‘random’ network according to the
Erdos-Renyi notion [1]. This initiallizing method might
end up being not efficient at all, because depending on
the linkage density (controlled by a hard-to-set parameter)
the initial network might be too dense (and almost fully
connected) or too sparse (and unable to reach a scale-free
topology). It might take too long to reach a structured
(scale-free, or small-world) topology, starting from a purely
random topology. Moreover, we depart from the common
approach where pruning is done after training, and we
perform pruning after each epoch; contrary to the intuition,
this technique does not give bad results at all, but it is
very competitive and even superior in many cases. In that
context, this paper makes the following contributions:

– It puts forward a systematic effort to investigate the
toolbox of network science to accelerate neural network
training.

– It proposes algorithms to construct structured neural
topologies starting from other structured neural topolo-
gies, all different from fully connected bipartite ones,
to speed up the training phase of feed forward neural
networks.

– It evaluates the performance of these algorithms, and
confirms their rationale. It marks a winner algorithm
and detects its features that makes it prevail.

The rest of the paper is structured as follows: Section 2
presents the related work, and Section 3 briefly gives
some necessary concepts from network science. Section 4
describes the proposed neural topology evolution algo-
rithms, and in Section 5 we evaluate the neural network’s
classification accuracy and training time. Finally, Section 6
concludes this article.

2 Related work

The research on speeding up neural network training dates
back to the late ‘80 – early ‘90. We will present the
related work categorized into families of techniques; our
listing is by no means extensive, but we strive to give the
most representative and/or more recent members of each
family.

One of the first families of acceleration methods includes
members that meant to replace the traditional gradient
(steepest) descent optimization method. Steepest descent
is based on a first order Taylor series approximation of
the performance function (mean square error) and is very
slow. Therefore, methods based on second order Taylor
series were investigated, such as Newton’s method. Other

1 3

14103



E. Fragkou et al.

algorithms that departed from the first order gradient
concept, are those based on conjugate gradient, and the
similar in spirit quasi-Newton method of Broyden-Fletcher-
Goldfarb-Shanno (BFGS), along with its variations, e.g.,
L-BFGS [23]. Recently, fast optimizers have been proposed
such as Adam, Adadelta, Nadam [9, 29].

Another family for accelerating neural training is that
based on developing variable learning rates [17].

The topic of network architecture search [8, 30], which
aims to design a neural architecture that achieves the best
possible performance using limited computing resources in
an automated way with minimal human intervention, bears
similarity with our work and it is a very hot research area
[14]. However, these methods may consume hundreds of
GPU days or even more computing resources, have huge
search spaces, too many hyperparameters, and difficult to
achieve tricks.

The technique of dropout [32] constitutes the founding
member of a new family, which randomly drops neurons
during training. Similar in spirit, are the methods which
compute only a subset of gradients during back propagation,
e.g., meProp [33, 34] which prunes neurons based on how
many times the back propagation updates a neuron.

Hardware-based accelerators comprise another familty
and architectures such as FPGAs, multicore CPUs [38],
TPUs [19] are increasingly used for neural training and
inference.

A recent, very promising line of research [10, 31]
suggests that only a subnetwork of the topology is
responsible for carrying out accurately a particular task, and
thus if we can detect which is this subnetwork and then
train only this, pruning the rest of the network, then we can
gain significant speedups in training. However, the complete
understanding of tradeoffs involved in pruning is yet to be
understood [20].

The family of algorithms related mostly to our work
are those based on topology sparsification [15]. Methods
have been proposed which prune connections between the
neurons; for instance, the works [13], [24] and [6, 7, 21].
However, these linkage sparsification techniques do not
aim at mimicking the topological structure of real neural
networks, but are mainly based on eliminating close-to-zero
weighted connections. The most closely related work to
ours is that reported in [22], but they start from a completely
unstructured topology basis, i.e., purely random network
that might compromise performance. Contrary to work [35]
referred to Convolutional Neural Networks (CNNs), we
implement clear, close-to-zero weights pruning because of
the nature of the network we use. MLPs perform simple
operations among the connections of neurons for every
layer, while CNNs use a different way of handling input
features, by learning a specific section of them in every
layer. So, in MLPs, if a weight value is very small that

tends to be zero, it will not actually, contribute to the
network weights update and consequently it does not affect
the network performance but increases training time, so
it can be deleted. On the other hand, removing arbitrarily
weights on CNNs, even with negligible value, then we risk,
losing crucial parts of inputs, given and hence reducing the
accuracy of the model.

Overall, the methods developed in the present work can
be used in conjunction with any member of any family
described above to accelerate training. This fact establishes
a research avenue for the future, and we take a first step in
walking this avenue.

3 Background on network science concepts

Network science is the discipline that analyzes the
properties and function of complex networks, such as
technological, social, biological, physical and so on.
Complex network analysis consists of algorithms and
methodologies for studying and developing: centralities,
communities, network growth and the respective models [1],
diffusion processes [3], etc. Well-studied network models
comprise random networks, regular lattices, small-world
networks, and scale-free networks.

Definition 1 A random (or Erdos-Renyi) network is a
network that consists of n nodes where each node pair is
connected with probability p. The degree distribution of a
random network follows a Poisson distribution.

Definition 2 A regular lattice is a network consisting of n

nodes where each node has the same number and pattern
of connections with every other node in the network. The
degree distribution of a regular lattice is uniform (constant).

Definition 3 A small-world (or Watts-Strogatz) network
that consists of n nodes interpolates between a regular
lattice and a random network. In other words, it presents
the regularity in neighborhood connectivity that a regular
network has, but it also has some random connections
towards random nodes of the topology. The degree
distribution of a small-world network follows a Poisson-like
bounded degree distribution.

Definition 4 A scale-free network is a network that consists
of n nodes whose degree distribution follows a power-law;
i.e., there are hub nodes (highly connected nodes) at any
scale of observation. A particular type of scale-free network
is generated by a process known as preferential attachment
- known as Barabasi-Albert (BA) model [2] - according to
which when a new node is added into the network it wires
itself towards nodes which have already high degrees.

1 3

14104



Model reduction of feed forward neural networks for resource-constrained...

An example of these networks, namely regular, small-
world, random and scale-free is depicted in Fig. 1.

4 The proposed techniques

This section describes five algorithms for creating topolo-
gies inspired by network science. They all share the com-
mon feature, namely they start from a structured topology
and following and algorithmic procedure, they produce
another structured topology. Before presenting the details
and the pseudo-code for each of the methods developed
here, we provide a short description of the randomized tech-
nique for rewiring the links among nodes which constitutes
the basis of our algorithms.

4.1 Scale-free to scale-free with random rewiring
(SF2SFrand)

In our first method, we start from a scale-free network
and we end up by creating a new topology which is again
scale-free based on the following principle:

– We create a sparse table, representing the connections
between the nodes in each layer.

– Then, we remove the weights close to zero (sparsity)
and then add as many links as we removed to the most
powerful node. If a link that has to be reconnected,
already exists, then no change takes place.

The main difference between SET and SF2SFrand lies in
the construction of the initial network topology. SET creates
the initial network connecting arbitrarily pairs of nodes. On
the contrary, SF2SFrand initializes the network immediately
as a scale-free topology; i.e., SF2SFrand connects each
node of every layer to the next layer’s most “powerful”
node. Thus, SF2SFrand starts from a power-law (scale-free)
topology. Even though this seems as a slight deviation,
in practise it makes a great difference in performance,
and it also needs intelligent, algorithmic solution to the
definition and selection of a “powerful” node (described in
the next paragraph). SF2SFrand’s different initial topology
reinforces weights with a strong value and in this case
important information is kept and passed through layers in
the training phase. Consequently, SF2SFrand achieves faster
convergence due to well-organized and well-distributed
information in the early neural network. Moreover, its
accuracy increases abruptly in the early training iterations.
Thus, the always-scale-free topology of SF2SFrand results
in significantly less time to converge. (cf. Section 5.2).
Finally, the purely random rewiring choices of SET implies
that all attempted reconnections succeed, whereas the
principled rewiring choices of SF2SFrand might result in
that some attempted reconnections already exist because

too many nodes are already connected to the powerful/hub
node; thus we earn a further reduction in the number of
weights.

In order to find the most powerful node, we calculate the
link-attraction probability of each node, which is defined as
the ratio of the incoming connections of this node to the
total number of connections present in the graph. Every link
is reconnected to the node with the largest such probability.
We end up with a graph similar to scale-free, with the
property that during the training it removes the links with
weight close to zero and adds as many links as removed
randomly after each epoch. The algorithm is illustrated in
Algorithm 1.

Algorithm 1 Pseudocode of Scale-Free to Scale-Free algorithm with
random rewiring (SF2SFrand).

4.2 Scale-free to scale-free using preferential
attachment (SF2SFba)

In this algorithm, a scale-free topology is constructed, which
means that links are connected to the nodes such that the
degree distribution follows a power-law. In other words,
links are added to the node according to their current
degree [2] implementing a Barabasi-Albert attachment
policy.

1 3

14105



E. Fragkou et al.

Fig. 1 (a) A 20-node regular network (with 3 neighbors at each side
of every vertex), (b) a 20-node small-world network (with initially
3 neighbors at each side of every vertex, and with 0.075 rewiring

probability), (c) a 20-node random network (with average node
degree 6) and (d) a 20-node scale-free network. Graphs were generated
with Pajek

We start by creating a scale-free network, using the
algorithm described in Section 4.1. Then, in the part of the
code, where network is sparsed, we remove the weights
close to zero and add as many links as we removed to
the most powerful node. The algorithm is depicted in
Algorithm 2.

Algorithm2 Pseudocode of Scale-Free to Scale-Free algorithm, using
preferential attachment (SF2SFba).

4.3 Scale-free to scale-free (5 strongest nodes)
(SF2SF5)

In this particular algorithm, we start with a scale-free
implementation, as described in Section 4.1 and end up in
a similar type of network, using an alternative version of
scale-free technique. In every epoch, except last one, we
remove the links with weight close to zero and add as many
links as we removed (sparsity) to the most powerful node
(node with the greatest probability).

In the original method, if a link, from one node, in a layer,
to another, which has to be reconnected, already exists, then
changes do not occur. So in this version, if the link we want
to add to the most powerful node already exists, then we try
to add a connection to the second most potent node and so
on, untill the fifth strongest node. The weights are randomly
given in the original version and in our alternative one.

We developed this variant of scale-free to scale-free
algorithm in order to add as many links as we can. If a link
we try to reconnect already exists, we try to reconnect it to
the successive (regarding the degree probability) node and
so on, trying to maintain the balance between the removed
links and those that have to be reconnected, in the network.
The algorithm is illustrated in Algorithm 3.

4.4 Scale-free to small-world (SF2SW)

Here, we start again from a scale-free network, and after the
procedure of training, we construct a small-world type of
network.

In the first place, after removing connections with no
critical impact, we calculate the degree probability of every
node and then reconnect these nodes (in every layer), whose
link was deleted, to the most potent node of the next layer.
After the training part of the algorithm we proposed, a
small-world network is created.

1 3

14106



Model reduction of feed forward neural networks for resource-constrained...

Algorithm 3 Pseudocode of Scale-free to Scale-free (5 strongest
nodes) (SF2SF5) algorithm.

Specifically, a rewiring probability is defined. In order
to construct the network, we chose small values of this
probability (p=0.02 and p=0.075) because the smaller the
probability is, the less density the network has (sparsity).
Then, for each node in every layer, we find its links, whose
weight is non-zero, and give them a random probability.
After that, links whose probability is smaller than the
rewiring probability are disconnected, and then we try to

rewire them in a random node, giving them a random weight
value (only if the connection to this randomly chosen node
does not exist, else, we try to find another random node
to connect to). In this case, we want to see how much the
performance (not only the accuracy but also the training
time) of the network is affected when we start from a
strictly structured network and through the training process;
we create a network with a more arbitrary structure. The
algorithm is illustrated in Algorithm 4.

Algorithm 4 Scale-Free to Small-World (SF2SW) pseudocode.

1 3

14107



E. Fragkou et al.

4.5 Small-world to small-world (SW2SW)

In the last algorithm, we implement a network based on
small-world technique, and the same type of network is
constructed through the training process. It is interesting
to see how the transition from a less randomly constructed
network (small-world) to another affects the network
performance. These small-world networks are created in
the same way described in Algorithm 4. We show the
pseudocode of this new method in Algorithm 5.

Algorithm 5 Small-World to Small-World (SW2SW) pseudocode.

5 Experimental evaluation

This section presents details about the competitors, the
datasets used, and about the size of the neural network
we experiment with; then, it presents the results of the
experimental evaluation of the developed algorithms.

5.1 Evaluation settings

In this work, we deal with a classification task using data
regarding the disease of cancer and fashion.

Competitors In our experiments, we used as competitors
the algorithms proposed in the current work and presented
in Sections 4.1–4.5. We use the following keys for the pro-
posed algorithms: SF2SFrand for Algorithm 1, SF2SFba

for Algorithm 2, SF2SF5 for Algorithm 3, SF2SW for
Algorithm 4 with two versions based on different probabil-
ities, i.e., SF2SW(p=0.02) and SF2SW(p=0.075), SW2SW
for Algorithm 5 with two versions based on different prob-
abilities, namely SW2SW(p=0.02) and SW2SW(p=0.075).
The competitors include the SET algorithm [22], and also
the fully-connected (FC) neural network without any prun-
ing. Moreover, we implemented a recent algorithm inspired
by the concept, proposed in [6] and a set of variations
implementing the logic of the algorithm reported in [35].
We call the former algorithm as the ζ - parameterized -
(SF2SFrand), which is a variant of SF2SFrand and it differs
in the values of ζ parameter, which is responsible for the
number of the close-to-zero weight links, being erased in
every epoch. In simple SF2SFrand, the value of ζ is stable
during the training procedure while in the last implementa-
tion this value is tuned and specifically is reduced in every
epoch, exponentially, so as to observe if the performance of
the network is better, if different and gradually, smaller val-
ues of ζ are used. The set of the latter algorithms, called
the AVG-weighted algorithms produce a new variant of each
one of our algorithms. Specifically, they are modified only
in the part which is responsible for assigning weight val-
ues to the new connections; i.e., instead of placing a random
value as a connection weight, we aggregate the values of all
the links, being pruned, in this layer, for every epoch and
then we give the average value of this sum, as the weight of
a new connection. For every new incoming link, we assign
this value, being modified about 2%, each time.

Datasets In order to evaluate our algorithms, we use
the classification accuracy as a measure, which is the
percentage evaluation between the predicted and target
value. Specifically, we present the evolution of accuracy, in
every epoch, during the whole training process, until the
model converges. Furthermore, we show the time, needed
for a model to generalize the given data.

In order to test the algorithms, we used datasets that have
a hundred instances and a few thousand features and they
are encoded with one-hot encoding, as described in Table 1.

By the word instances, we define the number of input
vectors, which are composed of as many components as
features, given to the neural network to be trained and
evaluated. Every dataset also has a different number of
classes, the groups in which data are separated.

Regarding the technical details, we used a laptop
computer with 6GB of RAM and an Intel Core i7 processor
regarding all datasets except Fashion - Mnist, which was
tested on a desktop computer with 16 GB of RAM and an
Intel Xeon W 2123 processor, clocked at 3.60 GHz.

Lung and lung discrete These data were used by Hong and
Young to illustrate the power of the optimal discriminant

1 3

14108



Model reduction of feed forward neural networks for resource-constrained...

Table 1 Datasets
characteristics Filename(.mat) Instances Features Classes

lung 203 3312 5

lung discrete 73 325 7

TOX 171 171 5748 4

CLL SUB 111 111 11340 3

COIL20 1440 1024 20

Fashion-Mnist 70000 28x28 10

plane even in ill-posed settings. Applying the KNN method
in the resulting plane gave 77% accuracy. However, these
results are strongly biased. The data described three types of
pathological lung cancers. The authors give no information
on the individual variables nor on where the data was
originally used [16].

TOX-171 This database is an example of the use of
toxicology to integrate diverse biological data, such as
clinical chemistry, expression, and other types of data.
The database contains the profiles resulting from the
three toxicants: alpha-naphthyl-isothiocyanate, dimethylni-
trosamine, and N-methylformamide administered to rats.
The classification task is to identify whether the sam-
ples are toxic, non toxic or control. Sample is toxic if
alpha-naphthylisothiocyanate, or dimethylnitrosamine or n-
methylformamide is administered, non-toxic if caerulein or
dinitrophenol or rosiglitazone is administered and control if
untreated [18].

CLL-SUB-111 The database has gene expressions from high
density oligonucleotide arrays containing genetically and
clinically distinct subgroups of B-cell chronic lymphocytic
leukemia (B-CLL). The dataset is formed of 11340
attributes and 111 instances, as referred in Table 1 [18].

COIL20 Columbia Object Image Library (COIL-20) is a
database of gray-scale images of 20 objects. The objects
were placed on a motorized turntable against a black
background. The turntable was rotated through 360 degrees
to vary object pose with respect to a fixed camera. Images
of the objects were taken at pose intervals of 5 degrees.
This corresponds to 72 images per object. The database has
two sets of images. The first set contains 720 unprocessed
images of 10 objects. The second contains 1,440 size
normalized images of 20 objects. COIL-20 is available
online via ftp [25].

Fashion-Mnist Fashion-MNIST is a new dataset, consisting
of 70,000 samples, that represent fashion items. Each one
of them is a 28 × 28 grayscale image, belonging to one of

10 different categories. There are about 7,000 samples per
category. The dataset is separated from the training set and
the testing set, which contains 60,000 and 10,000 images,
respectively. Fashion-MNIST is intended to replace the
original MNIST dataset for benchmarking machine learning
algorithms, taking into account that it has the same structure
as MNIST does [36].

Furthermore, the first 5 datasets, mentioned in Table 1,
are split in two parts, the training and the testing set. The 2

3
of the total size of the dataset is used in order for the neural
network to be trained, and the 1

3 , remaining, is used for
testing its ability to learn the training set. Regarding the last
dataset, Fashion-Mnist is already separated in training and
testing parts, with 60,000 and 10,000 samples, respectively.

The method, used for preprocessing features, in order
for them to be converted into a form that can be more
“understandable” to our deep learning algorithms, is one-hot
encoding, which creates new (binary) columns, indicating
the presence of each possible value from the original data.

An MLP (Multilayer Perceptron) neural network model
is used in all cases. More specifically, it is about a neural
network with an input level, three hidden layers, and one
output level. Each hidden layer has 1,000 neurons, and the
number of neurons in the input and output levels depends
on the dataset features. The application of our algorithms to
other feed-forward networks, such as convolutional neural
networks (CNN), is possible. So, It is necessary to deal with
their particularities and introduce some more algorithmic
techniques, which we are currently developing in order
for our algorithms to be adapted to the function of the
convolutional-pooling layers instead of simply introducing
the existing techniques into the final fully-connected layers
of a CNN, as it was done by the SET algorithm [22].
Moreover, inspiration from the ideas developed in [37]
could also assist in this goal.

Optimizers and activation functions In our experiments,
we use stochastic gradient descent with momentum with
parameter γ equal to 0.9. For the learning rate α and
batch size parameter bs, we used the values of 0.01 and 2,
respectively.

1 3

14109



E. Fragkou et al.

Table 2 List of hyperparameters, being used

List of hyperparameters

Number of layers 1 input layer (with #neurons,equal to the features of dataset) 3 hidden layers

1 output layer (with #neurons,equal to the classes of dataset)

Number of neurons per layer 1000

Activation functions ReLU

FReLU

Sigmoid (in last layer)

Weights regularization techniques L1, L2

Weight decay (wdec) 0.0000001 for L1

0.0002 for L2

Batch size (bs) 2

Learning rate (α) 0.001

Momentum (γ ) 0.9

Percentage of connections pruned/restored (ζ ) 30%

As activation functions we used the popular ReLU and
FReLU functions for the hidden layers, and the sigmoid
function for the last level. The activation functions we used

are described below. The Rectified Linear Unit (ReLU) is
defined as follows : ReLU(x) = (x > 0)?x : 0, and the
Flexible Rectified Linear Unit (FReLU) is defined in [27]

Fig. 2 Lung dataset overall results, using ReLU activation function

1 3

14110



Model reduction of feed forward neural networks for resource-constrained...

Fig. 3 Lung dataset overall results, using FReLU activation function

Fig. 4 Lung Discrete dataset
overall results, using ReLU
activation function

1 3

14111



E. Fragkou et al.

Fig. 5 Lung Discrete dataset
overall results, using FReLU
activation function

as follows: FReLU(x) = ReLU(x) + b with b being a
learnable parameter.

All algorithms functioned repetitively until convergence;
here, for visual comparison purposes, we show the
performance after the first 500 epochs when we practically
have convergence, except for some very few cases where
converge is achieved after 50 epochs. We also show the
accuracy calculated at each time according to the mean
squares error method. Each training attempt was repeated
five times, and the performance was averaged.

Finally, in cases where we implement regularization
techniques, the weight decay parameter (wdec) was

set to 0.0002 for L2 regularization, and 0.0000001
for L1 regularization method. Moreover, the number of
connections being modified depends on the value of ζ

parameter, which is set to 0.3 in our experiments. In
other words, the ζ = 30% of the real connections of
the network are pruned and restored in every epoch. All
hyperparameters used are illustrated in Table 2. We use
prediction accuracy as the performance measure.

In the following subsections, we show for each dataset
and each competitor the “evolution” of the accuracy
achieved until the last epoch; at the end of these sets of plots,
we show aggregate results concerning the average accuracy

Fig. 6 TOX 171 dataset overall
results, using ReLU activation
function

1 3

14112



Model reduction of feed forward neural networks for resource-constrained...

Fig. 7 TOX 171 dataset overall
results, using FReLU activation
function

achieved during the last epochs, and also the average total
training time required. However, some methods did not
converge in “reasonable” time while processing some of
the datasets, so these measurements are excluded from the
presented results.

5.2 Evaluation results

In all figures presented in the sequel, the x-axis represents
the epochs; each one of them is a single step in training
a neural network. The y-axis describes the percentage
evaluation between the predicted and target value (i.e.,
accuracy).

In the subsequent figures, we present the results of our
methods in comparison with the accuracy of both the Fully-
Connected (FC) MLP network and the results of the SET
algorithm in all datasets mentioned.

Figures 2 and 3 display all algorithms’ accuracy,
taking into account the Lung.mat dataset. Specifically, the
accuracy that all algorithms achieve is depicted with respect
to the epochs.

In the top Fig. 2, we see the results that ReLU activation
produces for Lung.mat dataset, and in the bottom plot,
the results produced by FReLU function. When we apply
the SF2SFrand algorithm (which starts from a randomly
constructed network and ends up in a scale-free-like one),

Fig. 8 CLL SUB 111 dataset
overall results, using ReLU
activation function

1 3

14113



E. Fragkou et al.

Fig. 9 CLL SUB 111 dataset
overall results, using FReLU
activation function

we see that the accuracy varies from 70% to 99%, and we
conclude that the algorithm has a better performance when
L2 regularization is used (approximately 93% accuracy,
when using FReLU).

So, L2 (L2 regularization makes the loss function
smoother) manages to decrease the noise in the training data
so that the estimated coefficients (weights) can generalize
well to the future data. According to the time, the best
performance is achieved in 10 minutes when SF2SFrand
is used, which means this kind of modification that this
algorithm does in topology, positively affects the network.
Similar performances are shown in Figs. 4, 5, 6, 7, 8, 9, 10
and 11 during the execution of the algorithm, using the other
datasets which are mentioned in Table 1.

In Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, we illustrate
the results for the algorithm that starts from a scale-free
network and, through the procedure of training using back-
propagation, ends up constructing a scale-free network
again (SF2SFba). This means that the network is always
modified following a power law, and hence the randomness
is decreased. Using SF2SFba, in turn, implies better
communication between the nodes. According to the plot,
this variant of the algorithm has 95.6% accuracy using
FReLU and without any regularization. So, taking into
consideration that FReLU has faster convergence than
ReLU [27], concerning also the network topology, we
conclude that the less random a network structure is,
the higher performance the network gets without any
regularization technique. In addition, the algorithm takes 29
minutes (with 92% accuracy) to train the network, using
ReLU (recall that this function is computationally efficient
since it just outputs zero for negative inputs) and 35 minutes
while implementing the FReLU, which is still better in both
time and accuracy than the competitor.

Furthermore, the exact figures show the accuracy of a
variant of scale-free to a scale-free algorithm, described
in Section 4.3. The algorithm achieves approximately
93% accuracy while implementing FReLU activation
function and no regularization techniques due to the faster
convergence of this function. Furthermore, both ReLU
and FReLU activations affect the network performance
positively, except in the case where L1 regularization,
combined with FReLU, is used. We have approximately
79% accuracy.

We conclude that L1 regularization technique makes the
graph curve falls off abruptly because of a code error in
weight update (appears nan values). The algorithm takes
approximately the same time to train the network as scale-
free to scale-free version does.

Our following technique was the one that started from a
scale-free and created a small-world network (SF2SW). Our
results (when using p=0.02, aw rewiring probability) show
that the accuracy is decreased when a network, following a
power-law degree distribution, transits to a more randomly
linked topology.

Specifically, in Figures 2, 3, 10 and 11 both in ReLU
and FReLU implementation, NoL and L1 regularized curves
are overlapped (same accuracy) and they differ only in
execution time. We see that L1 parameter contributes more
efficiently to the network when combined with FReLU
function (regarding accuracy).

This approach also has a much larger execution time than
the rest, owing to its great computational complexity, as
Algorithm 4 implies.

We run the same algorithm with a more significant
probability (p=0.075) and show the results in the exact
figures. While the probability becomes larger than the
previous one, the average length becomes smaller, which

1 3

14114



Model reduction of feed forward neural networks for resource-constrained...

Fig. 10 COIL20 dataset overall results, using ReLU activation function

means more connections between the nodes (density).
Hence this algorithm needs more time to make all these
computations between the nodes (enormous execution
time).

In this case, the network, constructed after the training
procedure, tends to be more like the same random graph as
in Algorithm 4. In particular, a node can be connected to a
less powerful node, so, in the next epoch, the information
saved in this node, maybe, is not going to be transferred to
the next layer because the links reconnected randomly, and
so on.

In this last case, we study the performance of the
neural network system in terms of using only the small-
world method and also depict the results in Figs. 2, 3, 10
and 11. Using FReLU activation, the algorithm achieves
better accuracy (81%) but the problem is that algorithm
takes enough time to train the neural network (enormous
execution time - because of computational complexity).
Also, the rewiring probability is p=0.02 (small enough),
meaning the reconstructed network is not random enough.

Hence the accuracy is stabilized in high levels of values.
Therefore, the less a topology is random, the more efficient
the network becomes, in learning and generalizing the data.

Then we use a much larger probability, which makes
the graph denser. Not only for its density, but also for
its computational complexity, this variant tends to need
more training time. Due to its randomness, information is
distributed in every possible node (not in the popular ones),
meaning that the information is not retained while passing
through the epochs. Those affect the network and so as
the accuracy, which is, slow enough (65%). The graphs
show that L1 regularized curve has many fluctuations
while FReLU function is used. This is because FReLU
provides more capacity than ReLU, which leads the model
to not generalize well from its training data to unseen data.
Moreover, the time needed for the model to be trained while
using the Scale-Free-to-Small-World or the Small-World-
to-Small-World algorithm is vast enough and the accuracy
is moderate regarding the other algorithms’ performance,
so we test these algorithms only to these two datasets

1 3

14115



E. Fragkou et al.

Fig. 11 COIL20 dataset overall results, using FReLU activation function

(Lung.mat and COIL20.mat - we chose specifically these,
due to the different classification task they do.)

It is worth highlighting that we compare our sparse
model results with the performance of the fully-connected,

unpruned neural network. As we can see in the above
figures, the accuracy of the fully-connected model can be
high enough (up to 95% in some cases) mainly when we
have the combination of ReLU and L1 regularization, in

Table 3 Memory footprint in MegaBytes(MB), between the Dense Network (MLP), the Sparse Network using SET algorithm and our proposed
algorithms, which are SF2SFrand, SF2SFba abd SF2SF(5), SF2SW and SW2SW

Memory Footprint

Algorithm Kind of Network Hidden Layer Architecture Size (MB) Percentage reduction

MLP (FC) Fully-Connected 1000 - 1000 - 1000 77.68 —

SET Sparse 1000 - 1000 - 1000 19.18 75.28 %

SF2SFrand Sparse 1000 - 1000 - 1000 18.39 76.31 %

SF2SFba Sparse 1000 - 1000 - 1000 20.68 73.36 %

SF2SF(5) Sparse 1000 - 1000 - 1000 20.18 74.00 %

SF2SW Sparse 1000 - 1000 - 1000 19.84 74.44 %

SW2SW Sparse 1000 - 1000 - 1000 21.30 72.55 %

1 3

14116



Model reduction of feed forward neural networks for resource-constrained...

Table 4 Measures of MLP (FC)

Measures - MLP (FC)

Datasets- Lung Lung Discrete TOX 171 CLL SUB 111 COIL20

Activ.Fun.+Regul Acc/T ime Acc/T ime Acc/T ime Acc/T ime Acc/T ime

ReLU + NoL 70.58% /1h 15 min 80% / 5 min 24.56% /75 min 19.07% /1h 5 min 4.1% /2h 8 min

ReLU + L1 70.58% /2h 22 min 80 % / 9 min 24.56% /1h 26 min 18.91% /1h 35 min 3.5% /9h 2 min

ReLU + L2 99.52% /1h 23 min 80 % / 7 min 24.56% /1h 21 min 18.91% /1h 31 min 62.5% /6h 3 min

FReLU + NoL 70.58% /1h 28 min 80 % /8 min 24.56% /1h 03 min 18.81% /1h 9 min 4.1% /2h 56 min

FReLU + L1 70.58% /2h 76 % / 11 min 24.56% /1h 37 min 18.91% /1h 39 min 3.5% /8h 15 min

FReLU + L2 70.58% /1h 26 min 80 % / 10 min 24.56% /1h 26 min 18.91% /1h 34 min 4.1% /3h 36 min

Table 5 Measures of SET

Measures - SET

Datasets- Lung Lung Discrete TOX 171 CLL SUB 111 COIL20

Activ.Fun.+Regul Acc/T ime Acc/T ime Acc/T ime Acc/T ime Acc/T ime

ReLU + NoL 92.02% /35 min 82.59% / 11 min 38.9% /23 min 2.3% /45 min 98.75% /47 min

ReLU + L1 90.53% /47 min 80.90% /13 min 86.51% /35 min 3.3% /55 min 99.37% /1h 28 min

ReLU + L2 92.71% /38 min 82.10%/ 11 min 83.69% /27 min 65.84% /45 min 99.16% /54 min

FReLU + NoL 93.02% /45 min 65.50% /13 min 88.43% /32 min 58.15% /56 min 98.12% /1h 25 min

FReLU + L1 95.04% /53 min 79.62% /12 min 38.2% /36 min 2.1% /58 min 98.75% /2h

FReLU + L2 92.38% /49 min 82.11% /11 min 80.90% /33 min 63.54% /57 min 98.12% /1h 30 min

Table 6 Measures of SF2SFrand

Measures - SF2SFrand

Datasets- Lung Lung Discrete TOX 171 CLL SUB 111 COIL20

Activ.Fun.+Regul Acc/T ime Acc/T ime Acc/T ime Acc/T ime Acc/T ime

ReLU + NoL 91.8% /10 min 80% /6 min 82.5% /10 min 58.9% /15 min 98.95% /36 min

ReLU + L1 89.6% /15 min 82.4% /8 min 81.4% /18 min 62.4% /19 min 97.91% /1h 8 min

ReLU + L2 92.3% /11 77.6% /7 min 81.6% /12 min 60% /14 98.95% /44 min

FReLU + NoL 92.1% /13 min 80.3% /6 82.3% /16 min 55.4% /18 min 98.75%/1h 14 min

FReLU + L1 92.4% /21 82.5% /7 min 83.3%/22 min 2.7% /17 min 99.16%/1h 42

FReLU + L2 92.9% /16 min 80.3% /6 min 83.3% /14 58.2% /15 min 98.54%/1h 28 min

Table 7 Measures of SF2SFba

Measures - SF2SFba

Datasets- Lung Lung Discrete TOX 171 CLL SUB 111 COIL20

Activ.Fun.+Regul Acc/T ime Acc/T ime Acc/T ime Acc/T ime Acc/T ime

ReLU + NoL 85.2% /29 81% /15 min 84.8% /34 min 65.5% /1h 99.16% /53 min

ReLU + L1 91.5% /32 min 81.4% /18 min 87.5% /39 64.5% /1h 5 min 99.16% /1h 22 min

ReLU + L2 92.8% /30 min 82.4% /15 min 86.8% /37 min 60.4% /1h 7 min 98.75% /1h 18 min

FReLU + NoL 95.6% /32 min 78.9% /18 min 80.4% /38 min 63.3% /1h 98.95% /1h 29 min

FReLU + L1 94.9% /41 79.3% /20 min 83.5%/1h 19 min 62.4% /1h 5 97.5% /1h 58 min

FReLU + L2 94.1% /39 76% /18 min 95% /42 min 62.6% /1h 12 min 97.29% /1h 51

1 3

14117



E. Fragkou et al.

Table 8 Measures of SF2SF-5

Measures - SF2SF(5)

Datasets- Lung Lung Discrete TOX 171 CLL SUB 111 COIL20

Activ.Fun.+Regul Acc/T ime Acc/T ime Acc/T ime Acc/T ime Acc/T ime

ReLU + NoL 92% /28 min 62.4% /13 min 81% /40 min 65.92% /1h 15 min 99.42% /41 min

ReLU + L1 90.60% /37 min 59.7% /13 min 77.2% /50 min 70.27% /1h 20 min 99.49% /45 min

ReLU + L2 89.84% /30 min 90.6% /14 min 77.2% /43 min 70.27% /1h 13 min 97.98% /45 min

FReLU + NoL 92.8% /35 min 70.1% /13 min 30.4% /39 min 9.8% /55 min 99.79% /1h 13 min

FReLU + L1 64.70% /37 min 80.3% /14 min 30.4% /34 min 66.7% /1h 26 min 99.79% /1h 25 min

FReLU + L2 91.2% /37 min 10.5% /11 min 30.4% /33 min 9.8% /57 min 4.3% /1h 7 min

Table 9 Measures of SF2SW

Measures - SF2SW

p = 0.02 p = 0.075

Datasets- Lung COIL20 Datasets- Lung COIL20

Activ.Fun.+Regul. Acc/T ime Acc/T ime Activ.Fun.+Regul. Acc/T ime Acc/T ime

ReLU + NoL 74.7% /4h 13 min 94.36% /2h ReLU + NoL 64.7% /6h 3 min 79.85% /4h 3 min

ReLU + L1 74.8% /4h 17 min 94.35% /2h 48 min ReLU + L1 64.7% /6h 20 min 79.85% /4h 30 min

ReLU + L2 73.52% /4h 14 min 89.37% /2h 13 min ReLU + L2 64.7% /6h 15 min 66.79% /4h 8 min

FReLU + NoL 74.52% /4h 20 04.37% /2h 19 min FReLU + NoL 64.7% /6h 52 min 63.26% /4h 37 min

FReLU + L1 74.52% /4h 17 min 04.37% /3h 47 min FReLU + L1 64.7% /6h 20 min 62.99% /5h 12 min

FReLU + L2 74.52% /4h 19 min 85.83% /2h 46 min FReLU + L2 64.7% /6h 54 min 52.29% /4h 55 min

Table 10 Measures of SW2SW

Measures - SW2SW

p = 0.02 p = 0.075

Datasets- Lung COIL20 Datasets- Lung COIL20

Activ.Fun.+Regul. Acc/T ime Acc/T ime Activ.Fun.+Regul. Acc/T ime Acc/T ime

ReLU + NoL 80% /4h 9 min 96.14% /2h 7 min ReLU + NoL 64.8% /6h 3 min 86.58% /3h 28 min

ReLU + L1 80% /4h 12 min 96.15% /2h 44 min ReLU + L1 64.8% /6h 55 min 86.57% /4h 4 min

ReLU + L2 78% /4h 8 min 95.41% /2h 7 min ReLU + L2 64.7% /6h 6 min 80.81% /3h 35 min

FReLU + NoL 81% /4h 13 min 95.62% /2h 41 min FReLU + NoL 65% /6h 5 min 80.67% /4h 4 min

FReLU + L1 81% /5h 04.37% /3h 14 min FReLU + L1 65% /5h 50 min 80.63% /4h 40 min

FReLU + L2 78% /4h 15 min 90.62% /2h 52 min FReLU + L2 65% /6h 11 min 73.00% /4h 10 min

1 3

14118



Model reduction of feed forward neural networks for resource-constrained...

Fig. 12 Results of MLP(FC) and AVG-Weighted algorithms on Lung dataset, using ReLU activation function

contradiction to the cases, we use L1 or no regularization
technique and FReLU activation function, in which the
model achieves about to 20% accuracy or lower. However
the main problems of a fully-connected model are its
efficacy, comparatively with the time needed to be trained
and its memory requirements, especially when we have
devices with memory and storage constraints. In Table 3, we
see the memory footprint of all the algorithms, mentioned
and in Table 15 we see the overall results of them. In our
approaches and specifically, when we implement a scale-
free network topology, we reduce the network’s training
time up to 93% and the memory requirements for the
models to be deployed up to 76% in comparison with the
unmodified one. At the same time, we achieve better results
regarding the accuracy in most cases and almost in all
datasets used.

Furthermore, we achieved up to 76% reduction in
model size, using the topology mentioned above (three
hidden layers of one thousand neurons each of them) and
the SF2SFrand algorithm, due to the redundant weights,
removed, making our sparse implementations more suitable
to run on devices with storage limitations, minimizing the
computational cost. It is also of great importance to mention
that one of our algorithms -the SF2SFrand algorithm- needs
about 1% less storage than SET algorithm, while it has a
better efficacy (it is much faster than SET while preserving
approximately the same accuracy as SET)as it is shown in
Table 6, which is the only former work, close to the concept
of ours, presented in the literature Tables 4, 5, 7, 8, 9 and 10.

Hence, there is no reason to show the exact training
time results of the unpruned model (due to the significant
deviation, regarding our methods).

1 3

14119



E. Fragkou et al.

Fig. 13 Results of MLP(FC) and AVG-Weighted algorithms on Lung dataset, using FReLU activation function

We summarize the average accuracy (just before conver-
gence), and the average training times of the algorithms in
Figs. 18 and 19. There we can see that SF2SFrand achieves
almost equal accuracy to SET, but it does this with almost
30% of its training time.

In Figs. 12 and 13, the accuracy of the baseline
method (SET), our best method (SF2SFrand) and the new
average-weighted-SF2SFrand(AVG-weighted) algorithm is
illustrated, using both ReLU and FReLU activation func-
tion. The results (in Tables 11, and 12) shown that there
is no crucial difference between these algorithms regard-
ing accuracy but there is so, in the time needed for their
training. For example, picking AVG-SF2SFrand algorithm
in case of using ReLU activation function and L2 regular-
ization technique, the accuracy is about 0.18% higher than
the one achieved by the old implementation of SF2SFrand.
However, the time needed for the new implementation of the

algorithm to converge is 80.4% larger. Generally, in most of
the cases, the accuracy of the AVG-weighted algorithms and
the proposed algorithms is approximately the same, while
the increase of the training time, needed, when an AVG-
weighted algorithm achieves better performance, fluctuates
between 18% to 80%. So, taking into consideration that
our algorithms must be capable of running on devices with
memory constraints, it is imperative for the algorithm to pro-
cess the training phase as fast as possible. Therefore, our
proposed implementations perform better, being applied on
resource-constrained devices.

In Figs. 14, and 15 the results regarding the accuracy of
SET, SF2SFrand and ζ -parametarized SF2SFrand on Lung
and Fashion-Mnist dataset, respectively, are depicted. In this
experiment, we initialize ζ parameter to 40% and then, it
declines during the training phase, while in the previous
algorithms we put ζ value to 30%. We can conclude that ζ -

1 3

14120



Model reduction of feed forward neural networks for resource-constrained...

Ta
bl
e
11

M
ea
su
re
s
of

ex
pe
ri
m
en
ts
w
ith

A
V
G
w
ei
gh
te
d
al
go
ri
th
m
s
on

L
un
g
da
ta
se
t

M
ea
su
re
s
-
E
xp
er
im

en
ts
w
ith

A
V
G
w
ei
gh
ts
in

L
un
g.
m
at
da
ta
se
t

A
lg
or
ith

m
-

M
L
P
(F
C
)

SE
T

SF
2S

Fr
an
d

Sf
2S

Fb
a

SF
2S

F(
5)

SF
2S

W
-0
.0
2

SF
2S

F-
0.
07
5

SW
2S

W
-0
.0
2

SW
2S

W
-0
.0
75

A
ct
iv
.F
un

.+
R
eg
ul
.

A
c
c
/
T

im
e

A
c
c
/
T

im
e

A
c
c
/
T

im
e

A
c
c
/
T

im
e

A
c
c
/
T

im
e

A
c
c
/
T

im
e

A
c
c
/
T

im
e

A
c
c
/
T

im
e

A
c
c
/
T

im
e

R
eL

U
+
N
oL

70
.5
8%

/1
h
15

m
in

92
.0
2%

/3
5
m
in

90
%

/1
h
20

m
in

90
.7
%

/3
2
m
in

89
.5
4%

/2
9
m
in

73
.7
9%

/4
h
16

m
in

64
.7
2%

/6
h
49

m
in

64
.7
8%

4h
29

m
in

64
.7
4%

6h
26

m
in

R
eL

U
+
L
1

70
.5
8%

/2
h
22

m
in

90
.5
3%

/4
7
m
in

93
.7
%

/1
h
22

m
in

92
.9
%

/3
8
m
in

88
.9
0%

/3
1
m
in

73
.6
9%

/4
h
20

m
in

64
.7
2%

6h
54

m
in

64
.7
8%

4h
35

m
in

64
.7
4%

6h
37

m
in

R
eL

U
+
L
2

99
.5
2%

/1
h
23

m
in

92
.7
1%

/3
8
m
in

90
%

/1
h
24

m
in

94
.4
%

/3
4
m
in

88
.8
1%

/3
5
m
in

69
.9
7%

/4
h
16

m
in

64
.7
2%

6h
47

m
in

64
.7
9%

4h
30

m
in

64
.7
4%

6h
31

m
in

FR
eL

U
+
N
oL

70
.5
8%

/1
h
28

m
in

93
.0
2%

/4
5
m
in

87
%

/1
h
26

m
in

96
.9
%

/3
8
m
in

96
.6
3%

/3
5
m
in

74
.2
6%

/4
h
20

m
in

64
.7
2%

6h
52

m
in

64
.7
8%

4h
31

m
in

64
.7
4%

6h
33

m
in

FR
eL

U
+
L
1

70
.5
8%

/2
h

95
.0
4%

/5
3
m
in

97
%

/1
h
24

m
in

96
.9
%

/4
3
m
in

96
.5
6%

/3
6
m
in

74
.2
9%

4h
26

64
.7
2%

6h
54

m
in

64
.7
8%

4h
30

m
in

64
.7
4%

6h
36

m
in

FR
eL

U
+
L
2

70
.5
8%

/1
h
26

m
in

92
.3
8%

/4
9
m
in

86
%

/1
h
26

m
in

90
.7
%

/3
9
m
in

93
.2
8%

/3
9
m
in

72
.6
9%

/4
h
20

m
in

64
.7
2%

6h
54

m
in

64
.7
9%

4h
34

m
in

64
.7
4%

6h
33

m
in parametarized SF2SFrand achieved approximately the same

or a lower level of accuracy. Also, the last one seems to
start stabilizing its accuracy evolution faster than the other
two algorithms, when a smaller dataset is used (lung), still,
the training time needed for the algorithm to converge is
twice as long as the SF2SFrand algorithm (as it is shown
in Table 13), since the number of links that the algorithm
has to process is much larger. This happens because the
number of pruned links is not stable, but it decreases epoch
after epoch exponentially. Therefore, the network tends to
become less sparse and more similar to the dense network
epoch after epoch, since after the 130th epoch, the number
of links, being pruned,is very small and this value tends to
be stabilized since, ζ fluctuates among 10% and 5%, as it is
illustrated in Fig. 16. So, our proposed method - SF2SFrand
is also the winner since it achieves comparable accuracy
(,even comparing it with the case that uses small values of ζ )
regarding the other methods, mentioned. At the same time, it
reduces, concurrently, the memory footprint of the network,
since it cuts more links than the ζ -parametarized SF2SFrand
does.

Furthermore, testing our five proposed algorithms on
Fashion-Mnist dataset (which is a large scale dataset) for
100 epochs and ReLU activation function, as it is illustrated
in Fig. 17, we can confirm that all our proposed methods
retain high accuracy regarding not only the fully-connected
model but also the baseline model - SET. The most
interesting thing here is that our best method - SF2SFrand,
continues to generalize the given data faster than the SET
implementation does, while in some cases, achieves about
4.9% higher accuracy than SET. For example, when ReLU
activation function and L1 regularization technique are
used, the MLP(FC) network needs extremely huge time -
about 2 days 16 hours and 51 minutes to be trained, the
SET algorithm needs 11 hours and 22 minutes to converge,
while our winning method needs 9 hours and 2 minutes to
converge, too. We can conclude, that our method achieves
approximatelly 20.5% faster convergence than SET does,in
most of the cases, as it is shown in Figs. 20 and 21 and
in Table 14, in detail. Due to the extended training time
needed from the algorithms for their convergence, we test
our algorithms with the fastest activation function, having at
our disposal, the ReLU (Figs. 18, 19, 20 and 21).

5.3 Summary of experimental results

To sum up, in Table 15, we demonstrate the overall
results of our best sparse model training techniques in
comparison with both the fully-connected model and the
model constructed by SET, which is the only prior work
close to ours. We start with a sparse network implemented
with a randomly initialized sparse table, and we continue to
cut and reconnect links of the network, during the training

1 3

14121



E. Fragkou et al.

Table 12 Comparison between
the old and new
implementation of all
algorithms

Comparison between the old and the new AVG experiment on lung dataset

Algorithms Old Experiment New AVG Experiment

Dataset Activ.Fun.+Regul. Activ.Fun.+Regul.

Lung.mat Acc/T ime Acc/T ime

SF2SFrand FReLU + L2 ReLU+L2

92.9% /16 min 93.07%/1h 22 min

SF2SFba FReLU + NoL FReLU+NoL

95.6% /32 min 95.5%/38 min

SF2SF(5) FReLU + NoL FReLU+NoL

92.8% /35 min 92.63%/35 min

SF2SW(p=0.02) ReLU + L1 FReLU+L1

74.8% /4h 17 min 74.29%/4h 26 min

SF2SW(p=0.075) ReLU + NoL ReLU+L2

64.7% /6h 3 min 64.72%/6h 47 min

SW2SW(p=0.02) FReLU + NoL ReLU+L2

81% /4h 13 min 64.79%/4h 30 min

SW2SW(p=0.075) FReLU + L1 ReLU+NoL

65% /5h 50 min 64.74%/6h 26 min

Fig. 14 Results of SET,
SF2SFrand ζ -parametarized
SF2SFrand, using both ReLU
and FRelU activation function
and Lung dataset

1 3

14122



Model reduction of feed forward neural networks for resource-constrained...

Fig. 15 Results of SET, SF2SFrand ζ -parametarized SF2SFrand, using ReLU activation function and Fashion-Mnist dataset

phase, in order for the model to converge. We see that
SF2SFrand is our winning method because it achieves to
compress the network capacity by reducing its trainable
parameters and consequently, the memory requirements of
the network up to 76% in comparison with the memory that
the fully connected network needs, and up to 1% regarding
the memory that our competitor (SET implementation)
requires.

Furthermore, we manage to reduce the training time up
to 50% in most of the cases, while we almost preserve
the training accuracy of our competitors (for example,
SF2SFrand achieves about up to 92.9% training accuracy
in 16 minutes, while the dense model achieves about

Table 13 Measures of ζ -parametarized SF2SFrand

Measures - ζ -parametarized SF2SFrand for 40 epochs

Lung dataset Fashion-Mnist dataset

Activ.Fun. Acc/T ime Activ.Fun. Acc/T ime

+Regul. +Regul.

ReLU+L1 91.17%/25 min ReLU+L1 88.55%/4h 33 min

ReLU+L2 92.64%26 min ReLU+L2 83.47%/3h 35 min

ReLU+NoL 95.58%/25 min ReLU+NoL 88.05% 1d 1h 55 min

FReLU+L1 96.05%/27 min FReLU+L1 87.28%/9h 7 min

FReLU+L2 96.07%/28 min FReLU+L2 10%/1d 5h 31 min

FReLU+NoL 96.05%/33 min FReLU+NoL 10%/3h 33 min

99.5% accuracy in 1 hour and 23 minutes and the SET
implementation achieves 92.71% in 38 minutes when Lung
dataset is used), as it is also illustrated in Table 15. It is
worth highlighting that our proposed schemes try to sparsify
the network by deleting the connections that do not have
substantial weights to contribute to the data generalization;
concurrently, it reconnects as many connections as the ones
being deleted, in a carefully designed way, creating sale
free-like topology schemes, so as for dataset information
to be distributed effectively and hence, achieve outstanding
performance, regarding not only the training time but also
the accuracy and the memory footprint.

Fig. 16 Evolution of ζ in every epoch

1 3

14123



E. Fragkou et al.

Fig. 17 Overall results on five
algorithms, using Fashion-Mnist
dataset

Table 14 Measures of MLP(FC), SET, SF2SFrand, SF2SFba, SF2SF(5) algorithms, respectively, in fashion-mnist dataset

Measures - Fashion-Mnist dataset

Datasets- MLP (FC) SET SF2SFrand SF2SFba SF2SF(5)

Activ.Fun.+Regul. Acc/T ime Acc/T ime Activ.Fun.+Regul. Acc/T ime Acc/T ime

ReLU + NoL 10%/5d 1h 14 min 83.74%/11h 22 min 87.86%/ 9h 2 min 86.60%/ 21h 40 min 87.74% /5h 4 min

ReLU + L1 10%/2d 16h 51 min 79.63%/15h 23 min 80.65% /12h 56 min 87.8% / 13h 7 min 88.22%/ 7h 46 min

ReLU + L2 49.94%/2d 13h 5 min 83% /12h 50 min 82.68% 18h 49 min 80.81% /10h 56 min 81.65% /5h 54 min

Fig. 18 Accuracy achieved by the competitors for the five datasets Fig. 19 Execution time of the competitors for the five datasets

1 3

14124



Model reduction of feed forward neural networks for resource-constrained...

Fig. 20 Accuracy achieved by the comparable algorithms, using
Fashion-Mnist dataset

6 Conclusions

The tremendous success of deep learning has brought neural
networks to the forefront of machine learning research and
development. Due to the large size of a neural network
- in the number of neurons and the number of hidden
layers - training the network in a relative short time is
a challenge. Various methods have been developed for
accelerating neural training over the past thirty years. We
focus here on the family of methods based on linkage
sparsification, i.e., instead of fully connected bipartite
neural topologies, we reduce the number of connections in
an algorithmic (or random) way. In particular, we employ
concepts developed in the realm of network science, in order
to sparsify the neural network with the aim of keeping the
most significant linkages, which are responsible for better
information distribution in the network. Thus, we reduce

Fig. 21 Execution time of the comparable algorithms, using Fashion-
Mnist dataset Ta

bl
e
15

Su
m
m
ar
y
of

ex
pe
ri
m
en
ts

Su
m
m
ar
y
of

ex
pe
ri
m
en
ts

A
lg
or
ith

m
M
em

or
y

Pe
rc
en
ta
ge

R
ed
uc
tio

n
L
un
g
A
cc

L
un
g
D
is
cr
et
e

T
O
X
-1
71

C
L
L
-S
U
B
-1
11

C
O
IL
20

Fa
sh
io
n-
M
ni
st

Fo
ot
pr
in
t

in
M
em

or
y

/T
im

e
A
cc
/T
im

e
A
cc
/T
im

e
A
cc
/T
im

e
A
cc
/T
im

e
A
cc
/T
im

e

M
L
P
(F
C
)

77
.6
4
M
B

—
99
.5
2%

/1
h
23
m
in

80
%

/5
m
in

24
.5
6%

/7
5
m
in

19
.0
7%

/1
h
5
m
in

62
.5
%

/6
h
3
m
in

49
.9
4%

/2
d
13
h
5
m
in

SE
T

19
.1
8
M
B

75
.2
%

92
.7
1%

/3
8
m
in

82
.5
9%

/1
1
m
in

88
.4
3%

/3
2
m
in

65
.8
4%

/4
5
m
in

99
.3
7%

/1
h
28

m
in

83
.7
4%

/1
1h

22
m
in

SF
2S

Fr
an
d

18
.3
9
M
B

76
.3
1%

92
.9
%

/1
6
m
in

82
.5
%

/7
m
in

83
.3
%

/1
4
m
in

62
.4
%

/1
9
m
in

99
.1
6%

/1
h
42

m
in

87
.8
6%

/9
h
2
m
in

SF
2S

Fb
a

20
.6
8
M
B

73
.3
6%

95
.6
%

/3
2
m
in

82
.4
%

/1
5
m
in

95
%

/4
2
m
in

65
.5
%

/1
h

99
.1
6%

/5
3
m
in

87
.8
%
/1
3h

7
m
in

SF
2S

F(
5)

20
.1
8
M
B

74
.0
0
%

92
.8
%

/3
5
m
in

90
.6
%

/1
4
m
in

81
%

/4
0
m
in

70
.2
5%

/1
h
13

m
in

99
.7
9%

/1
h
13

m
in

88
.2
2%

7h
46

m
in

1 3

14125



E. Fragkou et al.

drastically both the number of trainable variables and the
size of the model, which leads to training acceleration.
We base our motivation on observations in real neural
networks whose actual topology is scale-free (or small-
world). We designed algorithms that start from a particular
structured but not fully connected bipartite topology and
end up with another structured topology. Here, in this
first investigation, we experimented with scale-free and
small-world topologies either as starting or final topologies.
We evaluated the algorithms’ performance on a moderate-
sized neural network in a publicly available dataset and
examined their classification accuracy and training time.
We concluded that the proposed techniques can reap
performance gains, achieving high accuracy with a short
training time. The ‘champion’ algorithm was the one that
produced scale-free-like topologies starting from scale-
free topologies. Specifically, the SF2SFrand algorithm
outperforms every other method in most of the cases
mentioned, achieving high percentages of both memory
(approximately 76.31% less than FC-MLP dense model
and 3% less than the baseline method - SET) and training
time (about 50% less in most of the cases, compared to
baselines(FC-MLP, SET) and 20.5% less in the experiments
with large scale datasets, like Fashion-Mnist) reduction
and, while retaining classification accuracy of baseline
methods. Intuitively this is expected since only a handful
of connections carry most of the weight even in fully
connected topologies. Our results are consistent with recent
but different types of approaches [10, 34] to the problem of
neural training acceleration.

Acknowledgements Part of this work was done in the context of the
BSc thesis/dissertation (2019) of the first two authors in the University
of Thessaly, entitled “Neural Network Training Techniques Based on
Topology Sparsification” and “Speeding up Neural Network Training
via Topology Sparsification”.

Declarations

The authors declare that they have no known conflicting/competing
financial or non-financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

References

1. Barabasi A-L (2016) Network Science Cambridge University
Press

2. Barabasi A-L, Albert R (1999) Emergence of scaling in random
networks. Science 286(5439):509–512

3. Basaras P, Katsaros D, Tassiulas L (2013) Detecting influential
spreaders in complex, dynamic networks. IEEE Comp Magazine
46(4):26–31

4. Bullmore E, Sporns O (2009) Complex brain networks: graph
theoretical analysis of structural and functional systems. Nature
Rev Neuroscience 10:186–198

5. Cai H, Gan C, Zhu L, Han S (2020) TinyTL: reduce memory, not
parameters for efficient on-device learning. In: Proceedings of the
conference on neural information processing systems (NeurIPS

6. Cavallaro L, Bagdasar O, Meo PD, Fiumara G, Liotta A (2020)
Artificial neural networks training acceleration through network
science strategies. Soft Comput 24:17787–17795

7. Chouliaras A, Fragkou E, Katsaros D (2021) Feed forward neural
network sparsification with dynamic pruning. In: Proceedings of
the panhellenic conference on informatics (PCI)

8. Diao H, Li G, Hao Y (2022) PA-NAS: partial operation activation
for memory-efficient architecture search. Appl Intell. To appear

9. Erkaymaz O (2020) Resilient back-propagation approach in small-
world feed-forward neural network topology based on newman-
watts algorithm. Neural Comput Applic 32:16279–16289

10. Frankle J, Carbin M (2019) The lottery ticket hypothesis:
finding sparse, trainable neural networks. In: Proceedings of the
international conference on learning representations (ICLR)

11. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The
MIT Press

12. Han S, Pool J, Tran J, Dally W (2015) Learning both weights
and connections for efficient neural network. In: Proceedings of
advances in neural information processing systems, pp 1135–1143

13. Han S, Mao H, Dally WJ (2016) Deep compression: compressing
deep neural networks with pruning, trained quantization and
Huffman coding. In: Proceedings of the international conference
on learning representations (ICLR

14. Hao J, Cai Z, Li R, Zhu WW (2021) Saliency: a new selection
criterion of important architectures in neural architecture search.
Neural Comput Appl. To appear

15. Hoefler T, Alistarh D, Ben-Nun T, Dryden N, Peste A (2021)
Sparsity in deep learning pruning and growth for efficient
inference and training in neural networks. J Mach Learn Res
23:1–124

16. Hong Z-Q, Yang J-Y (1991) Optimal discriminant plane for a
small number of samples and design method of classifier on the
plane. Pattern Recogn 24:317–324

17. Iiduka H (2022) Appropriate learning rates of adaptive learning
rate optimization algorithms for training deep neural networks.
IEEE Trans Cybern. To appear

18. James AP, Dimitrijev S (2012) Feature selection using nearest
attributes. Available at: arXiv:1201.5946

19. Jouppi NP, Young C, Patil N, Patterson D (2018) Domain-specific
architecture for deep neural networks. Commun ACM 61(9):50–
59

20. Liebenwein L, Baykal C, Carter B, Gifford D, Rus D (2021)
Lost in pruning: the effects of pruning neural networks beyond
test accuracy. In: Proceedings of the machine learning systems
conference (MLSys

21. Liu S, Mocanu DC, Matavalam ARR, Pei Y, Pechenizkiy M
(2020) Sparse evolutionary deep learning with over one million
artificial neurons on commodity hardware. Neural Comput Applic
33:2589–2604

22. Mocanu DC, Mocanu E, Stone P, Nguyen PH, Gibesce M, Liotta
A (2018) Scalable training of artificial neural networks with
adaptive sparse connectivity inspired by network science. Nat
Commun, pp 9

23. Mokhtari A, Ribeiro A (2015) Global convergence of online
limited memory BFGS. J Mach Learn Res 16:3151–3181

24. Narang S, Diamos G, Sengupta S, Elsen E (2017) Exploring
sparsity in recurrent neural networks. In: Proceedings of the
international conference on learning representations (ICLR)

25. Nene SA, Nayar SK, Murase H (1996) Columbia object image
library (COIL-20). Technical report CUCS-006-96 Columbia
University

1 3

14126

http://arxiv.org/abs/1201.5946


Model reduction of feed forward neural networks for resource-constrained...

26. Papakostas D, Kasidakis T, Fragkou E, Katsaros D (2021)
Backbones for internet of battlefield things. In: Proceedings of
the IEEE/IFIP annual conference on wireless on-demand network
systems and services (WONS)

27. Qiu S, Xu X, Cai B (2019) FReLU: flexible rectified linear
units for improving convolutional neural networks. Available at
arXiv:1706.08098

28. Ray PP (2022) A review on tinyML: state-of-the-art and prospects.
J King Saud University– Comput Inf Sci, To appear

29. Reddi SJ, Kale S, Kumar S (2018) On the convergence of Adam
and beyond. In: Proceedings of the international conference on
learning representations (ICLR)

30. Ren P, Xiao Y, Chang X, Huang P-Y, Li Z, Chen X, Wang
W (2021) A comprehensive survey of neural architecture search
challenges and solutions. ACM Comput Surv 54(76):1–34

31. Renda A, Frankle J, Carbin M (2020) Comparing rewinding and
fine-tuning in neural network pruning. In: Proceedings of the
international conference on learning representations (ICLR)

32. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R (2014) Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15(1):1929–1958

33. Sun X, Ren X, Ma S, Wang H (2017) meProp: sparsified back
propagation for accelerted deep learning with reduced overfitting.
Proc Mach Learn Res 70:3299–3308

34. Sun X, Ren X, Ma S, Wei B, Li W, Xu J, Wang H, Zhang
Y (2019) Training simplification and model simplification for
deep learning: a minimal effort back propagation method. IEEE
Trans Kowl Data Eng, A minimal effort back propagation method.
IEEE Transactions on Kowledge and Data Engineering, Training
simplification and model simplification for deep learning. To
appear

35. Wang X, Zheng Z, He Y, Yan F, qiang Zeng Z, Yang Y (2021) Soft
person reidentification network pruning via blockwise adjacent
filter decaying. IEEE Trans Cybern

36. Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms.
arXiv:1708.07747

37. Xu S, Chen H, Gong X, Liu K, Lu J, Zhang B (2021) Efficient
structured pruning based on deep feature stabilization. Neural
Comput Applic 33:7409–7420

38. Zlateski A, Lee K, Seung HS (2017) Scalable training of 3d
convolutional networks on multi- and many-cores. J Parallel
Distrib Comput 106:195–204

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this
article under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Evangelia Fragkou received
her diploma (Integrated Mas-
ter’s Degree + BEng+MEng)
from the Department of Elec-
trical and Computer Engineer-
ing, at Volos, in 2019. She
is now a PhD candidate at
the same Department. She has
earned an ELIDEK grant to
carry our her PhD studies.
Her main research interests lie
in the area of machine/deep
learning.

Marianna Koultouki received
her diploma (Integrated Mas-
ter’s Degree + BEng+MEng)
from the Department of Elec-
trical and Computer Engineer-
ing, at Volos, in 2019. She
now works as a software engi-
neer on projects related to
object-oriented programming
and machine learning tasks.

Dimitrios Katsaros is an
associate professor with the
Department of Electrical and
Computer Engineering at
the University of Thessaly.
During the fall semester of
2022 he is on sabbatical leave
of absence cooperating with
the Carnegie Mellon Univer-
sity at Qatar. He has been a
visiting fellow (2015) and a
visiting assistant professor
(2017) in the Department of
Electrical Engineering at Yale
University and also with the
Yale Institute for Network

Science; he has been a visiting professor (2019) in KIOS Research
and Innovation Centre of Excellence at the University of Cyprus His
research interests include distributed systems and algorithms. Kat-
saros received a PhD in informatics from the Aristotle University of
Thessaloniki, Greece in 2004.

1 3

14127

http://arxiv.org/abs/1706.08098
http://arxiv.org/abs/1708.07747

	Model reduction of feed forward neural networks for resource-constrained...
	Abstract
	Introduction
	Motivation and contributions

	Related work
	Background on network science concepts
	The proposed techniques
	Scale-free to scale-free with random rewiring (SF2SFrand)
	Scale-free to scale-free using preferential attachment (SF2SFba)
	Scale-free to scale-free (5 strongest nodes) (SF2SF5)
	Scale-free to small-world (SF2SW)
	Small-world to small-world (SW2SW)

	Experimental evaluation
	Evaluation settings
	Competitors
	Datasets
	Lung and lung_discrete
	TOX-171
	CLL-SUB-111
	COIL20
	Fashion-Mnist
	Optimizers and activation functions


	Evaluation results
	Summary of experimental results

	Conclusions
	Declarations
	References




