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Wireless communication networks exhibit fundamental differences from
networks with dedicated point-to-point connections. Channel access and packet
routing problems are closely related in radio networks, therefore should be con-
sidered jointly. Changing connectivity arises naturally in wireless systems in
several cases (l.e. mobile radio nodes, meteor-burst chanmnels) and should be
taken into consideration by the channel access protocols. In this dissertation
we consider queuing models that capture the above characteristics of radio net-
works and discuss throughput, delay performance and optimal dynamic control
problems in these systems. Channel access and packet routing are studied
jointly in a queuing system with interdependent servers that models a multihop

radio network with scheduled link activation. Dynamic scheduling schemes are



investigated. The performance of a scheduling policy 7 is characterized by its
stability region that is the set of arrival rates for which the network is stable
under 7. We obtain a scheduling policy which is optimal in the sense that its
stability region dominates the stability region of every other policy and we char-
acterize that region. Methods of stochastic stability theory are employed in this
study. In addition to system stability, the issue of queuing delay is of particular
importance in communication networks. For a tandem radio network we obtain
link activation scheduling policies which are optimal with respect to delay in
the stochastic ordering sense; the result in this case is obtained using sample
path comparison arguments. Turning to the issue of changing connectivity, a
single hop radio network is considered where the user connectivity is modeled
by a stochastic process. The necessary and sufficient stabilizability condition
as well as a stabilizing policy are obtained. In the case of a symmetric system
with unlimited buffer capacity at each user, the channel allocation policy that
minimizes the delay is obtained. When each user possesses a single buffer the
channel allocation policy that minimizes both throughput and delay is spec-
ified. Finally stability issues are investigated in a general queueing network
where there is routing and flow control at each queue. The implications of the

stability results on deterministic flow networks are discussed.
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CHAPTER 1

Introduction

Wireless communication systems carry a large portion of traffic in today’s
communication networks. They appear in several forms, such as cellular net-
works, wireless indoor systems, satellite networks, meteor-burst or general mo-
bile multihop networks. Their importance is expected to grow even more in the
future since they provide the natural means for wireless access in tomorrows
integrated communication systems. Nevertheless, the understanding we have
for the operation of multihop radio networks is poor compared to dedicated link
networks or single hop multiaccess channels ([BeG87]).

Multihop wired link packet switching networks have been studied heavily
in the past and optimal distributed algorithms are available for the real time
control of those systems. Similarly random access algorithms have been devel-
oped which achieve efficient utilization of the single hop multiaccess channel
([IIT85]). On the other hand, the research in multihop radio networks is still
in a preliminary stage and in the existing systems ad-hoc methods are em-
ployed for resource allocation. There is a big research effort towards a better
understanding of the principles of operation of multihop radio networks so that
the next generation of wireless systems will be able to meet the current traffic
demands which exceed by far the capabilities of the systems employed today.

Multihop radio network have certain characteristics that differentiate them
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from both dedicated link networks and single hop multiaccess channels. On
one hand simultaneous transmissions of neighboring links in a radio network
interfere; hence not all of the links may be used simultaneously. On the other
hand, and unlike single hop multiaccess channels, more than one link may
transmit without conflicts at the same time if they are appropriately spatially
separated. Whether certain links may transmit simultaneously without conflicts
or not is determined by the signaling forms used for transmission, the number of
transceivers per node, and certain other specific features of the network. That
is made clear in the next section where we discuss in detail the constraints for
conflict free transmissions in certain networks. The number of different sets
of links which may transmit simultaneously without conflicts is huge, usually
of exponential order with respect to the size (number of links) of the network.
Therefore an optimal link activation scheduling, that is, the selection of the

transmitting links at each time slot is quite difficult to obtain.

If the destination node of a packet is not within the transmission range
of the origin node, the packet needs forwarding to reach its destination; hence
routing decisions should be made in addition to link activation scheduling. The
traffic loading of the links is determined by the routing algorithms; the link
activation scheduling is done such that the channel is allocated to neighboring
links in a fair manner according to their loading. Clearly link activation and
packet routing are strongly interrelated and should be treated jointly in order

to have efficient network utilization.



Time varying connectivity is inherent in several types of radio networks
including systems with mobile radio nodes, networks with meteor-burst com-
munication channels, networks in environments with hard interference etc. In
all the above cases the connectivity varies with time and the channel allocation
algorithms should take it under consideration in a dynamic fashion in order to

have efficient resource utilization.

In this dissertation we consider queueing models on which the above prob-
lems are addressed. Before we discuss in detail, in section 1.3, the problems we
have considered, we provide a basis model of a radic network and review the

previous work on the subject.

1.1 Multihop Radio Networks

A radio network consists of N nodes the radio connectivities of which are
specified by the topology graph G = (V, E). Each node of V corresponds to
a radio node and a directed link (v,0) from node v to node w denotes that
node w is within the transmission range of node ». A node v may communicate
directly with node w if node w is within the transmission range of node v; that
is a link of the topology graph corresponds to a radio link. A packet entering
the system at some node 7 may have as its eventual destination any node of a
set of nodes 5; so that as soon as the packet reaches any node at S; it leaves the
system. This assumption corresponds to the case where the actual destination

of the packet is some node outside of the radio network which is connected



through wired link connections with all nodes of S;. Therefore, after a packet
reaches a node of 5; it does not need the resources of the radio network any
longer. If node ¢ has no direct communication link to any node of S; then it
needs to forward the packet there and routing decisions must be made. The
packet length is taken to be constant and the system is slotted with slot length
equal to the packet length. The transmissions are synchronized to start in the

beginning of a slot.

Neighboring transmissions are subject to radio interference; there are con-
straints in the simultaneous transmissions of neighboring links in order to avoid
interference. As it has already been mentioned, those constraints depend on
several different factors; the number of transceivers per node, the signaling
forms used, the available frequency bands andother features of the network.
The constraints vary in different networks. Two typical conflict constraints are

the following,

1. If there is a single transceiver per node then at each time instant a given
node may either transmit to exactly one other node or receive from exactly

one other node without conflicts.

2. If thereis a single frequency band then the transmission of node 1 is received
without conflict by a node j within the transmission range of 7, only if all

the other nodes that have in their range node j are silent.

In a network with a single frequency band and one transceiver per node both
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constraints should be satisfied at each slot in order to have conflict free trans-
missions. We refer to those networks as networks with no secondary interference
tolerance. If spread spectrumn signaling is used then a node which is within the
transmission range of several transmitting nodes may lock in the transmission of
one of them and receives its transmission without interference from the others.
In this case, the second constraint is not necessary for conflict free transmissions
and we say that secondary interference is tolerated.

Clearly there is a channel sharing problem among neighboring nodes of the
network. A multiaccess method is required to achieve efficient utilization of the
locally common channel. Several random access schemes have been considered
for the channel sharing in multihop networks which are generalizations of well
known algorithms that have been developed for the multiaccess channel [IIT85].
Their performance in the multihop case was not analogous to that of their
counterparts in single hop networks. Another approach that has been taken to
the channel allocation problem in radio networks is scheduled link activation. In
scheduled link activation the transmitting links are selected such that conflicts

are avoided. In this dissertation we concentrate on scheduled link activation.

Any set of links that can transmit simultaneously without conflicts is called
a transmission set. A transmission set is represented by its corresponding trans-
masston vector, a binary vector with one element for each link which is equal to
one if the link belongs to the transmission set and to zero otherwise. In sched-
uled link activation, at each slot ¢ the transmitting links constitute a trans-
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mission set; let I(¢) be the corresponding transmission vector. The collection
{I(t)}2, of the transmission vectors at all time slots constitute the schedule.
The problem is to determine the schedule.

If there is more than one packet class in the network, where the packet
classes are differentiated by the destinations of the packets, a decision should
be taken at each slot about the class of the packet that is transmitted by each
activated link. This decision is referred to as routing.

Scheduling schemes may be classified as either static or dynamic. In static
schemes the schedule is determined in advance and the network state is not
taken into consideration in a dynamic fashion. In dynamic schemes the trans-
mission vector at slot t is determined based on some information about the
network state in the previous slot. In this dissertation we concentrate on dy-

namic scheduling.
1.2 Previous work

Much of the previous work on the subject has focused on fized periodic
schedules which are as follows. A number T of transmission vectors I1,..., I1
are selected and the schedule {I(2)}32, is produced by the repetition of those

T vectors, that is

I(t) = ItmodT—}-]

In this case the problem of designing the schedule is reduced to the selection of
the vectors Iy, ..., I which 1s done such that performance is optimized according
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to some criteria.

Several approaches have been taken to that problem in [ChL87, EpT90,
NeK85, PSK85, Sil82]. The optimization problems that have been posed were
computationally intractable in most of the cases and heuristic algorithms have
been proposed for their solution. Distributed algorithms for computation of the
schedule have been proposed. In [RoS89] the problem of optimizing the long run
average throughput and delay within the class of state independent (open loop)
schedules is considered and it is shown, using dynamic programming techniques,
that the optimal schedule is a fixed periodic schedule. The computation of the
optimal schedule though is intractable. State dependent scheduling has been
considered in [CiS89] where the transmission at each slot ¢ is selected based
on the number of packets at the network nodes at the beginning of the slot.
The transmission set is computed heuristically based on the network’s state.
Distributed algorithms were proposed for the computation of the transmission

set and their performance is evaluated by simulation.

Another problem that has been studied within the context of fixed periodic
schedules is that of characterizing the set of vectors of link activation rates
which are achievable by certain schedules. Given a fixed periodic schedule,
the component of the vector f = % Zle I; that corresponds to a link e is
the proportion of the slots at which link e is scheduled for activation. Given
a vector fy we want to find a schedule with some period T, if there exists
one, such that f < & Ele I;. This problem can be shown to be equivalent to
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that of finding a representation of f as a convex combination of all transmission
vectors. The latter depends heavily on the structure of the set of all transmission
vectors. That problem has been studied for several different radio networks and
in certain cases ([HaS88]) polynomial complexity algorithms have been found
for its solution while in others ([Ar84]) the problem has been shown to be NP-
hard. The problem of joint routing-scheduling has also been addressed in the
above framework.

The issue of changing connectivity in communication networks has been
addressed in the past in several different contexts. In radio networks that issue
arises in a few cases. Networks with mobile radio nodes or with meteor burst
channels are typical examples. Deterministic changing connectivity models have
been considered in the past. In [Og88] a deterministic flow network with time
varying link capacities is considered. The variation of the capacities of the
links with time is assumed to be known. known. The problem is to determine a
dynamic flow that maximizes the amount of commodity reaching the destination
within some time 7. In [OrR90,91] the shortest path problem in a network
where the edge weight changes with time is considered. Algorithms for finding
the minimum weight path at all time instances are provided. Further related

work is referenced in the above papers.

1.3 Outline of the dissertation

In this dissertation we focus on dynamic radio network models. We ad-
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dress first the issue of joint routing and scheduling in a general multihop, mul-
tidestination radio network. A queueing system with interdependent servers is
considered as a model for the network. The dependency among the servers is
described by the definition of those subsets of them that can be activated simul-
taneously and reflects the conflict constraints in the radio network. We study
the problem of scheduling the server activation under the constraints imposed
by the dependency among them. The performance criterion of a scheduling
policy m 1s its throughput. That is characterized by its stability region C, that
is the set of vectors of arrival and service rates for which the system is stable. A
policy 7 is obtained which is optimal in the sense that its stability region Cy, is
a superset of the stability region of every other scheduling policy. The stability
region Cy, 1s characterized. The optimal policy wg is difficult to implement,
however we obtain an easily implementable adaptive version of my that has the
same stability properties. We study also the behavior of the network for arrival
rates that lie outside the stability region. Methods of stochastic stability theory
are employed in our study. We rely on the Markov property of the queue length

process to obtain the stability results.

The issue of queueing delay is of particular importance in addition to sta-
bility in a communication network. That is studied in a tandem radio network.
The constraint for nonconflicting transmissions is that no two links incident to
the same node should be activated simultaneously. At each time ¢ the set of
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activated links is selected based on the lengths of the queues at time ¢t — 1. The
activated links should satisfy the constraint for nonconflicting transmissions.
Each radio node receives exogeneous traffic of constant length packets. Two
assumptions are made about the traffic. The first, is that all packets have a
common destination that is one end-node of the tandem; the second, is that
the destination of each packet is an immediate neighbor of the node at which
the packet enters the network. Under the first traffic assumption the system
corresponds to a tandem queueing system with interdependent servers and a
scheduling policy is obtained which is samplepath wise optimal. Under the sec-
ond traffic assumption the system corresponds to a set of parallel queues with
interdependent servers; it is shown that the optimal policy activates at each slot
the maximum possible number of servers. The optimality results are obtained

using sample path comparison arguments.

The 1ssue of time varying connectivity is addressed in chapter 4. We con-
sider a dynamic model of changing connectivity. A queueing model of a single
hop radio network is considered consisting of N parallel queues (radio nodes)
competing for the attention of a single server (central station). At each time slot
each queue may or may not be connected to the server. The server is allocated
to one of the connected queues at each slot; the allocation decision is based on
the lengths of the connected queues only. At the end of each slot, service may
be completed with a given fixed probability. In the case of infinite buffers, nec-
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essary and sufficient conditions are obtained for stability of the system in terms
of the different system parameters. The allocation policy that minimizes the
delay for the special case of symmetric queues (i.e. queues with equal arrival,
service and connectivity statistics) is provided. In a system with a single buffer
per queue an allocation policy is obtained that maximizes the throughput and
minimizes the delay. The delay optimality results hold in a stochastic ordering

sense and obtained using sample path comparison arguments.

In the last chapter we consider a general queueing network with routing and
flow control at each queue. Necessary and sufficient stabilizability conditions
on the arrival and service rates of the system are obtained. An alternative proof
of the maxflow-mincut theorem is given based on the stability properties of the

queueing network.

Finally, before we proceed, a few words about notation. The random quan-
tities are denoted by upper case letters; for the nonrandom quantities we reserve
the lower case letters. Vectors are denoted by boldface characters. A random
process, that is a sequence of random variables indexed by time, is denoted by
the same symbol as the corresponding random variable and a time index. We
number the equations independently in each chapter; hence equations in differ-
ent chapters may have the same numbers. No confusion is caused though since
whenever we refer to an equation of anotherlchapter we mention the chapter as
well. Also the notation in different chapters overlaps in a few cases. Whenever
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we refer though to an entity of a different chapter we explicitly mention that

so there should be no confusion.
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CHAPTER 2

Joint routing and scheduling for maximum throughput

2.1 Introduction

In this chapter we address the issue of joint routing and scheduling in a
constraint queueing model of a mutihop radio network. The queueing network
has arbitrary topology and multiple servers. The servers are interdependent
in that they can not provide service simultaneously. The dependency among
them is reflected on the constraints which specify exactly which subsets of
servers may be active simultaneously. The servers correspond to the links and
the constraints disallow simultaneous transmisions for neighboring links. We
consider slotted time. At each time slot, routing decisions are taken for the
served customers and eligible sets of servers are selected for activation. We
assume that these decisions are made in a centralized fashion and are based on
global knowledge of the queue lengths in the entire network. We assume that
buffering at each queue is infinite. We consider the system to be stable if the
queues do not tend to increase without bound. We wish to find control policies
under which the system is stable for given arrival and service rates. Indeed, we
characterize the region of arrival and service rate vectors for which there exists
some stabilizing policy, and do find a policy which in fact stabilizes the system

13



for all arrival and service rate vectors in that region. Such a policy is in a sense

optimal as far as throughput is concerned.

In addition to multihop radio networks, the constrained queuneing model
is appropriate for other resource allocation problems as well. A model of a
database with concurrency control and locking has been considered in [Ke85,
MiW84, Mi85|; the constrained queueing system that we study in this chapter
captures that database model where the constraints reflect the locking con-
straints of the database and the policy that we propose provides a concurrency
control algorithm that achieves maximum throughput. In [BaW90] a gener-
alized multiserver queue is proposed as a model of certain parallel processing
systems; that multiserver queue can also be modeled by an appropriate con-

strained queueing system.

This chapter is organized as follows. In section 2.2 we describe the con-
strained queueing model and we discuss how it corresponds to a multihop radio
network. In section 2.3 we state the stability performance criteria and we
present the optimality results. In section 2.4 the behavior of the system in
the instability region is investigated. In section 2.5 we give another maximum
throughput policy which is easily implementable. In section 2.6 we demon-
strate how the constrained queueing system is appropriate for other resource
allocation i)roblems.
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2.2 The constrained queueing model

We consider a network consisting of L nodes and N links. The connectivity
of the system is represented by the directed graph G = (V, E), where V is the
set of nodes and F is the set of links (fig. 1). Each link coresponds to a server
that serves customers residing at the origin node of the link; after service the
customers are directed to the destination node of the link. The origin and
destination nodes of link 7 are denoted by ¢(¢) and A(z) respectively. The terms
servers and links are used interchangably in the following. A customer may
enter the network at any node. Its destination is a subset of the network nodes
in the sense that as long as the customer reach any of these nodes it leaves the
system. Each customer reaches its destination by appropriate routing through
the network. There are J customer classes which are distinguished by the
destinations of the customers. The set of destination nodes for class j is V.
At each node ! customers of all classes are queued, except of those classes 7 for
which node [ is a destination, that is [ € V; (any customer of the latter classes
leaves the systemn as long as it reaches node [). We consider slotted time . At
each slot ¢ certain links originating from node ! provide service; those are the
active links at slot . Notice that the customers are not committed to specific
outgoing links of a node [ by the time they reach [ but at the beginning of
each slot a decision is taken which customers (of which classes) are allocated at
which links. This decision corresponds to routing.
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There are constraints in the simultaneous activation of the serves in the
sense that certain servers can not provide service at the same time. An ac-
tivation set is a set of servers which can be activated in the same slot. An
activation set is represented by its activetion vector, that is a binary vector
with N elements; the 7th element corresponds to server :, and is equal to 1 1f
server ¢ belongs to the activation set and to 0 otherwise. The terms activation
set and activation vector will be used interchangably in the rest of the chapter.
The constraint set S consists of all activation vectors of the system; this set
completely specifies the activation constraints. We make the following assump-
tion about the structure of the constraint set which is natural in the systems
we consider.

A.1 Every subset of an activation set is an activation set itself.

At the beginning of each slot an activation set of links is selected that provide

service during the slot. This 1s reffered as scheduling in the following.

2.2.1 Queue length dynamics

The servers are synchronized to start service at the beginning of a slot.
We control the system through the selection, at each time slot, of the acti-
vation set and of the class of the customer assigned to each activated server
for service. The binary variable E;;(t) indicates whether server ¢ is activated
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in slot t or not and which customer class it serves; if F;;(t) = 1 server i
is activated and serves a customer of class § otherwise it is not. A cus-
tomer served by server i in slot ¢ completes service with some probability
m;. More specifically we consider a binary variable M;(t) and a customer
served by server 7 during slot ¢ completes service and moves from queue ¢(z)
to queue A(:) if M;(t) = 1; otherwise it remains at queue ¢(¢). The vector
E(t) = (E;(t) : ¢ = 1,.,N, j = 1,.,J), indicates which class each server
serves at slot t. A binary vector e = (e;; ¢ ¢t =1,..,N, j =1,..,J) is a mul-
ticlass activation vector if the corresponding vectors e/ = (e;; : ¢ = 1,..,N),
7 = 1,..,J are such that Z]-J:l el € S. Let &£ by the collection of all multi-
class activation vectors. At each slot ¢ the vector E(?) is selected from the set
£. The decisions are based on the number of customers of each class in each
queue; the queues have unlimited capacity (infinite buffers). This information
is represented as follows. Let X;;(f) be the number of customers of class j
at queue 7 by the end of slot ¢ (or the beginning of slot ¢ + 1). The vector
X)) =(Xy(t): e =1,.,L, 3 =1,..,J) consists of the lengths of the queues
of all customer classes and is called the multiclass queue length vector at slot
t. We denote by X the space where the vector X(t) lies.

Consider a function g : &' — & if g(x) =e=(e;; ;1 =1,.,N, 5=1,..,J)
then denote the vector e’ by ¢/(x). An activation rule is a function g : X —
& with the property that no servers are considered activated for non-existing

customers, that is to say, the number of servers of queue [ activated by the
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Figure 1. The topology graph of a constrained queueing network

18



activation vector g/(x) are less than or equal to z;;; where servers of queue
| are those servers ¢ for which ¢(i) = I. An activation policy is a collection of
activation rules g, t = 1,2,..; at slot t we have E(t) = ¢,(X(¢ — 1)). Until
section 5 we consider stationary policies that is policies which use the same
activation rule at each slot. In section 5 it will become apparent that we do not
gain anything with respect to stability if we consider nonstationary policies in
addition to stationary. The class of all stationary activation policies is denoted
by G. When the network is oper.ated by policy = with activation rule g, at slot
t 4+ 1 we have E/(t + 1) = ¢/(X(¢)) where E¥(t) = (E;;(¢): ¢ =1,..,N) is the
activation vector of class j at slot £. The state of the system evolves according

to the equations:

Xi(t+1) = XI(t)+ ROM(t+ DE (¢ + 1)+ Af(t+1), t=0,1,...,7=1,..,J

(2.1}
where M(t) is a diagonal matrix, the ith diagonal element of which is equal to
M(t), XI(t) = (Xy;(¢): I =1,..,L) is the vector of the queue lengths of class
7 by the end of slot ¢, AJ(t) = (A;(#) : I = 1,..,L) is a vector with its [th
element A;;(t) being equal to the number of customers of class j arriving at
queue [ during slot £ and R’ is an L X N matrix that reflects the connectivities of
the queues among themselves and with the destination node of class j. Matrix
R is called the routing matrix of class j. The element of R’ in its Ith row and

19



tth column is

1, if h(Z) =1 and queue [ i1s not connected
o with the destination node of class !
B =1, ifq(i) =1
0, otherwise.

We assume that {A;(1)}52,, {M:(¢)}2, are i.i.d. sequences of random vari-
ablesforall/=1,..,L,; =1,..,J,¢=1,.., N. Furthermore we assume that the
above processes are independent among themselves and the second moments of
the arrival processes E[A};(t)] are finite. Under those statistical assumptions
and for any policy in G the queue length process {X(#)}$2, is a Markov chain.
Finally we make the following assumption concerning the topology of the net-
work.

A.2 If a customer of class 7, may reach some quene Iy then this customer may
be forwarded from queue Iy to some destination node of class 75 if an
appropriate route is selected. More specifically, if there is a sequence of
servers iy, .., 1, such that agi .y, > 0, R(im) = q(imt1), m =1,.,n —1

v such that h(i,) = ¢(7}),

then there exists a sequence of servers 4{,..,7],

Rz, ) = q(él,0 1), m=1,..,n" — 1 and there exists a link in E4 from A{i},)
to the destination node of class j,.

The above queueing model corresponds to nultihop radio networks as follows.

2.2.2 The correspondence with multihop radio networks
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Consider the radio network model introduced in section 1.2. A packet en-
tering the system at some node 7 may have as eventual destination any node
of a set of nodes S; in the sense that whichever node of S; the packet reaches
it leaves the system. This assumption correspond the case where the actual
destination of the packet 1s some node outside of the radio network which is
connected through wired link connections with all nodes of ;. Therefore after
a packet reaches a node of S; it does not need the resources of the radio net-
work any more. We consider a multidestination system with J sets of eventual
destinations 57,..,.57. Notice that two destination sets §; and S, may over-
lap. We distinguish the packets in ldifferent classes according to their eventual
destinations. The packet length is constant and the system is slotted with slot
length equal to the packet length. The transmissions are synchronized to start

in the beginning of a slot.

The radio network is modeled by a constrained queueing system with {V|
queues and |E| servers. Each queue corresponds to a network node and each
server to a radio link. There are J customer classes; each class contains packets
with a specific destination. The service process {M;(¢)}:2, of a link 7 has the
following interpretation. If link ¢ transmits at slot ¢ the packet is correctly
received if M;(t) = 1, otherwise it is lost and it has to be retransmitted. Note
that since we select the transmiting links at each slot such that conflicts are
avoided the possible packet losses which are modeled by the service process are
due to channel inefliciencies. A set of servers constitute an activation set if
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the corresponding set of links of the radio network is a transmission set. The
topology graph G' = (V’, E’) of the constrained queueing system is very similar
to G. The set of nodes V' is the union of V] and V; where V| is identical to V
and V] contains one node for each packet class. The set of linksis E' = E} | ] E},
where E is identical to £ and Ej contains a link (v,w) from node v € Vj to
node w € Vj if node v of the radio network belongs to the destination set
S; of the class of packets that correspond to node w € V;. When secondary
interference is tolerated the constrained set S contains all matchings of G where

the weights are updated at each sklot.

2.3 Stability considerations

The system 1s stable if the queue length process reaches a steady state and
does not blow to infinity. When the Markov chain X is irreducible, stability
of the system is equivalent to ergodicity of X. Under the general assumptions
we made about the constraint set and the topology of the queueing system we
can not guarante irreducibility of the queue length process. In the general case
the state space is partitioned in transient and recurrent states. We consider the
system to be stable if all recurrent states are positive recurrent and the queue
length process hits the recurrent states with probability one; that is X does
not remain in the set of transient states for ever. In the following we state our
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definition of stability after we recall some basic facts from Markov chain theory
([KSKT76]).

A state x is reachable by some state y if P(X(t +n) = x|X(t) =y) >0
for some n > 1. The states x and y communicate if they are reachable by each
other. A set of states R is closed if P(X(t4+1) =x|X(t) =y)=0forally € R,
x & R. The state space of the chain is partitioned in the sets T, R;, Rj,..
where R;, 7 = 1,2, .. are closed sets of communicating states and T' contains
all states which do not belong to any closed set of communicating states and
therefore are transient. For any x € T assume that X(0) = x and consider the

time

| oo, fX(t)eT, vi>0
Tx = min{t > 0: X(¢) ¢ T}, otherwise

(3.1)
at which the chain hits some of the sets R’ for first time when it starts at £ = 0

from state x at t = 0. If U2, It; = 0 then apparently 7 = co. We can define

now stability as follows.

Definition 8.1: The system is stable if for the queue length process X we

have

P(ry <oo)=1 VyeT (3.1a)

and all states x € UJZ; R; are positive recurrent.

Next theorem states sufficient conditions for stability of the system according to
definition 3.1. Those conditions involve the drift of a test {Liapunov) function
on the state space of the chain. In the case of irreducible chains similar condi-
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tions are sufficient for ergodicity of the chain and have been studied extensively

([Fo53]).

Theorem 3.1: Consider a Markov chain X(2) with state space X. If there
exists a lower bounded real function V : A — R, an € > 0 and a finite subset

Xp of X such that
EV(X(t+1)) - V(X()|X(t) =y] < —¢ if yé¢ A, (3.2)

EVX(t+1))X@) =y] <o i ye X (3.3)

then for the time 7x as defined in (3.1) we have
Plrx <oc0)=1 ¥xeT

and all states x € U2, B; are positive recurrent.
Proof: For any state y € X consider the Markov chain starting from y (X(0) =

y) and the time

g — 1o i X(t) ¢ Ay VE>0
Y7 | min{t > 0: X(t) € Ay}, otherwise

We show that

Eloy] < oo (3.4)

Assume first that y ¢ X. Consider the process V(t) = V(X(¢))1{cy >t} and

let F; = o(X(1),..,X(2)). We have

EV(E+ 1)|F]=EV(E+1); oy > t|F]P(oy > t)
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FEV(+1); 0y S HFIP(oy <)
If oy <t, then V(24 1) = 0 therefore
EV(t+ 1)|F] = BIV(E + 1); oy > t|FR]P(oy > t)
< EV(X(t+1); oy > 7] = 1oy > HEV(XE1)IF] < V(1)-el{oy > 1)
By taking expectations above we get
0 < E[V(t+1})] < E[V(t)] — eP(oy > t) (3.5)
and by replacing recursivelly from (3.5) we get

0<EVE+D]<V(y)~ eiP(ay > k) (3.6)

If we let t — oo in (3.6) we get
0 < V(y) = eBloy] = Eloy] < 7 V(y) (3.7)
Ky € X, then

Eloy] = Z Pyx t Z pyxEloy +1] < 14¢7! Z PyxV(x)
xE€AXo X¢X0 XQX{)

where pyx = P(X(t + 1) = x|X(t) = y). From (3.7) we have E[oy] < oo in
this case also. Hence (3.4) hold for all y and it implies that the chain visits
set Ap infinitely often from whichever state it starts. Since A} is finite one
of its elements, let say z, 1s visited infinitely often. Because of that state z
is recurrent and can not belong to T since T' contains only transient states.
Therefore z € U2, R; and (3.1) holds for all x € 7.
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If the chain is restricted in any closed communicating class R; then it is
irreducible. Using the well known Foster’s criterion ([As87]), conditions (3.2)

and (3.3) imply that all states in R; are.positive recurrent. o

Corollary 3.1: When conditions (3.2), (3.3) hold then there is a finite

number of closed sets of communicating states.

Proof: Comnsider a closed set of communicating states R,. If the system starts
from a state y € R; then it will remain in R; for ever. If R; has no common
element with Xy then the chain will never hit &} therefore oy, = o0 a.s. which a
contradiction with 4.2. Hence each set R; should have a commeon element with
A and since Ay is finite and the sets R; are disjoint there can be only a finite

number of them. o

A function V such that in theorem 3.1 is usually called stochastic Liapunov

function.

2.3.1 Scheduling for maximum throughput

We would like the system to be stable for a wide range of arrival and service
rates. The arrival rate of class j to queue I, E[A;(t)] is denoted by a;;. The
multiclass arrival rate vector a = (a;; : {=1,..,L, j = 1,..,J) consists of the
arrival rates of all classes at all queues. The service rate E[M;(t)] of server ¢ is
denoted by m;; the service rate vector is m = (m; : ¢ = 1,.., N). We quantify
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the performance of an activation policy by its stability region.

Definition 9.2: Stability region Cj of policy 7 is the set of multiclass arrival

rate vectors a for which the system is stable under «.

We wish a policy 7 to have a large stability region. The largest the stability

region the better the policy is.
Definition 3.8: A policy m1 dominates another policy mp if Cr, C Chr, .
If policy 71 dominates policy 72 the system is stable under m; whenever it is

stable under w3 (fig. 2). Two policies are not always comparable since it may

no one dominates the other. This is the case for policies 73 and m in fig. 2.

Definition 3.4: The stability region of the system is

C=JCn

TEGE

The set C contains all arrival rate vectors for which there exists a policy in G
that stabilize the system. An optimal policy, that is one which dominates any
other policy in &, should have stabili—ty region that is a superset of the stability
region of any other policy in G; therefore it should have stability region equal to
C'. Such a policy is called maximum throughput policy in the rest of the chapter.
Notice that since not any two policies have comparable stability regions, it is
not clear at all whether a maximum throughput policy exists or not. One of

our main results 1s that such an optimal policy exists indeed.
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Figure 2. Stability regions
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2.3.2 Maximum Throughput Policy

Policy wg that we specify next achieves maximum throughput. The acti-
vation rule for mp is denoted by go(-); the vector E(t) = go(X (¢ — 1)) is selected
in three stages.

Stage 1. For each server : a weight D;(¥) is selected as follows. For each

class j and server 7 consider the quantity

(Xt =3) = Xpgays{t — 1))ma, A R(2) ¢V
Di;(t) = {Xg(f)j-(t — Dms, "o if h(2) € V;

Let Di{1) = max;=y, . s{D;i;(t)} be the weight of server 1 and D(t) =
(Di(t): i=1,..,N) the weight vector at slot t.

Stage 2. A maximum weighted activation vector ¢ is selected from S

¢ = DT(t
¢ = argmax{D" ()}

If more than one vector ¢ achieves the maximum, ¢ is selected arbitrarily
among them.
Stage 3. Let 35 be the class for which D;(t) = D;;j‘,- (1) for each server 1;
if more than one classes satisfy the above inequality then j; can be any of
these classes. The multiclass activation vector E(¢) is as follows

1, ifé;,=1,7 =7 and Xy5);(t — 1) is greater than

Ei(t) = the number of servers that serve queue ¢(7)
0, otherwise
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Remarks

1. If Dy;(t) is greater than zero and server i serves a customer of class j
during slot ¢ then the quantity D;;({) tends to be reduced. That is the difference
between Xp(;;(f) and X (;);(t) is diminished. Policy mo selects E(t) such that
the servers 1 and the corresponding classes j for which D;;(¢) is larger are
activated. In other words 7 tends for each class to equalize the queue lengths
of the same class in different network nodes, giving priority to the servers and

classes for which this difference is larger.

2. The implementation of policy 7 requires at each time slot ¢ the solution
of the optimization problem

Teaé{{DT(t)c} (3.8)

The number of possible activation vectors (the cardinality of S) is usually large
compared to the number of servers; in fact it is of exponential order with respect
to the number of servers most of the times. Therefore solution of the above
optimization problem by exhaustive search of all activation vector is out of the
question. In certain cases the constraint set S has a specific structure that
can be utilized for the solution of (3.8). In section 5 the constraint sets are
illustrated for several communication and computer systems. Finding efficient
algorithms for the solution of (3.8) given the constraint set S in each particular

application 1s important for the implementation of 7.
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2.3.3 Characterization of the Stability Region

In this section we characterize the system stability region C'. The set C’
that we specify next plays an essential role in the characterization of C' since
as it will be shown later C' C C C C' where C' is the closure of C'; the closure
of C is well defined since C is a subset of RY/. The definition of C' involves
deterministic flows in the graph & and the heuristic discussion that preceeds
its definition provide some intuition.

Assume that the constraint queueing system is stable under some schedul-
ing policy m and that it operates in steady state. Let f;; be the rate with which
customers of class j are served by server ;. Since the system is in steady state,
the rate with which customers of class j enter some queue ! should be equal to
the rate with which customers of the same class leave the queue [; that is the
rates f;; should satisfy the flow conservation equations in each network node.
Consider a multicommodity arrival rate vector a and let a’ = (aj; : [ = 1,.., L)
be the vector which contain the arrival rates of class j at all network queues
for j = 1,..,J. The vector £/ = (f;; : ¢ = 1,..,N) that consists of nonnega-
tive numbers and satisfy the flow conservation equations which are written in

matrix form as

al = ~Rf7, (3.9)
is called a-admissible flow vector for class j. The vector f = (fi; : ¢ =
1,.,N, j = 1,..,J) that consists of nonnegative numbers and is such that
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the corresponding vectors f7 satisfy (3.9) for j = 1,.., J is an a-admissible mul-
ticommodity flow vector. Let Fy be the set of all a-admissible multicommodity
flow vectors. Associated with a vector £ € Fj is the vector f = Ejzl 7. The
component of f that corresponds to server 7 is the total rate of customers which

are served by server 1, irrespectively of their classes; therefore f is called total

flow vector. The set C' can be defined now as
C' = {a: there exists f € F,, ¢ € co(S) such that for the

corresponding f we have my fi <ciif f; >0and fi=0if ¢ =0 }

where co(5) is the convex hall of the constraint set §. The closure of C' is

characterized in the following lemma.

Lemma 8.1: The closure C' of C is
C' = {a : there exists an f € F,, and a ¢ € co($), such that M~'f < ¢}

where M is the diagonal matrix with ¢th diagonal element equal to m;, ¢ =
1,.,N.

Proof: We denote by B the set which we want to show that is equal C'. We show
first that all points of B are points of closure of C' therefore B C C’. Suppose
that for the vector a there exist f € F,, ¢ € co(S) such that M ~f < ¢. Consider
the vectors a,, n =1,... such that a, = (1 — L)a;; :j =1,...,J,  =1,.,N)
and the multicommodity flows £, = (1 — 1)fi; : 7 = 1,...,J, ¢ = 1,.,N).
We can easily verify that £ € F,, implies that f, € F, . Furthermore since
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M™'f < c weget (MMH(1— 1)) < ¢ if (M~1f); > 0. Hence we have a, € C
for every n = 1,... The limit of the sequence a, is a, therefore we have a € C".

Now we show that all points of closure of C’ belong to B therefore ¢! C B.
Suppose that a, € C’, then there e;cists a sequence a, n = 1,... such that
a, € C and nli_I};loan, = a. Since a, € C, there exist f, € Fa_,cn € co(S) such
that (M7E,); < ¢;if (M7*f,); > 0. We show that there exist f € Fy, ¢ € co(S)
such that M-_lf' < ¢ which imply that a belongs to B. We can assume that for
each class j, the server utilization vector f! is acyclic in the sense that there is
no sequence of queues ¢q,...,¢, such that there exists a server 7 that directs
traffic of class j from ¢; to qry1 [ = 1...,n — 1, g, to ¢ and (f]); > 0,
I=1,.,n. Ifsome fJ is not acyclic, we can easily make it without violating the
rest of the conditions that f,, satisfies. Note, furthermore, that if 2 is acyclic,

then

120 < qflal | (3.10)

where || - || is the square norm of R" and ¢ depends only on the topological
structure of the system that is numbers of servers, queues, customer classes, and
the connectivity. Since al, — a’ the sequence of flows fJ is bounded because
of (3.10) therefore there exists a subsequence f] that converges to some vector

7. Notice that f’is a flow vector for class j since
la? + R7f7|| = ||’ + RIF? — (af, + R/,

< lla? —a [ + IR/ (£ —£1, )| — 0
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therefore we have

al = —RIfS

Since the above holds for every f/ we conclude that there exist a subsequence

of multicommodity flows f,, such that
fu, € P, , By = £, M7, < cp,. (3.11)

Since ¢, € co(S),l = 1,... and co(S) is closed and bounded there exists a
subsequence ¢,, , k= 1,.. that converges to a vector ¢ € co(§). From (3.11)
we have M‘lfn,k < cp,, and by taking the limits in both sides of the inequality

we get M7 f < c. o

2.3.4 Optimality Results

The optimality of 7y and the characterization of C are stated in this section.
Three lemmas preceed the theorem. In the following lemma we show that under
mg the system is stable in C’. It shown that a quadratic function of the queue
length vector satisfies the conditions (3.2), (3.3) therefore stability follows from

theocrem 3.1.

Lemma 3.2: Under policy 7y the system is stable for every a ¢ C'

C'C Cp,-
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Before we proceed in the proof of lemmma 3.2 we state a property of the convex
hall of the constraint set which is a consequence of assumption A.1.
Lemma 3.3: If a vector ¢ belongs to co(S), then any vector a such that

0 < a < ¢ belongs to co(§) as well.

Proof: The vector ¢ can be written as

Cc = E m;Cy
=1

where m; > 0,¢; € 5,1 = 1,...|5] and Z —y m; < 1. Notice that because of
assumption A.1 vector O always belongs to S therefore the condition !;ill ms <
1 is sufficient for z > mil; to belong to co(S) since we can always add to this
sum the vector (1 — Eﬁll m;)0 and make the sum of the coeficients to be equal
to one.. Consider an element a; of a such that a; < ¢;. We can find a vector
¢’ € ¢o(S) such that ¢; =c;if j # ¢ and ¢ = a;. We specify m};, 7 =1,..|5|
such that ¢ = Z ~, m;¢; For each indicator vector ¢; which activates server
1 let m; = m;(¢); for the vector cg, which is similar to ¢; except that its
element that corresponds to server 1 is set to 0, let mj = mg + m (1 — &); for
all the other indicator vectors ¢; let m; = mj. Notice that Zl |1 m; = lel

therefore the vector ¢’ as defined belongs indeed to co(.S). Also ¢ is such that
a < ¢ but it differs from a in a smaller number of elements than ¢ does. By
repeating the process for each ¢ such that di < ¢; we obtain an expression of a

as convex combination of vectors from S and the lemma follows. &

Proof of lemma 3.2: For each vector a € €' we show that the queue
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where a” is the transpose of vector a. The first term in the sum in the right-
hand side of (3.14) can be bounded for all states X(¢) by a constant, let say b,
as we show in the following. By simple calculations we have

J
S E[(R'M(t+ DE (¢ + 1) + At + 1)T(RPM(t + DE (1 + 1) + A (¢ + 1)|X(#)] =

J L J L
=S E[(Agt+ 1) +2> ) B[4t + D]E[(RPM(t + DE? (£ + 1)) X(2)]+
J=1 =1 j=11i=1
J L
+ 30 EI((RIM(E + 1B (¢ -+ 1)) X (1)) (3.15)
7=11=1

where the notation (a); denotes the /th element of vector a inside the paren-
thesis. The term (R'M(t + 1)E/(¢ + 1}); is upper bounded by the num-
ber of servers that direct traffic to queue [ thus by N as well. Similarly,
((RPM(t + )E/(t + 1));)? is upperbounded by N?. Thus, from (3.15), we

have
J
SCE[(RIM(t + 1)E/(t + 1) + A7t + 1)T(RIM(t + DEY(t 4+ 1) + A7t + 1))|X(2)] <

J L J L
<SS E[(AG(t+ 1))+ 2N D Y E[Ag(t+ 1)) + LIN? = by. (3.16)

i=11=1 j=1 I=1

For the second term of the sum in the right-hand side of (3.14) we have

J
S ER(RM(t + DB (t + 1) + At +1))7 - XI(5)[X(2)] =

j=1

J J
= 2XIE)TERM( + DE/(t+ 1)|X(@)] + Y 2(X7 (1)) T E[AI (2 + 1)|X ()]

k
2(X7 ()T R Mgy (X() + Y 2(X? (1))l (3.17)

1 i=1

I
.MH

s
I
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where g is the activation rule that corresponds to mg and M = E[M(¢)]. From
(3.14), (3.16) and (3.17) the relation (3.13) follows. It remains to show (3.12).
Notice that the ith element of the vector X7(¢)T RIM is equal to —D;;(t + 1)
where D;;(¢ + 1) is as it has been defined in stage 1 of policy #g. From the

definition of my we have for all 3 = 1,..,J
X7 ()T R Mg} (X(1)) = —(D(t + 1)) gd(X(t)
therefore for the first term in the right hand side of (3.17) we have

J T
> 2XI () RIMg](X(6)) = —2(D(¢ + 1))" Z g3 (X(1))- (3.18)

=1
Since a € C, there exists a multiclass flow f with corresponding total flow vector

~

f, and a vector q € co(.S) such that f € F, and mi_lf,; <qifqg >0, fi =01

g; = 0. Hence, we have
al = —RfT j=1,...,J, (3.19)
and there exist 6 > 1 such that forall¢=1,..,N
Smilfi<q i q>0. (3.20)

Relation (3.20) together with lemma 3.3 imply that §M ~'f € co(S). Thus, we

have
|5]

SM™f = Z’}’ici

i=1
where¢; € S,y; > 0fori=1,...,|5| and Zlill v: < 1. Alternatively, we have

15|
M7 =" A, (3.21)
=1
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where \; = % that is A > O,ZLiII A; < 1. The second term of the sum in the

right-hand side of (3.17), after substitutions from (3.19) and (3.21), becomes

J J
S aAXI()Tal = 2AXI (1) TR/ =
=1 =1

J
Z (DIt +1))T M <2 max ((Df(t—i—l))T 1fo

J_

= 2(D(t + 1))TM—1?. (3.22)

By replacing M ~1f in (3.22) from (3.21), we get

IS1
Zz (X7(t)Ta? < 2(D(t +1)) Z/\ ci. (3.23)
From (3.17), (3.18) and (3.23) we get
J
ST ERRIM(t + DB (¢ + 1) + A(t + 17X ()] X(2)]

J |5
< —2(D(t +1) ng (X(®) +2(D(t+ 1)) Nici(3.24)

From the definition of the g we have
J .
max{(D(t +1))"c} = (D(¢ + 1)” Z; g5(X(1))
7=

> max{(D(t + N7} =N > D +1) c—N? Yeebs. (3.25)
Relations (3.24) and (3.25) imply that

J
> ER(RIM(t+ 1E (¢ + 1) + of (t + 1)TXI(8)|X (1)
) S|
< -2 Igleaéc{([)(t + 1) e} + NE 42D+ 1)T Z Aie

El
2(1 — Z As) max{(D(t + Te} + N2, (3.22)

=1
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|5]
The term —2(1 — ¥ A\;) maxees{(D(z + 1))7¢c} can be as small as we like if

=1

V(X(1)) is sufficiently large. Note first that, as V(X(t)) grows, the components

of X(1) grow as well, that is if we have V(X(¢)) > b then we get

,fllaxg {Xi;(1)} = i (3.27)
i=1,...,
Let
(loy 7o) = arg max {Xi;(1)}. (3.28)
f=1,...,4

Consider a sequence of queues I,,1;,...{,, n < L such that there is a server
that directs trafhic of class j, from queue [, to queue [,,+1,0 < m < n and
from queue [, out of the system; such a sequence exists since by assumption
there is a path from any queue to the destination of any customer class. Then,

we have:

n—1

X5 (8) = Y (Kiso (8) = Xipyaso (1)) + X1 o (8)- (3.29)

m=0

From (3.27), (3.28), and (3.29), we get

Xipio(t) o Kigjuty o 1 [ 8
m=](:)I,1&},(n—-l{(-leJo (t) - le+1jo (t))?X'!n_?O (t)} 2 :1 Z E 2 E .J—L‘
(3.30)

From the definition of my we have

Iéleas)‘({(D(t + 1))TC} > z=111"11n’ my maXx {(lejo (t) - le+1jo (t))JX[nju (t)}

N m=0,...,n—1

1 [
- SR ] .
=TV TL =1on™" (3.31)
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From (3.26) and (3.31), we get

J
SCERRM(t+ DE (¢ +1) 4+ A7 (¢ + 1)TX (8)[X(#)] <

15|
< 2(1—2)\) \/J _min mi + N?. (3.32)

From (3.14), (3.16), and (3.32), we have

|5
E[V(X(t+1)) - VIX®)IX@)] < —2(1- > X\ ) <7 min_m;+ N° 45
if V(X)) = b. (3.33)
If we take
. L(E + b]_ + NQ) 2
b= U 2(1 - lel Aj)ming—y, N mi)
then (3.12) follows. o

Lemma 8.4: If a € (C")¢, then the queueing system is unstable for any
policy in G.
Proof: Suppose that a € (C’)° and the system is stable under some policy
7. There 1s a closed set of communicating states R; such that all states in
R; are positive recurrent. For the rest of the proof we consider the Markov
chain restricted in R;. The restricted Markov chain is positive recurrent and
therefore ergodic. We can easily see that since X(¢) is ergodic Markov chain,
M(t) anii.d. process and M(%) is independent of (X(0), .., X(¢—1)), the process
(X(t~1), M(t)) is a Markov chain which is ergodic as well. Consider the vector
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Ei(t) = M(2)§/(X(t — 1)) where § is the activation rule of 7. Its 1th element
is equal to 1 if during slot ¢ a customer of class § which 1s served by server :
completes service and moves from queue ¢(z) to h(z). The vector Ztr=1 Ei(r)
indicates how many customers of class 7 have crossed each server during slots
1 to t. Since (X(t — 1), M(t)) is ergodic, the normalized sum 1/¢ 3 ._, E(r)
converges a.s. as t — co to a vector f7 which indicates the average number of
class j customners that cross each server ¢. In each queue ! and for each class j the
average number of incoming customers should be equal to the average number
of outgoing customers since otherwise X;;(¢) goes a.s. to infinity and the chain
can not be positive recurrent. Hence we have a’ = —Rf/ and the vector
f=(fi: i = 1,..N, 7 =1,..,J) belongs to F, where f;; is the ith element of
vector f/. We show now that f = Z;f:l £ is such that M~'f € co(S) therefore
we get a € C' which is a contradiction. Consider the vector E(t) = Zle Ei(t).

We have

and because of the ergodicity of (X(t — 1), M(¢)) we have

J
f=FEM(@)) §X(t-1) (3.34)

=1
where the expectation is taken with respect to the stationary probability dis-
tribution of (X(t — 1), M(2)). Since for each slot ¢, X(¢t — 1) and M(t) are

independent, we have

J J
EM() ) §(X(t - 1) = E[M(f)]E[Z §(X(t - 1))] (3.35)

=1
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Since for all X(¢ — 1) we have Ele §(X(t — 1)) € co(S), apparently

E[Y], (X(t - 1))] € co(S) as well and from (3.34), (3.35) we get that M~'f
belongs to o S). o
Policy 7y achieves indeed maximum throughput as it is stated in the following

theorem which contains our mailn results.

Theorem 3.2: The set C' characterizes the system stability region in the

sense

c'cCccC

Policy 7y achieves maximum throughput
¢’ C Cry CCC Cry

Proof: By definition of the system stability region we have Cr, C C and from

lemma 3.2
C'cCrCC (3.36)
From lemmas 3.2, 3.4 we have
CCC' CCr (3.37)
The theorem follows from (3.36), (3.37). o
Remarks

1. From part a of theorem 3.2 we have C'~C C €' — C'. Note that C'— '
is the boundary of C' which is a surface (has no volume) in the space where a
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lies. Hence part a of theorem 3.2 determines C within a surface in the space
where a lies, therefore provides complete characterization of the stability region
for any practical purpose. Similarly part b implies C,, differs from C' at most
by a surface therefore mp achieves optimal throughput.

2. In the definition of C’ the condition for a pair a of arrival and service
rate vectors to belong to C’ is an existential one. It is desirable to have an
algorithm to decide if a particular pair a belongs to €. Whether an efficient
algorithm exists or not for this problem depends highly on the structure of §.
This problem has been studied in a different context in [Ar84], [HaS88] for two
specific constraint sets. For a constraint queueing system that corresponds to
a packet radio network with no secondary interference tolerance (in the next
section both the radio network and the corresponding queueing system are
specified), deciding whether an arrival rate vector a (m; = 1, ¢ = 1,..,N)
belongs to C’ or not is an NP-hard problem as it has been shown in [Ar84].
When secondary interference is tolerated the corresponding problem has been

shown in [HaS88] to be solvable by an algorithm of polynomial time complexity.

2.4 Behavior of the system under nonstationary policies

In this section the behavior of the system when it is operated by nonsta-
tionary policies is studied. We focus on systems with a single class of customers
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and we show that for arrival rates in (C')¢ the total number of customers in the
system grows to infinity a.s. for any possible scheduling policy. Since there is a
stationary policy that stabilizes the system within C’ the above result implies
that we do not gain anything in stability by considering nonstationary policies.

Consider a system with one class of incoming customers and assume that
the service time of a customer s equal to one slot that is M;(¢) = 1 a.s. for
i = 1,..,N, t = 1,2,... Let us denote by G the class of all policies 7 =
{g+}:2, where g; is some rule for selecting I(¢) based on the whole history of
queue lengths up to time ¢. Since we have just one class of customers, we will
denote the unique arrival rate vector and queue length vector of the class by
a and X(#) respectively in the following; the multiclass activation vector E(t)
at slot ¢ coincides with the activation vector for the unique customer class and
a multicommodity flow coincides with the corresponding total flow vector and
both vectors are' denoted by f. The following theorem is the main result of this

section.

Theorem 4.1: For every policy # € G and arrival rate vector a € C° the

total number of customers in the system Z{‘:l Xi(t) grows to infinity

t—oo

L
lim ZX{(t) =00  a.s. (4.1)

In the proof of the theorem we use some results from deterministic network flow
theory on a flow network that corresponds to the constrained queueing system.
We present that next.
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For each arrival rate vector a and flow vector f, we consider a network Nas
that consists of a graph Y = (V, E), specifying the topology of the network and
a capacity assignment to the edges Car : E — R'. Graph Y is very similar to
the topcl)logy graph of the queueing network. The set of nodes V contains one
node 7 for each queue i of the network, an originator node o and a terminal node
d. The set of edges F contains one edge (7, 7) for each server that serves queue
i and directs traffic to queue j, one edge (i, d) for each server that serves queue
? and directs traffic out of the system and one e&ge (0,t) for each queue 7. The
topology graph Y is the same for all vectors a and f. The capacities of the edges
depend on the vectors a and f as follows. Each edge that corresponds to server
k has capacity fi; each edge {0,1) has capacity a;. The vector q=(g; : ¢ € E)
which is such that 0 < ¢; < Car(z) and which satisfies the flow conservation

equations

Yo=Y @ for 1e(V—{o,d}) (4.2)

i:terminates Proriginates
at | _at !

i1s a feasible flow vector for the network Ngr. Let (Qu¢ be the set of feasible
flows. The flow transfer q of a flow vector q is defined by ¢ = Zf’zl 9(o0,i). We
need to consider the maximum flow transfer over all feasible ows in Qqr. That

1s denoted by

a = max 4.3
q f qEQaf q ( )

and is called maxflow in the following. An alternative characterization of the
maxflow, which we need in the following, is given by the maxflow-mincut theo-
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rem. We need the notion of a cut to state that theorem. A cut (W, W') of the
network Ngr is a partition of V sucﬂ that 0 € W and d € W’. The capacity
Car((W,W'}) of the cut (W, W’) is defined as the sum of the capacities of the
edges which are directed from W to W’ (We denote both the capacity of an
edge and the capacity of a cut by Car(-)). A mincut (W, W')as of the network
Nag 1s a cut of minimum capacity. In the following (W, W')ar denotes a mincut

of Nagr and Wae, W/, reffer to the sets W, W' respectively of (W, W')ar.

Mazflow-mincut theorem ({PaS82]):

gat = Cat(W, W' )ar ).

Next lemma preceeds the proof of theorem 4.1.

Lemma 4.1: If a € (C)°, then there exists f, € co(S) such that

L

Za, — max Car(W,W)ar) = Y a; — Cag, (W, W')ag,) > 0

feco(S)
i=1

Proof: Since the set of edges {(0,¢) : ¢ = 1,...,L} is a cut with capacity

Zle ai, for every £ € co(§) we have

fIEIga,X at (W, W )ag). (4.4)

u'Mh

It is enough for the proof of the lemma to show that the equality in (4.4)
does not hold and that the maximum is actually achieved. The capacity of a
cut is a continuous function of f. The capacity of a mincut Cas((W, W' )ar) is
continuous in f as a maximum of continuous functions. Since Cae((W, W' )ag)
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is continuous in f, its maximum value when f € ¢o(S) is achieved for some
f, € co(S). It is enough to show that S L ai > Car, (W, Wag,) > 0. Assume
that Cae, (W, Was,) = Ef’zl a;. Then, from the maxflow-mincut theorem,

there exists q° € Qar such that

L L
S 6ty = Cat, (W, W'ae,) = > as. (4.5)
=1 =1

Since q° € Qaf, we have 0 < ¢, y <a;i 1=1,... ,L and in view of (4.5), we
have

Gy =a 1=1,...,L (4.6a)

From (4.5a) and the flow conservation equations (4.2) which should be satisfied
by q°, we conclude that the elements of q° that correspond to the edges of G
that correspond to the servers, constitute a vector that belongs to F,. That
vector belongs to co(S) as well, as 1t is implied by the capacity constraints and

the fact that f, € co(.5). This is a contradiction since a € (C)°. o

Corollary 4.1: There exists an € > 0 such that for every £ € co(S), we have

Z ap—€ > Z fai -

lEWar [EWoyr, JEW!
i#o {i.j)EE

4

Proof: From lemma 4.1 we have

L

L
N a = Catl(W,Wat) 2 > ar —
=1

ma(xs) Cat{((W, W )as) = e > 0. (4.6D)
l:l co

fe

In the left handside of (4.6b) the capacities of the forward edges of (W, W' )ur
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that originate from o cancel out with the corresponding ajs and we have

L
Z ar — Cas((W, W)ag) = Z ar — Z fi,jy=2e>0
=1

leWar PEWar, JEW!,
iso (i,J)EE

which completes the proof of the corollary. o
Now we proceed in the proof of theorem (4.1).

Proof of Theorem 4.1: We show first the following

L ¢
Yoxut) > min (D O (Adr) - @)+ €)} (4.7)

= T

For each Q) C {1,..., L}, from equations (2.1) we have

SNX(t) =YXt — 1)+ > (RE@)+ Y Al?) (4.8)

1€Q 1€Q 1€Q 1€Q
Each edge which has both end nodes in ) contributes an 1 and a -1 in
Y 1eo(ITE(t))r, each edge directed to a node in @ from a node outside of Q
contributes an 1 and each edge directed from a node of @ to a node out of @

contributes a -1; hence we have

D (RE@) 2z~ > (Buy®) (4.9)

e leQ,7jgQ
(1,7)€EE

where E(; ;(#) denotes the component of I(t) that corresponds to the server
that corresponds to link (I, 7). From {4.8} and (4.9) after iterative substitutions

we get

NxXi®) 2> O A= > Eup(r) (4.10)

1€Q r=1 1eqQ 1€Q.igQ
(hier
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Consider the vector A(t) = %21:1 E(7) that belongs to co(S) and the flow
network Nay(y). From corollary (4.1) we get

>, Ayt < D a—e (4.11)

TEWan() JEW 1y IEWanio
I (1,/)EE

where ¢ is as defined there. From relations (4.10), (4.11) we get
¢
S X2 Y (Y (A —a)+e)
1EWar(r) =0 1eWire)
that shows (4.7). For any set @ C {1, ..., L'} the random variables (3 ;- o (A7)~

ar)+e), 7 =1,2,.. are 1.i.d. with expected value e > 0 hence we have

im S A(r) —a) +e) =00 as. YQE{l,.,L}  (4.12)

t—oo

=0 IeqQ

From (4.7), (4.11) we get (4.1). o

2.5 Implementable maximum throughput policy

The maximum throughput policy 7y specified in section 2.3.2 requires the
computation of a maximum weight activa,tionr set at each slot. That computa-
tion is complicated in several cases as we mentioned earlier. In this section we
specify another link activation policy that we call w1. This policy is, roughly
speaking, an adaptive version of mg; it achieves maximum throughput in the
same sense as 7y and is easily implementable. Let I(¢) = Zj(:l E’(t). Policy
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7y computes the vector E(¢) in three stages based on X (¢ — 1) and E(t — 1) as
follows.
Stages 1,3. Those stages are the same to the corresponding stages of
policy .
Stage 2. An activation vector ¢ is selected from S randomly according to

some probability distribution P[X(t — 1),-] on .S. Then we let

¢ = D7(t)d
F T e O

The distribution P[X(¢ — 1),-] should be such that the probability of se-
lecting a maximum weight activation vector is bounded from below by
some positive number a for all X{t — 1) € X. Under policy m; the pro-
cess Y(t) = (X(t — 1),I(¢)) is a Markov chain. The state space of Y is
partitioned in the sets T, R;, Rp,.. where R;, 7 = 1,2, .. are closed sets
of communicating states and T contains all the transient states For any

x € T assume that Y(0) = x and consider the time

FX(H)eT, Vt>0

=% (3.1
7=\ min{t > 0: X(t) ¢ T}, otherwise 1)

The following theorem shows that m; achieves maximum throughput.

Theorem 5.1: If a € C' and m; acts on the system then we have
Plrx <o0)=1 VxeT (5.2)

and all states x € Uj2, R; are positive recurrent.
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Proof: For each vector a € C’ we show that the queue length process satisfies
the conditions of theorem 3.1. Let In.x(X(t — 1)) = argmaxces(D7 (¢)c); if
more than one ¢ achieve the maximum above then [,y is selected arbitrarily

to be any of them. Consider the function V(Y (¢)) = Vi(Y(¢))+ V2(Y(¢)) where
J

V(Y1) = Eils Zjea(Xis(t — 1)) and W(Y() = (DT(6)(Imax(Y (1)) ~

I(¢)))?. We show that if a € C’ and € > 0 there exists a positive number b

which may be a function of €, a and of the second order moments of the arrival

process, such that
EV(Y(t+1) = VYO)IY®)] < —e i V(YE) =6 (53)
Furthermore we show that
E[V(Y(t +1)) - V(Y)Y < 00 ¥ Y(2) € X. (5.4)

Note that the set Sy = {y : V(y) < b} is finite; therefore relations (5.3), (5.4)
are the sufficient conditions for stability stated in theorem 3.1. Proceeding

similarly to the proof of lemma 3.2 we have

|5]
EVi(Y(t+1)-WV(YE))Y(#)] < —2(1— Z /\5)%\/ ng(m min | mid
N? 4 by + 2D7 () (Lrmax (Y () — I(2)) (5.5)

where Zli’l A; < 1 and b; is a constant. We also have
EVa(Y(t+1)) = Va(Y ()Y (8)]

= (DT () Imax(Y (1)) = 1(1)))* P(I(t + 1) = Tmax(Y (¢ + 1))
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+EV2(Y(E+1) = Va(YEDNIY (), X(2 + 1) # Imax(Y (¢ + 1))
P(I(t +1) = Inax(Y(t + 1)) + b2

where b, 1s a constant. From the assumption about the probability distribution

with which we select the activation vector in stage 2 we get

EVa(Y(t 4 1)) = Va(Y ()Y (2)] < -Va(Y(2))a
H(DT (t41)(Lrnax (Y (t41)) = X(241)))* = (DT (2) (Imax (Y ()~ 1(£)))* ) (1 —a) + b2
and after some calculations we get

EV2(Y(t +1)) = Vo(Y(E)IY(#)] < =Va(Y(2))a

+bsA/Va(Y () (1 — a) + by (5.6)

where b3 > 0. From (5.5), (5.6) the inequality (5.4) easily follows. We proceed

now to show (5.3). After some calculations we have
E[V(Y(t+1)) - V(Y)Y (2)]
b—Va(Y (1) = Va(Y())a + ma/Va(Y()) +ms  (5.7)
where my > 0. From (5.7) we get
E[V(Y(t+ 1) = VY)Y (1)] < =Va(Y(1))a + ma/Va(Y (1) + ms

hence we can select a @ such that for all b we have

—Va(Y{£))a + ma/Va(Y (1)) + may < —eif /Vo(y) > 6 (5.8)
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If +/V2(y) < 6 then we have

—~mi/ b — Va(Y (1)) — V2 (Y (2))a + ma/Va(Y (1)) + ms

[(6—62)* |
S m29 + g — M % (59)

From (5.7), (5.8) and (5.9) we get (5.3) o
2.6 Other applications

In this section we present two applications for which the constrained queue-
ing network is an appropriate model. Before we proceed to specific examples
of constrained queueing systems, we dis;:uss one class of activation constraints
which are encountered in several practical systems; those are the constraints of
the conflictang pair type. In that kind of constraints certain pairs of servers, the
conflicting pairs, are specified; no two servers that constitute a conflicting pair
can be activated simultaneously. Activation set is any set of servers that does
not include any conflicting pair of Servers. In this case the constraint set has a
nice representation. Consider an undirected graph G = (V, E') where V is the
set of servers and E contains a link (7, j) if servers ¢ and j are a conflicting pair.
The constraint set contains all independent sets of nodes that 1s all sets such that
no two nodes of the set are connected by a link. For example if the constraints
are of the conflicting pair type then the solution of the optimization problem
3.8 is equivalent to the computation of the maximum weighted independent set
of the graph that represents the constraints. In other cases, depending on §,
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the optimization problem 3.8 is reduced in different combinatorial optimization

problems.

2.6.1 Databases with concurrency control

In databases where concurrent processing of several transactions is possible
a control mechanism is needed to prevent conflicting transactions (transactions
which may try to alter the same items of the database) of being executed
simultaneously. The constrained queueing model that we are considering pro-
vides a model for concurrent processing in databases and the constraints in
the simultaneous server activation captures the constraint in the simultaneous
processing of conflicting tranéactions; furthermore the maximum throughput
policy my that we have specified earlier provides a concurrency control mecha-
nism that achieves maximum throughput. The following model for databases
with concurrency control has been considered in [Ke85], [MiW84], [Mig85].

The database consists of N items. The processing of a transaction requires
a set of the items of the database; some of these items need to be exclusively
allocated to the transaction while the rest may be used by several transactions
simultaneously as long as no transaction demands them exclusively. A trans-
action j is completely specified by two disjoint sets of items W; and R; where
W; is the set of items that should be exclusively allocated (locked) during the
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processing of 7 and I; the set of items that need not be exclusively locked by
7. Two transactions j and { may be processed simultaneously if no transaction
needs to lock exclusively items which are needed by the other transaction: that

is the two transactions may be processed simultaneously if
(WjﬂW()U(WjﬂR[) U(W(ﬂRj) = 0. (6.1)

There are J different transaction classes. Each class is characterized by the
set of items that the transactions need to lock exclusiveiy and nonexclusivelly.
Transactions of each class are generated according to Poisson point processes.
A transaction may be queued for processing if it can not be processed at the
time that it is generated. ‘Assume that the processing time of a transaction
is constant and the same for all classes. The processing of all transactions
1s synchronized to start at the same time. At the time instant that a new
processing phase is initiated a decision is taken which set of nonconflicting
transactions should be selected; this decision can be based on the number of
transactions of each class which are in the system at that time. The above
database model corresponds to a constrained queueing system with J parallel
queues, J servers one for each queue and J customer (transaction) classes. Each
queue ; receives customers of class ¢ only and a served customer is always routed
out of the system. Activation set is any set of servers that serve nonconflicting
transaction classes. Note that the constraints in this case are of the conflicting
pair type. The policy mg selects for processing at each slot the set of transaction
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classes for which the sum of queue lengths 1s maximum. The stability region of

the system is equal to the convex hall of the constraint set S.

2.6.2 Parallel Processing

The generalized multiserver queue has been proposed in [BaW90| as a
model for certain parallel processing systems. The multiserver queue has N
servers; the customers arrive with rate A; each customer requests to engage
a random number £ of servers (processors) for its service; the arrival rate of
customers that request & servers is Apy where E;V:l pr = 1. The total number
of servers requested by the customers which are served simultaneously should

be less than or equal to N at each time instant ¢.

The multiserver queue as specified above corresponds to the following con-
strained queueing system. There are N classes of arriving customers and N
queues. Customers of class j arrive exclusively in queue j with rate Apy and
they correspond to the customers of the multiserver queue that need to engage
J servers. There are IV servers at each queue. After service completion a cus-
tomer leaves the system. The element of an activation vector i that correspond
to server m of queue [ is denoted by ¢;,,. The necessary and sufficient condition
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for a binary vector with N* elements to be an activation vector is

N N

DU im) <N

=1 m=1
In [BaW90], under the assumptions of stationarity and ergodicity of the arrival
processes and the service times a scheduling policy that stabilize the queue is
obtained. This scheduling policy depends on the parameters (p1,..,pn).

Under the assuraption of Poisson arrivals and constant service times, the

policy mp that we propose here stabilizes the system as well. The assumption
about the statistics of the arrival and service processes are more restrictive in the
latter case. The corresponding policy 7g though stabilizes the system without

knowledge of the parameters (py1, .., pn). The knowledge of these parameters is

necessary for the stabilization of the system by the policy proposed in [BaW80].
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CHAPTER 3

Scheduling for minimum delay in tandem radio networks

3.1 Introduction

In this chapter we address the issue of queueing delay. We consider a
tandem radio network with a single transceiver per node. Under two differ-
ent assumptions about the traffic we obtain optimal link activation scheduling
policies and necessary optimalily conditions. In the proofs we use pathwise
arguments that enable us to make strong statements about the optimality of
certain scheduling policies. More specifically the optimality will be in the sense
of stochastic order which is strictly stronger than that in the sense of of ex-
pected values. In the following we give the definition of stochastic order and
a theorem that will be used later (for more details on the notion of stochastic
order the reader is referred to [St83]).

Consider the discrete time processes X = {X(¢)}2,, Y = {¥Y(¢)}2, and
the space of all real valued sequences R = R%+. We say that the process X is
stochastically smaller than the process Y, and write X <., YV if P{f(X) > z} <
P{f(Y) > z} for every z € R, where f : R — R is measurable and f(z) < f(y)
for every =,y € R such that «(¢) < y(t) for t € Z;. The next theorem provides
alternative characterizations of the stochastic ordering relationship between two
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processes.

Theorem 1.1 ([St83]): The following three statements are equivalent:
1) X <a4Y
2} P(g(X(t1),...., X (1)) > 2} < P(¢(Y (t1),.... Y (tn)) > z) for all (t1,.... 1)
all z, all n, and for all ¢ : R® — R, measurable and such that
zj <yj, 1 < j < nimplies g(z1, ..., @n) < 9(y1, -y Yn)-
3) There exist two stochastic processes X' = {X'()}{2,, Y’ = {Y'(¥)} 2,
on a common probability space with the same probability laws as X
and Y respectively such that X'(1) < Y'(¢) a.s. for every t € Z,.
Note that if the process of total number of packets in the system under
policy mp is stochastically smaller than the corresponding process under some
other policy 7 then the average number of packets in the system under mg is
smaller than that under = (if the averages are well defined). By Little’s law
([Wa88]) it is implied that the average delay under 7 is smaller than that under
7. Hence optimality in the stochastic ordering sense is stronger than average

delay optimality and implies the latter.

3.2 Tandem radio networks

We consider a tandem radio network consisting of N + 1 nodes indexed
from 0 to N. There is a radio link directed from each node'é to nodez—1 and it
is denoted by ¢. There is a single tranéceiver at each node i, therefore at most
one link of those adjacent to node 7 may transmit at each time instant without
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conflicts. We assume that the transmissions of neighboring nonadjacent links
do not interfere. A set of links constitutes a transmission set if and only if
no two links in the set are incident at the same node. The time is considered
slotted. The slot length is equal to one time unit; the slot ¢ is the time interval
(t— 1, t]. The packets have constant length equal to the length of the slot. The
transmissions are synchronized to start at the beginnings of the slots.

Each node 7 at each slot t receives A,(t) exogeneous arrivals. The vector
of arrivals at all network nodes during slot t is denoted by A(%). Exogeneous
arriving packets, as well as packets which are forwarded to node ¢ from neigh-
boring nodes are queued for transmission; let X;(¢) denote the length of the
queue of packets at node ¢ by the end of slot ¢; the corresponding queue length
vector is denoted by X(t) and it lies in Z which is denoted by X. The queue
length process {X(¢)}$2, is denoted by X. We are making two assumptions
about the traffic.

Al. All packets have the same eventual destination which is node 0.
A2. The packets which enter the network at node 7 have as destination node

¢ — 1 from where they leave the system.

In fig. 3 we see the two queuing systems that correspond to the above assump-
tions about the traffic. The servers correspond to the links and the noninter-
ference constraints require that no two servers that correspond to neighboring
queues should be activated simultaneously. When the assumption Al holds the
radio network is represented by a tandem queueing system;
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(a)
C O . . . O__>
(b)
O—>
O—»
()
(c)

Figure 3. In (a) we see the diagram of a packet radio network. In (b) and {c)

we see the queueing models of this radio network under traffic assumptions Al

and A2 respectively.
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the queues that correspond to different links interact both because there
is traffic forwarded from one queue to the other and because the servers that
correspond to different queues are dependent. When assumption A2 holds, the
system is represented by a set Qf parallel queues; in this case the queues interact
only because their servers are dependent. Let I(¢) be the transmission vector
which is activated at slot t. We assume in the following that a link 1s activated
only if its origin node is nonempty. Under assumption Al the queue length

vector evolves according to the equation
X(t+1) = X(t) + RI(t + 1)+ A(f + 1) (2.1)

where R 1s an NV X N matrix with elements

1, ifj=i+1
n-,-:{—l, i =j

0, otherwise.

Under assumption A2 the queue length vector evolves according to the equation
Xt +1)=(Xt) =TIt + 1) + AR+ 1). (2.2)

The decision of whether each link 7 will be activated or not, that is the
value of the jth element of I(¢), i1s taken by a central controller which selects
the whole vector I(¢) at each slot. The selection is based on the queue lengths
at all network nodes. In the following two sections we study the delay optimal

link activation scheduling problem under the two traffic assumptions.

3.3 Single eventual destination
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In this section we focus on the case where all packets have the same eventual
destination which is one of the end nodes of the tandem. Consider the stationary
policy 7, which at slot ¢ selects the transmission vector I{¢} = go(X(¢—1)) where
go : X — S is defined next. Let i = go(x) and ;, z; be the jth elements of
vectors 1 ahd x respectively; the vector 1 is defined recursively by the following

equations

. 1, ifx; >0
0, ifa =0

0, otherwise 71=2,..,N -1,

. {1, if:cj>0andij_1:0
ZJ‘ =
In fig. 4 we see the transmission vector which is selected by 7y for the particular
state of the network in the picture. Notice that in order to implement m; we
just need to know whether each queue is empty or not and we do not need the

exact queue length. Let GG be the class of all possible activation policies. The

optimality of my is stated in the next theorem.

Theorem 3.1: Consider the evolution of the system under policy mp and
an arbitrary policy * € . Let the arrival processes be identical under both
policies 7 and my and assume that the system starts from the same initial state
under both policies. Let X(¢),X°(¢) be the queue length processes under 7 and
mo respectively. For all £ =0,1,... we have

N

N
> X < Z Xi(t) a.s. (3.1)

=1

The proof of the theorem follows after a few definitions and lemmas.
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Figure 4. In this picture we see the servers (black) which are activated by pol-

icy mp when the state of the system is a s indicated in the figure (the shadowed

queues are nonempty and the white are empty).
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The total number of packets in the system when the state is x is denoted
by I(x) = ZN z;. The following partial ordering is essential in the proof of

=1

the theorem.

Definition 8.1: Consider two vectors x, y € X. Let X(t), Y(¢) be the
queue length processes when the initial queue length vectors are X(0) = x,
Y (0) = y respectively, there are no exogeneous arrivals and policy 7y schedules
link transmissions. We say that the vectors x and y are related with the partial

ordering < and we write x <y if for all t = 0,1, ... we have
HX(t) <Y (1)) (3.2)

Notice that x < y implies {(x) < {{y). We prove theorem 3.1 by showing

that if at time ¢t = 0 we have
X0(4) < X(2) (3.3)

and processes X(t), X°(#) are as in theorem 3.1 then relation 3.3 holds at
any time ¢ > 0. The propagation of the partial ordering is shown by forward
induction. We need an alternative characterization of the partial ordering in
the proof of the theorem. To each state x we associate the depariure times
t*, ¢ = 1..,l(x) and the positions d¥, i = 1,...,I(x) which are defined as
follows.

Definition 8.2: Assume that the system is initially in state x, (X(0) = x)
there are no exogeneous arrivals and policy my schedules link activations. Let
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{X(t)}22; be the corresponding queue length process. The time ¥ is defined
by

t¥ =min{t: ¢ >0, (X)) <I(x)—1¢} 1=1,.,0(x)

and the position d¥ is defined by

7

d&F =max{j+1: ZX;(t) <1} 1=1,.,(x).
=1
The departure times and positions as defined have the following interpre-

tation. Index the packets by an index ¢ that denotes the order in which the
packets reach node 0 when the system is in state x at £ = 0, mp schedules link
activation and there are no exogeneous arrivals. The departure time £} is the
slot by the end of which packet ¢ reaches node 0 and the position d¥ the node
where packet 1 was residing at £ = 0. For a state x the departure times and the
positions are related as stated in the following lemma.

Lemmea 3.1: For all states x € A we have

g% =1,

p=di if df =1, (3.4)
max{t® , +2, d¥} ife>1,d*> 1.

Proof: Consider the system operated under policy g, with initial state x
and without arrivals. The first packet is forwarded towards the destination by
one node at each slot. Hence we have t§ = df and (3.4) is true for 7 = 1. At
each slot one packet is forwarded from node 1 to node 0 until the time that
node 1 becomes empty for the first time. If & = 1 then the ith packet will

reach the destination at the end of slot z; hence if d¥ = 1 then t¥ = ¢ and (3.4)
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is true for ¢ such that d* = 1. If ¢ > 1 and d¥ > 1 then we distinguish the
following cases.
A dF -t =2

Notice that at any slot ¢ < ¢, packet ¢ — 1 should reside in a node j such
that 7 <t , — ¢ since it should reach the destination in #3* ; — ¢ slots and can
not be forwarded faster than one hop per slot. Packet 7 should reside at time
t in a node m such that m > d¥ — ¢ since it can not move faster towards the
destination than one hop per slot. Hence wehavem > d¥—t > 17 | —t4+2 > 742
which implies that packet : — 1 will be, at each slot ¢, at least 2 nodes closer
to the destination than packet :. Therefore packet 2 will be the first packet in
its queue and the next node towards‘ the destination will be empty. Because
of that packet ¢ will be forwarded by one node towards the destination at each
slot (since packet : — 1 will never prevent it from doing so) hence it will reach
the destination by the end of slot d¥, that 1s ¢ = df which agrees with (3.4).

B.dx—tx <.

Notice first that if + > 1, d* > 1 then t¥ > ¥, 4 2. This is so because
any packet, which is not placed initially at node 1, may reach node 1 only when
this node is empty (because if it is not the transfer of any packet to that node
is prevented from the activation of link 1). Hence at the slot in which packet
¢ — 1 leaves the system, packet 7z will be in node 2 or further away from the
destination; hence it needs at least two additional slots in order to reach the

destination. We show in the following that ¥ = ¢, + 2 which agrees with
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equation (3.4) in this case. If packet ¢ is forwarded towards the destination
by one node at each slot then it will reach the destination by slot df; but
this is impossible since d¥ — ¢ ; < 1 and as we just argued we should have
t* —¥ | > 2. Hence at some slot packet ¢ is not forwarded from its node. This
may happen only because packet ¢ — 1 at that slot is either in the same node
with 7 or in the node in front of ¢ towards the destination. Because of that, at
the slot at which ¢ is not forwarded and at all subsequent slots until the time
that packet i — 1 leaves the system, packets ¢ and : — 1 can not be in two nodes
7, m such that 7 — m > 2. Hence two slots after the time packet ¢ — 1 reaches
node 0, packet ¢ reaches node 0 as well, that is ¢¥ = 7, +2 as we have claimed.
o

The ordering < between two vectors x, y implies certain relations on the de-
parture times associated with those two vectors. The next lemma provides an

equivalent characterization of the partial ordering between x and y in terms of

the departure times associated with the vectors.

Lemma 3.2: For two vectors X, y € X we have x < y if and only if
<t t=1,.,1(x) (3.4a)

where k = [(y} — I(x).
Proof: Let X(%), Y(t), t =0,1,... be the queue length processes when the
initial queue length vectors are X(0) = x, Y(0) = y respectively, there are no

exogeneous arrivals and mo schedules link activations. If ¢7 , < ¢ then by the
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end of slot ¢, ; exactly ¢ + k packets have departed from the system when the
initial state is y while less than ¢ packets have departed from the systern when

the initial state is x. Hence we have
Y (i) =Uy) —i— k=1(x) — 1 < I(X(titr))

which contradicts the fact x < y and the necessity of (3.4a) follows.

Next we show the sufficiency of (3.4a). For an arbitrary slot ¢ let 7 be the
packet most recently d(%parted from the system when the initial state is y. If
j < k apparently (3.4a) is satisfied at ¢{. If ;7 > k then, since gy < t?, by
time t at least § — k packets have departed from the system with initial state

Xx. Hence we have

(X)) <Ux)—j+k=1y)—5=1Y(%)

and the sufficiency of (3.4a) follows. o
After the two preliminary lemmas relating the partial ordering we defined on
X, the departure times and the positions we proceed to the proof of theorem
3.1. The following two lemmmas are essential for the induction step in the proof
of the propagation of the partial ordering. Next lemma implies that the partial

ordering propagates if there are no exogeneous arrivals.

Lemma 8.3: If we have x < y for x, y € X and i is an arbitrary trans-
mission vector then for the states u = x — Rgo(x) and z = y — Ri we have
u —< z.
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Proof: We show that for all : = 1,..,{(x) we have t§ < t;‘_'_[(z)_l(y) and
from lemma 3.2 we conclude u < z. Let l(y) — I(x) = k. We distinguish the
following cases.

A l(w) = I(x), 1(z) = I(y).

In this case we need to show that for all ¢ = 1,...,I(u) we have
St (3.5)
From the definition of the departure times we can easily see that

=1 (3.6)

1 13

since u = X(1) in the definition of the departure times. We show by induction
on z that

> > - (3.7)

For i = 1 we have t{ = d] < d? + 1 = ¥ + 1; therefore 3.7 holds for 7 = 1.
Suppose that (3.7) holds for .. We show that it holds for i + 1 as well. If
d%,; =1 then we have t?,, =7, =i+ 1 and (3.7) holds for i + 1. If df,; > 1
then we have t7, | = max{t?¥ +2, d%_,}. If packet ¢ +1 is forwarded by one node
because of the activation of vector i then we have d? , = d}, | — 1; otherwise

we have df,, = d},,. We distinguish the following cases. If either d?,; = d¥,,

ordf ; =d,; —1andtf >t —1 we can easily see that

max{t} +2, di,,} — 1 <max{t] +2, df,,} <max{t] +2, d7,;}. (3.7q)
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therefore 3.7 holds for 7+ 1. If d%_, = d¥,; — 1 and t¥ =t} then
max{t] + 2, di,,} 2 max{t? +2, di,} 2 max{t] +2, &/, } - 1. (3.7b)

therefore (3.7) holds for ¢ + 1. If d7,, = dy,; and ¥ = ¢} then apparently

., =7, and 3.7 holds for i + 1. Relations 3.6, 3.7 and the fact that x <y
imply that 3.5 holds for all ¢ = 1,..,I(u)
B.l(u)=1{x) -1, I(z) = ly).

In this case we need to show that for all = 1, ..., {(u) we have
£ < kg (3.8)
The ( 4+ 1)th packet in state x becomes ith packet in state u; hence we have

td =15, — L. (3.9)

3

For the state z the situation is identical to that of case A; hence (3.7) holds.
Equations (3.7), (3.9) immediatelly imply (3.8).
C.l{lu)y=1Ix)-1, l(z)=1(y) - 1.

In this case we need to show that for all e = 1,...;I(u) we have
i <t (3.10)

For the departure times of state u (3.9) holds as it it has been argued in case

B. We show by induction that

B 2t >t — 1 (3.10a)
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Wheni =1wehavet? =d? < dy <#];ift] =d5 thent? =df =dj —1=1tJ-1,;
if #] = d¥ +1then 7 = df = dj =t} —1. Hence (3.10a} holds for ¢ = 1. Assume
that it holds for 7; we show that it holds for z + 1 as well. We show first that
., >t If 3, = d7,, then we have ¢7,, = df,, < d%, </, If

t¥,, = tf + 2 then from the induction hypothesis we have {7, = {7 +2 <

7.1 +2 < t7 4+ 2. Now we show that t7,, > ¢/, — 1. If t7,, = df,, then
we have t7,, = di,, = d%,, +1 = 3, +1. I}, = t],; + 2 then we

have t7,, >t 4+2 >t/ +2 -1 =17, — 1. If 7, = d7 , then we have
Y, =dl, =di,+1=1%, 4+ 1. That completes the proof of the induction
step. Relations (3.9) and (3.10a) immediatelly imply (3.10).

D. l(u) =I{x), l(z) =y) - L

In this case we need to show that for all 7 = 1, ..., I{u) we have
td <tk (3.11)

For the departure times of u, (3.6) hold as we have shown in case A while for
the departure times of 2z, (3.10a) hold as we have shown in case C; hence (3.11)
follows. &

The ordering < between two states is preserved after a packet arrives at
any network node. More specifically let e; be the vector which has all its
elements equal to 0 except of the element j which is equal to 1. Then we have
the following.

Lemma 8.4: If we have x < y for x, y € & then forall j = 1,..., N we
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also have x + e; <y + e;.
Proof: Let u=x+e¢;, 2=y +e;. Since x <y we have that I(y)—I(x) =
k > 0 which implies that I(z) — {{u) = k. We show in the following that for all
i=1,..,l(x)+1 we have
9 <t (3.12)

which in view of lemma (3.2) completes the proof. Let

7

7
m:Zml—l—l, nzZyl—i—l.
=1

=1

The newly arrived packet 1s the mith packet of state u and the nth packet of
state z. We consider the following cases.

Ar<m, t+k <n.
The transmissions of all packets in nodes 1 to j, which are preceeding the new
packet that has arrived in node 7, are not aflected by the presence of that
packet which joins the system in the end of queue j. Hence we have ¢ = ¢¥,
t7, 1 = t7,; and (3.12) follows.

B.i>2m, i+k<n.

Notice first that for all 2z such that 1 < ¢ < (x) we have
dy < df {(3.13)

since for ¢ < m d = d¥, for m =1 < {(x) we have d < d% and form < ¢ <
I{x) we have d¥ = d¥* ; < d¥. We show by induction in the following that for

all ¢ such that 1 < ¢ < {(x) we have

8 < ex (3.14)
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For i = 1 we have from (3.13) ' = dy < df = ¢}. If (3.14) holds for some ¢
we show that 1t holds for 2 + 1 as well. If thy = d‘;‘+1 and 5, = df_H then, in

view of (3.13), (3.14) holds. If ¢}, , = #{ +2 and ¢¥,; = t{ + 2 then (3.14) holds

by the induction hypothesis. If ¢3, = ¢ + 2 and t}%,, = d}};, then we have

Y +2>dY, > dY, =t and (3.14) holds. If t¥, | = dF , and | =" 42

then we have d¥ ; > t¥ +2 >t + 2 and (3.14) holds. From case A above we

have #7, ; = 1, whenever i + k < n which together with (3.14) imply (3.12).
Ci<m,i1+k>n.

We show (3.12) by contradiction in this case. Assume that

B>t (3.15)

We claim that if (3.15) holds and m > 7 > 1, ¢ + k& > n then we have

g > e (3.16)

Sincer + k& > n, 1 < m and because of lemma 3.1 we have

tpr 2 digpp 27 2 df (3.17)

Hence if (3.15) holds and because of (3.17) we conclude that

= 42> (3.18)

From (3.15) and (3.18) we get

G +2> 0 2t + 2. (3.19)
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Equation (3.19) implies (3.16).

By iteratively substituting ¢ with 7 — 1 in (3.15) at some point we we will
have either 1 = 1 or i+ k < n. In the first case from lemnma 3.1 we have {1} = df
which contradicts (3.18). In the second case, as we argued in case A, we have
17, % = t7,; which in view of (3.15) and since t}' = ¢ for ¢ < m contradicts the
fact that x < y.

Di>m,i+k>n.
If : > m then the ith packet of state u, is the same with the : — 1 packet

of state x hence we have

dit =di_y. (3.20)
Similarly if ¢ 4+ & > n we have
f+k = d¥+k—1- (3-21)

Ifi¢+ &k =n <{(z) then we have d% < d¥ which implies
t2 =max{t)_, 42, d2} <max{tJ_, +2, &} =1¢7. (3.22)
We can easily show by induction that
AL AR N (3.23)

For i 4k =mn, since 15, > 17, , =1/ .|, 3.23 holds. Assume that it holds

for 1 + k =1 > n. Then from (3.21) and the induction hypothesis we obtain

ty = max{t] + 2, df,,} > max{t]_, +2, &7} =17. (3.24)
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We show (3.12) by contradiction. Assume that
iy > tix (3.25)

When (3.25) holds, we can not have ¢} = d! since in that case and because of

(3.20), (3.23)

oy 2di =4 =t > > ti‘f+k—1
which contradicts x < y. Hence we have
£ =tE 42 (3.26)

Notice that if d,, = 1 we should have + + k = n which imply that : = m;
therefore we have d¥ ; > 1 which imply #5,, > t7,,_; + 2 and from (3.25),
(3.26) we obtain t , > % , ;. By applying the same argument several times

(like in case C) we reach a point where
iy >tk (3.264)

and either : = m or i + k < n. If 2 = m then (3.26a) contradicts either case B
or C depending on whether i +k <nori+k >n. If i + k£ < n then (3.26a)
contradicts case B. Hence (3.25) can not hold and (3.12) should hold in this
case also. ©

We proceed to the proof of the theorem.

Proof of theorem §.1: We show that

X)) < X(t) t=0,1,2,.. (3.27)
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Hence {3.1) is implied. We use induction to show (3.27). For ¢t = 0 {3.27) holds
trivially since X°(0) = X(0). Assume that (3.27) holds for some t; we will show
that it holds for ¢ -+ 1 as well. Let I(¢ + 1) be the activation vector under 7 at

t + 1. Then from lemma (3.3} we have
(X°(2) + Rgo(X%(1))) < X(t) + RI(t + 1) (3.28).

The arrival vector A(t + 1) can be written as
N
A(t+1) =) At +1e,.
=1
Hence from lemma (3.4) and equation (3.28) we can easily see that
N

XO(t+1) = X () + Rgo(X°()) + > Ai(t + e:

i=1

N
< X))+ RIG+ 1)+ D At + e = X(¢+1).

=]

Remark

Notice that we do not pose any restriction on the policies of class G. That is
a policy in & may select the transmission vector I(¢) based on the knowledge of
the whole arrival sample path. Hence G contains even nonanticipative policies
which may use for decision making information about the future evolution of

the system.

3.4 Single hop transmission requirements
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Let S(x) be the set of all transmission vectors which are such that if the
servers are activated according to any of those transmission vectors and the
system state is x then the maximum number of nonempty queues is served.
Our main result in this section is that we do not loose anything with respect
to delay optimality if at each slot ¢ we consider for transmission the vectors in
S{X(t—1)) only. More specifically we show that for every policy 7 there exists a
policy n’ which achieves smaller delay than 7 and is such that the transmission
vector I'(¢) selected by n" at £ belongs to S(X(t —1)). We give first an explicit
characterization of the set S(x). Let k = k{x) be such that £ is the number
of groups of consecutive nonempty queues and 71 = j1(X),...,Jx = Jr(X) are
the nonempty queues which are neighboring with one empty and one nonempty
queue or they are in the end of the tandem. The numbers 71, .., 75 are called the

boundary indices of x and they are uniquely defined by the following conditions

1. All queues j such that § > j; or j < 71 are empty.

-2, All queues 7 such that jom—1 < j < jom m =1, ...,

b |7~

are nonempty.

b | o

3. All queues 7 such that jom <7 < jom+1 m=1,..., 5 — 1 are empty.

In fig. 5 the boundary indices are illustrated. The following lemma provides

necessary and suflicient conditions for an transmission vector to belong to S(x).

Lemma 4.1: An transmission vector i belongs to S(x) if it satisfies the

following conditions.

1. If jom — J2m—1 is an even number then for all links 7, jom—_1 < 7 < jam we
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have

. |1 i —jam—1is even,
YUT10 ifj — jam—1 is odd.

forallm=1,..., %

2. If jom — jom—1 1s an odd nurnber then 1 should satisfy one of the following

conditions.

2a.
i = 1 1f_7 _j‘Zm—l 18 even j2m—l S] Sij:
7710 otherwise,

2b.

e = 1 ifj—jzm_] is odd j2m—1 _<_.7 SjZm:
771 0 otherwise,

2¢c. There exists an ! such that

Or Jom — 7 is even and jo,, > 7 > 1+ 1,
0 otherwise

1 if 7 —jgom—1 18 even and Jom—y <7 < I
1; =
forallm=1,..., %
3. If j; = 1 then for all links 7, jom—1 < 7 < j2m we have

iy = {1 if j2 — 7 is even j; < < ja,
J 0 otherwise.

forallm=1,.., % Similarly for the case where j, = N
Proof: When an transmission vector satisfies the conditions 1-3 above for ev-
ery group of consecutive nonempty queues the maximum number of queues
are served. If jo,, — Jam—1 is an even number then all vectors in S(x) serve
(Jzm —Jom—1)

> + 1 queues of those with indices j such that j2,—1 < 7 < j2mm when

80



they are activated. No other vector can activate more queues of this group of
consecutive nonempty queues since the neighboring queues of each one which
is activated, should not be activated. If j2,, — j2m—1 is an odd number then all

(jz”‘_j"’z_m‘l"'l) queues of those with indices 7 such that

vectors in §(x) activate
Jom—1 < 7 < Jam. No other vector can activate more queues of this group of
consecutive nonempty queues for the same reason as above. <
The set S(x) for some state x is illustrated in fig. 5. Consider the class of
policies (@ that contains any policy 7 such that the transmission vector I(t)
selected by 7 at t belongs to S(X(¢t — 1)). For each policy 7 in G there exists
a policy # in G which performs better than m. We define next the policy #
that corresponds to m and it has the above property. Consider the mapping
J 15 x X — 5(x) defined next. Let i’ = J(i,x); consider the boundary indices
J1s .-, Jk for the state x. Since i’ belongs to S(x) its elements z’J are uniquely
specified for all 3's other than those such that for some m, jom = 7 = Jom—1

where jom — J2m—1 18 an odd number. For those j's, z; is defined as follows:

1. If 25, _, =0 then

g 1 if 3 — jom—1 is an odd number jom—1 < J < J2mm,
7710 ifj—Jem-1 is an odd number.
2. Ifi;,. , #0andi;, =0 then

o 1 if 3 — 72m—1 1s an even number,
J 0 if 7 — j2m—1 18 an odd number.

3. If1y,,, # 014, _, # 0 then let [ be the smallest number greater than jp,_;
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Figure 5. In this picture we see the queueing system that corresponds to
a radio network with 13 nodes and traffic assumption A.2. The shadowed
queues are nonempty while the others are empty. the boundary indices and the
activation vectors of the set S{x) for this particular state are indicated. The
activation vectors are represented by columns of circles where the black circles
correspond to activated servers.
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such that ¢; = 7;47 = 0. We have

Or jom, — 7 is an even number and y2,, > 7 > 1+ 1,

{ 1 if j — jam-1 is an even number and jom—1 < j <
0 otherwise

It easy to check that such a number ! as defined above in 3 does exists and
also that the i’ belongs to S(x) Policy 7 at slot ¢ selects the vector I(t) =
J(I(t), X(t —1)). In the folléwing we denote the policy in G that corresponds
to a policy m € G by putting a tilde over the symbol of the policy. Policy 7 as

defined above is better than 7 in the stochastic ordering sense.

Theorem 4.1: For each policy m € G the corresponding policy # € G is such
that if the system starts from the same initial state and the arrivals have the
same statistics under both policies 7, &, then for the corresponding processes of
total numbers of packets in the system Q(t) = 2%, Xi(t), Q) = Son, Xi(#)
we have

@ Sst Q (41)

The proof of the theorem follows after the next lemma.

Lemma 4.1: Consider a policy m € G and its corresponding policy # € G.
There exists another policy n' € & which acts similarly to 7 at ¢ = 1, it
1s appropriately defined at ¢ > 1 and satisfies the following. If the system
starts from the same state x at ¢ = 0 under both policies =, #’, then for the

corresponding queue length processes X(t), X'(t) and for all £ = 0,1, ... we have

N N
ng(t) < in(t), a.s. (4.2)
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Proof: We construct 7' and we show that (4.2) is satisfied. We show first
that at ¢ = 1 the queue lengths satisfy the following:
a. X|(H)y<Xy(t)+1, I=1,..,N.
b. If XI(t) = X;(¢) + 1 and | < N then X],,(£) = X141 (¢) — 1.
c. £ X[(t)=Xi(t)+1andl >71 then X|_,(t) = X;1(¢) — L.
d. If j; =1, j2 = N and N is odd then X{(¢) < X1(¢) and X{ () < Xn(2).
Condition a is obvious. For the conditions b, ¢ we argue as follows. For a
queue [ we have X[(1) = X;(1) + 1 if and only if the queue is served by I{1)
while it is not served by I'(1); where I(1), T'(1) are the transmission vectors
selected by m, ' respectively. If ja;m—1 <1 < jom and jo., — jom—1 is even then,
by definition of 7, the links {4+ 1 and [ — 1 are activated by I'(¢) (if [ < N and
I > 1 respectively) while the same links are not activated by I(t), since link !
were activated by the latter transmission vector. Therefore relations b and ¢
follow. If jo,,—1 <! < Joum and jom — Jom—1 1s odd then, by definition of 7,
the links [+ 1 and [ — 1 are activated by I'(t) (if | < N and [ > 1 respectively)
while the same links are not activated by I(¢), since link [ were activated by the
latter transmission vector. Therefore relations b and ¢ follow. If j; =1, 5, = N
and N is odd number then by definition of # the links 1 and N are activated
therefore d follows. It is easy to see that if conditions a-d hold for some ¢ then
(4.2) follows.
For ¢ > 1 the transmission vector I'(t) is defined based on I(t) and X(¢—1).
Let I(t) be the transmission vector selected by = at slot ¢. At the same slot
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policy = selects I'(¢) such that all queues ! for which

X/t-1)=X,(t-1)+1 (4.3)

are served; furthermore all queues, which are served by I(t) and are not con-
flicting with any queue I for which (4.3) is satisfled, are served as well.

We show in the following that if conditions a-d are satisfied at ¢ then they
are satisfied at t+1 as well. Then (4.2) follows for all ¢ by induction. Apparently
condition a is satisfied at ¢ + 1 since, by definition of »', any queue [ for which
at ¢t we have X[(t) = Xi{t) + 1 is served. For the conditions b and ¢ we argue
as follows. Assume that at ¢t + 1 we have X[(t + 1) = X;(¢t + 1)+ 1, ({ < N,
[ > 1). Apparently at time £ we can not have X[(t) < Xi(f). Notice that we
can not have X[(¢) = X (¢) since in that case queue ! can not be adjacent to
any queue m for which X/ () = X,»(¢) + 1; therefore if { is activated by = it is
activated by 7' as well. Hence we should have X[(¢) = X;(¢) + 1. In this case
Xi_ () = Xy (8) =1 (X[ (t) = Xi41(t) ~1) and since queue I—1 (I+1) is not
served by neither 7w nor #’ at ¢ + 1 we also have X| (¢t +1) = X;1(t+1)—1
(X7 (t+1) = Xppa(t + 1) = 1), For condition d we have the following. If
Xi(t) £ X1(t)—1,(X§(¢) € Xn(t)—1) then d holds for t+ 1. If X (¢) = X:(¢),
(X§(t) = Xn(t)) then queue 1 (N) is activated by = if if and only if it is
activated by n’ therefore condition d follows. o

Now we can prove the theorem,

Proof of theorem 4.1: We will show that the policy # = J(x) has the
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property claimed in the theorem. Consider a sequence of policies w1, 7, ...
defined as follows. Policy 7y is the same as policy 7' constructed in lemma 4.1,
when policies 7 in the lemma and the theorem 4.1 are the same. Policies m,,
7 > 1 are defined inductively as follows. Consider the construction of policy
7’ in lemma 4.1 in terms of n. Let 7 be such that at time ¢ it takes the same
action as policy m,—¢ at time 7 — 1 +¢. Let #, at times ¢t = 1,...,7 take the
same actions as 7 while at times ¢t > 7 takes the same actions as the policy '
at times t — 7. Where 7' is constfucted as in lemma 4.1 when 7 is as above. We
denote by X7 the queue length processes under #, for 7 = 1,... By definition

of the policies, for all T we have
X =X"(t), t=1,..7 (4.15)
From lemma 4.1 and from the construction of policy 7., for all 7 we have
(X)) 2 (X)) = ... > (X7 () > ... (4.16)

Consider the time slots t5, %2, ..., and a function ¢ as in part 2 of theorem 4.1.
Consider also the policy 7y, defined as above. By construction the variables
(X" (), ..., (X' (t,)) have the same joint probability distribution with the

variables I(X(t1)), ..., {X(¢r)). Hence for all z we have
(UK (1)), o IX5 (£)) > ) = PLo(U(K (1)) IR (8))) > 2). (417)
Since (X (2)) < {(X(#)) a.s. for all £ = 0,1,...,t,, we have

P(g(UX" (1)), -, WX (£2))) > 2) < P(g(I(X(t1)); o, UK (20))) > 2). (4.18)
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Equations (4.17) and (4.18) and part 2 of theorem 4.1 complete the proof. o
Remark

For each queue 7, jam—1 < 7 < Jom Where Jom,m — jom—1 18 an even number or
Jam—1 = 1 or ja, = N, the corresponding elements of all transmission vectors
in S(x) are identical. Therefore the necessary optimality condition specifies
uniquely the transmission vector at slot ¢ up to the elements that correspond to
groups of consecutive nonempty queues with even number of queues. f N = 3
then G contains exactly one policy; that policy minimizes in the stochastic
ordering sense the process of total number of packets in the system for any

arrival process.
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CHAPTER 4

Time varying connectivity

4.1 Introduction

In all previous chapters we have considered systems where the topology is
fixed. This is not always the case since time varying connectivity is inherent in
several types of communication networks. In this chapter we depart from the
fixed topology assumption. We focus on a single hop network the connectivity
of which varies randomly with time. Its queueing model consists of a single
server and N parallel queues (fig. 6). The time is slotted. At slot ¢ each
queue ¢ may be either connected to the server or not; that is denoted by the
binary variable C;(¢) which is equal to 1 and 0 respectively. It is called the
connectivity variable of queue :. The connectivity varies randomly with time.
There are exogeneous arrivals at each queue. At each slot ¢ the server is either
allocated to one of the queues or idles; the control variable U(t) indicates the
queue served during slot ¢ or 1s equal to e if the server i1dles. If the queue 7 at
which the server 1s allocated i1s disconnected then no service is provided. If it is
connected then service is provided and the served packet completes its service
requirements and leaves the system with some probability; if the packet does
not complete service it rémains in the queue.
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The server allocation is controlled. The lengths of the connected queues are
available ‘to the controller for decision making. The allocation decision at slot
t may be based on the history of the observations and the past allocation deci-
sions. When the buffers have unlimited capacity, depending on the allocation
policy and the statistics of the arrivals, services and connectivities, two things
may happen. The system either reaches a steady state behavior or the queue
lengths start growing without bound. In the former case the system 1s stable
while in the latter unstable. We obtain necessary and sufficient conditions on
the arrivals, service and connectivity statistics for the existence of an allocation
policy under which the system is stable. We also give a policy under which the
system is stable if there exists some policy that stabilizes it. The performance
of the system with respect to queueing delay is studied then. In a symmetric
system, the allocation policy that minimizes the delay is obtained. The prob-
lem of optimal server allocation in a changing connectivity system with a single
buffer per node is studied last. In that case, if an arriving packet at some node
t finds the buffer full then is blocked from admission into the system. A policy
that maximizes the throughput and at the same time minimizes the delay is

obtained.

Radio networks with meteor-burst communication channels and cellular
networks with mobile users and small cell sizes are two among the several ex-
amples of systems with. time varying connectivity mentioned above. In the first
case there is a central station (the server) and N wusers (the queues) each one
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of which 1s connected to the station through a meteor burst communication
channel. These channels have the property that can not be used continuously,
but only during time intervals of random duration which occur at random time
instants (whenever there exists a meteor burst) ([CNR89], [Ya90]). At each
time slot a user may communicate with the central station if its channel is ac-
tive; hence a subset of the users (those with active channels) are competing for

the attention of the station at each slot.

As the cell size in cellular ﬁetwork decreases, (that is the tendency in the
future cellular networks in order to maximize the spatial spectrum reutilizati:on
([Go90], [StP85])), the variability in the distance between a mobile user and the
station of the cell results in variation of their radio connectivity. At each ti:frne
slot only the users which are within a certain distance from the cell station may
communicate with it. The model of a single server with parallel queues of time

varying connectivity arises in this case as well.

One special case of the model studied in this chapter is when the connectiiv—
ities are fixed and equalrto one af all slots. In this case all queues are connected
to the server at all times and the model is reduced to that of allocating a seryer
to a set of parallel quenes. That is a well known problem of optimal quene-
ing control ([Wa88]) and has been studied extensively in the past ([BMM85],
[BVWS85]). The time varying connectivity makes the server allocation problem
considerably more difficult than the case where all queues are available for ser-
vice all the time. That is made clear as we present the results that we obtain
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for the system with time varying connectivity in contrast with what is known
for systems with fixed connectivity.

This chapter is organized as follows. In section 4.2 we specify the moéel.
In section 4.3 the stability properties of the system are investigated. The issue
of queueing delay is studied in section 4.4. In section 4.5 we study throughput

and delay performance in a system with a single buffer per node.

4.2 System dynamics

During slot t there are A;(t) exogeneous arrivals at queue 2. When quede ¢
is connected and the server is allocated at that queue, the service is completed
with some probability. That is represented at slot ¢ by the binary random vari-
able M;(t) which is equal to 1 if the service is completed and to 0 otherwise. The
stability and delay optimality results are obtained under different assumptions
on the statistics of the arrival, service and connectivity processes. Those as-
sumption are stated as needed later. Let X;(¢) be the number of packets in the
ith queue by the end of slot ¢ (or the beginning of slot ¢ + 1). Until section 4.5
we study the system under the aésumption of unlimited buffer capacity. Under
this assumption the number of packets at queue ¢ evolves with time according

to the equation
Xi(t) = (Xa(t — 1) = H{U@) = 3 COM:()F + A (8), t=1,..  (21)

We assume that the controller which allocates the server is informed at the

beginning of each slot about the connectivity at that slot as well as about
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Figure 6. A single-hop network with time varving connectivity. The sohd
line between a queue and the server denotes that the queue 15 connected to
the server (it may receive service). The dashed line denotes that the queue is
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the lengths of the queues which are connected. This information is represented
by Y(t) = (X(t — 1)& C(), C(¢)) where X(f) = (Xi(t) : 1 = 1,..,N) is the
vector of queue lengths at slot ¢, C.(t) = (Ci(t) : v =1,.., N) is the vector of the
connectivities at slot ¢ and (X) denotes the pointwise product* between vectors.
The server is allocated based on the available information Y(t). We study the
stability properties and the delay performance of the system under policies t}jiat

base their decisions on the available control information.

Remark

A single hop radio network with a central station and several radio nodes
which need to communicate with the station, corresponds to the above model
as follows. The server corresponds to the central station and the queues to the
radio nodes. The packets have constant length equal to one slot; each time a
packet is transmitted it is received successfully with some probability. Unsuc-
cessful transmissions are due to channel errors and not to collisions since the
transmissions are scheduled. The variable M;(t) in this case indicates whether
a transmission of node 7 at time ¢ was successful or not (if node ¢ was trans-
mitting at slot ¢}. If a transmission is unsuccessful then the packet remains at

node 1.

4.3 System stabilizability

*Ifa=(a:i=1,.,N),b={(b:1=1,.,N)and ¢ = al®b then
c=(ab;:1=1,.,N)
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As in chapter 2 we consider the system to be stable if in the long run
approaches a stationary behavior, that 1s the backlog in the nodes does not grow
to infinity. We study system stability under some independence assumptions
on the arrival, service and connectivity processes. More specifically we assume
that the processes {A:(¢)}2,, {Ci(t)}2,, {Mi(8)}2,, ¢ =1,...,N areiid. and
independent; furthermore we assume that E[A%(t)], E[MZ(t)], E[C2(t)], < co.
Consider the class of stationary policies G that allocate the server at slot ¢
based on the available information Y(¢). A policy in G is specified by a function
g: V' — {1,..,N,e} where V! is the space at which Y(¢) lies. The allocation
deciston at slot t is U(t) = ¢(¥Y(¢)). Under any policy in G and because of
the independence assumptions on the arrivals, services and connectivities, the
queue length process X = {X(2)}2, is a time homogeneous Markov chain with
state space X = Zf. The definition of stability that we consider in this chapter

1s somehow more restrictive than that in chapter 2.

Definition 3.1: The system is defined to be stable under some allocation
policy in G if the Markov chain X is irreducible and the probability distribution

of X(t) converges in the sense that

lim P[X(¢) < b| = F(b) Vbe X (3.1)

t— oo

where F'(-) is a probability distribution on X. Similarly with chapter 2, the
system 1s called stebilizable if there exists an allocation policy in G under which
it is stable.
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The necessary and sufficient stabilizability conditions involve the expecta-
tions of A;(t), Ci(t), M;(t) which are denoted by a; = E[4;(t)], pi = E[Ci(jt)]
and m; = B[M;(t)]. Consider the class G of stationary policies that base the
allocation decision at slot ¢ on the lengths of all queues X(¢ — 1) and not only
of the connected ones. Under any such policy X(¢) is a Markov chain. Next
lemma provides a condition that is necessary for stabilizability of the syst'em

even if the queue lengths of the disconnected queues are observable at each slot.

Lemma 3.1 If there exists a policy 7 in Gy under which the system is

stable, then

S <1-Tla-p), vQC {1, N} (3.2)

(A
ieqQ ¢ iEQ

Proof: Assume that the system 1s operated under some policy in Gy and is
stable. Definition 3.1 implies that the Markov chain X is ergodic and possesses
a stationary distribution. We start the system with its stationary distribution
therefore the queue length process is stationary and ergodic. Let hj;(t) be
the indicator variable that is equal to 1 if queue j is connected and receives
service at slot ¢ and to 0 otherwise. The departure process from queue 7 is
{h;(1)M;(£)}2, and is stationary and ergodic. The departure rate from queue
jis

Elh;($)M;(t)] = m; E[h;(t)].

Since the system is stationary and ergodic, in each queue the departure rate
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should be equal to the arrival rate; that is
m;B[h;(t)] = a;.

Hence from (3.3), for any set of queues ) we have
as

Z m—J = Z Efh;(t)]-

€@ 7 jeQ

The sum in the right hand side of (3.3a) can be written as

> E[hi(1)] = E[E[Y | hi(1)|C5(2), X;(t — 1), € Q].

JEQ Jjeq

Consider the partition of the probability space into the events
B, ={C;(t)=0,j € @},

B, ={C;(1) =0, € Q}°N{X;(t-1)=0,5 € @},
By = {Cj(t) = 0,j € Q) N{X,(t—=1)=0,j € Q}°

where A° is the complementary set of A. Notice that

E[>  hi(OIC;(8), X;(t-1),7 € @;B] =0, 1 =1,2
jeQ

B[ hi()IC; (1), X;(t - 1),7 € @; Bs] <1
JEQ

hence we have

E[E[} | hi(1)IC;(t), X;(t — 1),j € Q]

JEQ
3
=E[>_E[>_ hit|C5(t), X;(t - 1),j € Q; Bi|P[B]]
=1 JEQ
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<1— P[B;] - P[B.]. (3.5)

Since the Markov chain X is irreducible and ergodic, under the stationary
distribution we have P[X;(t) =0, j € @] > 0 for any @ C {1,..., N}; hence we

have |
P[By] = P[C;(t)=0,7 € QIP|X;(t1—1)=0,7 € Q] > 0. (3.5a)

and because of the independence of the connectivity processes that correspand
to different queues we have
P[Bi) = [](1 —p) (3.50)
€Q

Relations (3.5,3.5a,3.5b) imply

E[ED | hi(0)IC;(0), X;(8),5 € Q) < 1= [[(1 = po). (3.6)
JEQ i€Q

Equations (3.3a,3.4,3.6) imply (3.2). o
Note that EieQ 7‘:1—! is the rate with which work (in the form of service
slots) is entering the set ) of queues and 1 — HiEQ(l — p;) is the proportion of
slots at which at least one queue of () is connected and can receive service; hence
the necessity of 3.2 for stability can be visualized. The sufficiency though of 3.2
for stability can not be seen easily in advance since the rate at which service is
provided to the queues within set @ is strictly less than 1 —[[;.5(1 —p:). That
is because the connected queues of the set ¢} at each slot ¢ may be either empty
or have length less than that of another connected queue out of . In the next
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lemma it is shown that conditions 3.2 are sufficient for stabilizability as well.
Consider the policy mp € G which during slot ¢ allocates the server according

to the function go : ' — {e,1,..., N} defined by

(x,¢) = e, ifzie;=0,2=1,...,.N
goix,¢) = argmax;—1,  n{zi¢;}, otherwise.

That 1s 7y allocates the server at slot ¢ to the connected queue ¢ (Ci(2) - 1)
with maximum length. Policy 7o is shown next to stabilize the system as long
as there exists a policy in G under which it is stable. In the following welet
hy(t) = Hgo(X(t — 1), C(8) = 5.
Lemma 3.2: The system is stable under ny if

S ci-Jla-p) VQC{L,.,N}.

i€Q " i€Q
Proof: Under m, X is apparently irreducible. We use Foster’s criterion for
ergodicity of a Markov chain ([As87]) to show that X is ergodic under the
condition of the lemnma; from ergodicity 3.1 is implied. Consider the function
V defined on the state space X of the chain by V(x) = Zfil m; z?. Forlall

x € X we have

E[V(X(t+D)X(t) = x] = E[Y my ' XF(t+1)X(#) = x] <

=1

By Smi (@ + it 4+ D) X(0) =

=V(X®)+2) milazi+ Y mi E[A(t+1)] < 0. (3.6a)

i=1 1=}
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We show that if condition (3.2) is satisfied then for a fixed € > 0 there exists
a number b, which may be a function of the first and second moments of the

arrival, service and connectivity processes, for which we have

E[V(X(t+1)) - VIX(E)X(1)] < —¢ if V(X(£) > b. (

_3':.0_
-1
R

Notice that the set

Vi={x:V(x)<b xe€2Z¥}

has finite cardinality for all b. From (3.6a), (3.7) we can conclude that X(#) is

ergodic. We proceed now to show 3.7. By simple calculations we get

BIV(X(t +1)) - V(X()IX()]

N
= B> mi (Xt + 1) = X)Xt + 1) — Xi(t) + 2X:())|X(2)] =

i=1

N N
E[Y | 2m Xy()(X:i(t41) = Xu()X@)]+ B mi (Xt +1) - Xi(6)*|X(8)]
i=1 i=1

(38)

The second term of the sum in the right hand side of (3.8) can be upper bounded

as follows
N N
E[Z m (X (E+ 1) — Xa(#))? X (1)) < E[Z mi (At + 1) X ()] +1

N
=Y w7 ElANE)] + 1. (3.9)
=1

For the first term of the sum in the right hand side of (3.8) we have
N
E[Y 2m Xi(t)(Xu(t + 1) = X)X ()] =
=1
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N ‘ N
= B[ _2m 7  Xi(0)A:i(t + DIX@®)] - E[D | 2m;7 Xa($)Mi(t + Dha(t + 1)|X (1)

=1 =1
|

(3.10)
The first term of the sum in the right hand side of (3.10) can be calculatedf to
give

N N
E[Z 21X () At + 1)|X(2)] = ZZX,-(t)Ti—i. (3.11)

We need to introduce some notation before we manipulate the second term
of the sum in (3.10). Consider a permutation e; ¢ = 0,..., N of the integers
0 to N which is such that e¢g = 0, X.,(t) > X.,_,(t), for ¢+ = 2,.., N and if
Xe (t) = X.,_,(t) then e; > ¢;_1. Consider also a partition of the probabijlity

space into the events D;, 1 = 0,..., N defined by
Dy = {C(t+1) = 0},

D;={Ce;(t+1)=1, Ce;,(t+1)=0 for N>j>1:} for i=1,..,N,

The probabilities of the events I); are

N N
PDo)=[[1—p), PDi=pe [[ (1-pg) i=1,.,N.  (342)
=1 j=i+1

Apparently the permutation as well as the events D; depend on the state X(¢)
and the connectivity vector C(t) at each slot . Now we can calculate the second
term of the sum in the right hand stde of (3.10) to be

N N
B[S 2m I Xa(OMi(t + Dha(t + DIX0)] = E[Y 2X:(6)ha(t + 1)|X(2))

=1
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N
— B3 2K, (Dhe, (¢ + 1IX(2)]

i=1
N
=> E| Z e:(Dhe, (2 + 1)|X(2), D;)P(D;). (3.13)
=0 =1
Notice that from the definition of the policy, in the event D; queue e; is served

if it is not empty. If it is empty then every other connected queue 1s empty as

well. Therefore we have
E[Z 2X ., ()he; (t + D)X (2), D;] = 2X,, (£). (3.18a)
From (3.12, 3.13, 3.13a) we get

N
EDY | 2m Xa(8)Mi(t41)ha(t+1)]X( t)]%ZQX (e, H (1—pe;)- (3.14)

=1 =141

where H?;NH(-) = 1. By a simple calculation in the right side of (3.14) we get

N
E[Y " 2m7 Xi()Mi(t + Dha(t + 1)|X(t)] =

i=1

N N N
=2) (Xe;(t) = Xey (D1 = [J(1 = pe)) + 2Xe, ()1 = [ [ (1~ per))- (3.15)
j=2 =3 =1
Using the permutation we defined earlier and after some calculations (3.11) can

be written as

N
B[y 2m; ' Xi(6)Ai(t + DIX(1)]

N - N
=23 (X, (2) —Xej_l(t))z = e (3.16)
i=2 i=J

From (3.10),(3.15) and (3.16) we get

N
B[y 2m Xi(6)(Xi(t +1) — X:(£))[X(2)]

=1
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€]

- gz(xe, (6 Xopo(0) Z

N N N
-2 Z(Xe,- (t) = Xe; o, (01 = _H_(l — Pe;)) — 2Xc, (D)(1 - _H(l — Pe:)) =
N
= ZZ(XeJ (t Pe:))
+2X, Pe:))- (3.17)
We define
QCI{IIMN}{Z —1+ [Ja-p)} (3.17a)

i€Q
From condition (3.2) we have ¢ < 0. From (3.17, 3.17a) we get

N
E[Z 2m T Xa(t)(Xi(t + 1) — Xa(1)[X(#)] <

N

2 (Xe; (1) = KXo,y (D)e + 2Xe, (e = 2Xep (Ve (3.18)

7=2

From (3.8),(3.9) and (3.18) we get

2

BIV(X(t + 1)) - V(X(£)|X(£)] Z ' N2+ 142X.,(He.  (3.19)

If V(X(t)) > b then X\ (t) > 1/ + and from 3.2 ¢ < 0 therefore we have from

(3.19)

N
EV(X(t+1)) — V(X()X(2) Z (A1) ]+1+2C\/§ (3.20)

It b — (e+1+z Ef{A:(1)) ])z then the right hand side of (3.20) equals to +e

and the proof is complete. o
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The next theorem provides the necessary and sufficient stabilizability conditions

and 1t follows from lemmas 3.1, 3.2.

Theorem §.1: The necessary and sufficient stabilizability condition is
a; |
S =<i1-J]Ja-p), VQC{1,..,N}. (3.20a)
ieQ " i€Q
Furthermore policy 7 stabilizes the system as long as it is stabilizable.
Corollary 3.1: When the arrival and service rates as well as the connectivity
probabilities of all queues are the same and equal to a, m and p respectively

then the necessary and sufficient stabilizability condition 3.2 is equivalent to

a 1—(1=p)¥ |
— < 21
— < N (3:21)
Proof: Since all nodes are identical, for any set @ with k& nodes, condition 8.2
1s written as

a 1— (1 — p)k -

— < — (3.22)
When @ includes all nodes of the network then (3.2) is identical to (3.21). To

show that (3.21) implies (3.22) for all % it is enough to show

1-(1-p* 1-(1-p*

E=12
k - k41 ' L

i LR

which is true since

_ PR _ Y E |
1-(1=p)  1=(-pt*
k - k+1

k—1 k k—1
(k+1)p> (1=p)2kp) (1-p)'® Y (A-pf2k1-p* o

103



For a symmetric system like that considered iﬁ the corollary the total throutgh—
put is equal to 1—(1—p)? and the performance degradation due to time varying
connectivity is equal to (1 — p)?, which is the probability that all nodes are
disconnected during a particular slot.

When the system has fixed connectivities (M;(t) =1 a.s.,, t=1,.,N, t =
1,..) it is well known ([Wa88]) that the necessary and sufficient stabilizabil‘lity

condition is

Furthermore, under the necessary and sufficient stabilizability condition #he
system is stabilized by any work conserving policy that is for any policy Wh:iCh
never idles the server if there are packets in the system. When the connectivities
are time varying a policy is defined to be work conserving if it does not idle
the server when there i1s a nonempty connected queue. Any work conserving
policy in the latter case does not necessarily stabilizes the system even if it is

stabilizable. This is demonstrated in the following counterexample.

Counterezample 3.1. Consider a system with two queues which have Bernoullif]
arrivals with rates a; and ag respectively. The server provides deterministic ser-
vice to both queues, (my; = my = 1); queue 1 is constantly available for servi;ce
(pr = 1) while queue 2 is available with probability p» < 1. The stabili:ty

condition (3.2) in this case is equivalent to the following

a1 tay <1l , az < ps. (3.22)
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Consider the nonidling policy 7' that always give priority to queue 1. We claim
that (3.22) is not sufficient for stability of the system under 7’. Assume that
the system starts with queue 1 being empty. At slot ¢, queue 2 may recéive
service if it is connected and no packet arrived at queue 1 during slot ¢ =L 1.

Consider the binary variable

d(t) = 0, ifa;(t —1)=0and pa(¢) =1
11, otherwise.

The process {d(#)}$2, is Bernoulli and such that P[d(¢) = 1] =1 — p2(1 — dy).
Consider a hypothetical queue, let say 3, with deterministic service and arrivals
at each slot ¢ equal to as(t) + d(t). We can easily see that the length of queue
2 is always greater than or equal to the length of queue 3 minus 1. Hence
stability of queue 3 is necessary for stability of queue 2. The necessary stabil%ity

condition for queue 3 is that

az +1—pa(l —ay) < 1. (3.23)

Apparently we can find nonnegative numbers ay, az,ps that satisfy (3.22) But

do not satisfy (3.23); hence (3.22) is not sufficient for stability under #’. o

Remarks

1. In order to verify the stabilizability condition 3.2 we have to verify the
inequality in 3.2 for all subsets @ of the set {1,..,N}. The number of subsets
of that set is 2. Hence, for a large number of queues, verifying whether the
system 1s stabilizable for certain arrival, service and connectivity rates becomes
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an intractable task. It is of interest to find an efficient algorithimn, if there exists

one, that verifies stabilizability in polynomial time.

2. Condition 3.2 is necessary for the existence of a policy in G under Wh!ich
the system is stable and sufficient for stability of the system under . ’Ii‘he

policies in Gy may base their decision on the lengths of all queues in the system

irrespectively of whether they are connected or not while 7o base its decisions
on the lengths of the connected queues only. Hence the additional information

on which the polices in G may base their decisions, that is the lengths of the

unobserved queues, is irrelevant to the stability performance of the system.,

3. The independence among the processes {A4;(2)}52,, {M:(t)}2,, {Ci(1)} 52,
¢ =1,.., N has not been used in the proof of theorem 3.1. The stability result
in that theorem holds ugder the more general assumption that the variables
Ai(8), M:(1),Ci(1), 1 =1, .'., N are independent in different slots and identically
distributed. Under that more general assumption the theorem holds if the

term 1 — [[;co(1 — pi) in the right side of relationship (3.20a) is replaced by

P[ZiEQ Ci(t) > 0.

4.4 Optimal server allocation

In this section we study the problem of delay optimal server allocation. We
consider a symmetric system 1n which the arrival, service and connectivity pro-
cesses in different queues have identical statistics. We assume furthermore that
the variables A;(1), 1 = 1,...,N, t = 1,... are binary. No further assumptions
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are made about the statistics of the system. The policy my defined in section
4.3, which allocates the server at each slot to the longest connected queue is
shown to be optimal; more specifically it minimizes, in the stochastic ordering
sense, the process of total nu_rnber of packets in the system. In section 3.1 the

concept of stochastic ordering has been briefly introduced.
4.4.1 Optimality of mg

Consider the class of policies G that take an action at slot £ based on
the entire history of the past observations and control actions. A policy in G
is specified by a sequence of functions {g:(:)}$2,, 9. : V' x {e,1,.., N} —
{e,1,..., N} where V! is the space where Y*(t) = (Y(1),..., Y(#)) lies. The allo-
cation decision at slot ¢ is U(t) = ¢.(Y'(¢), U*(t)) where U*(t) = (U(1),..., U(t—
1)). Apparently G is a bigger class of policies than G. We show that mg is op-
timal within G. We need notation to consider the process of total number; of
packets in the system Q = {Q(t)}$2, where Q(t) = Zf\;l Xi(t). Next theorem
states that mp minimizes in the stochastic ordering sense the process of total

number of packets in the system.

Theorem 4.1: Let ) be the process of total number of packets in the system
when the initial state is xy and policy = € G acts on it and (}o the correspondiing

process when 7 acts on the system. We have
Qo <o Q. (411)

We need the following lemma in the proof of the theorem.
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Lemma 4.1: For every policy m € G there exists a policy # € G which dcts
similarly {o 7y at ¢t = 1 and is such that when the system is in state xp at t = 0
and policies 7, T act on it the corresponding processes ¢/, Q of total number of

packets in the system can be constructed so
Q) <5t Q(t) a.s.,, t=0,1,2,... (4.2)

Proof: We construct # and we couple the queue length realizations under
7 and # appropriately so that (4.2) holds. Let X and X be the queue length
processes under policies © and 7 respectively. At slot ¢ = 1 give the same
connectivitj variables under the two policies to the same queues.

If # and 7 take the same action at ¢ = 1 then let the arrival, service, and
connectivity variables be the same at the same queues under both policies for
every subsequent slot and take 7 to coincide with 7 for ¢ = 2,... Then the queue
length processes are identical under both policies and (4.2) follows immediately.

If w idles at ¢ = 1 while ¥ serves queue j then give to the same queues,
the same arrival service and connectivity variables under both policies at all

subsequent slots. At ¢ = 1 we have
Xi(t) = Kut) i 1£5, X0 < X500, (4.3)

Let policy # be identical to 7 at all subsequent slots ¢ = 2,3,... If (4.3) holds at
t we can easily see that it holds at ¢t + 1 as well and (4.2) follows by induction.
If m serves queue k while # serves queue 7 at t = 1 then at that time slot

give the same service variable at queues & and 7 under m and 7 respectively. At
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each time ¢ > 1 consider the indicator variables s(t), §(#), I(t), [(t) defined as

follows

s(t) = arg min {X (1)}, 3(t) = arg Tgi;}k{)%m(t)},

m=j,k
(#) = arg max {Xm(t)},  1(t) = arg max {Xn (1)}

If we have X;(t) = Xx(¢) then we take s(¢) = min{j, k}. Similarly for the rest
indicator variables. In the following we write X,(2) instead of X (t). The
same for the rest of the above indicator variables. We distinguish the following

cases.

Case 1. X3(0) = X;(0)

Give the same arrival variables at ¢ = 1 to the queues 7 and k under # and
7 respectively. Similarly for the queues k and j under # and 7 respectively.
Give the same arrival variables under both policies to each one of the rest of

the queues. Then at ¢t = 1 the queue lengths satisty the following relationships

Xs(t) = X§(t) . Xi(t) = X—f(t) , Xi(t) = Xi(t) y 1 FE kG (4:4)

Case 2. X(0) < X;(0)
At slot t+ = 1 give the same arrival variables to the same queues under =
and 7. If the service at ¢ = 1 is not completed then the queue lengths at t = 1

satisfy (4.4). If the service is completed we distinguish the following cases.

A X(0) < X;(0)—1
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In this case we can easily verify that the queue lengths satisfy the following

relationships
X =X:()—1, X&) =X;()+1 , Xu(t)=Xi(t), i #k,5. (4.5)

fort =1.

B. Xx(0) = X;(0) -1

In this case the queue lengths are as follows depending on the arrivals. If

during slot 1 a packet arrives only at queue k (under both policies) then

the queue lengths at the end of slot 1 satisfy (4.4); otherwise the queue

lengths satisfy relations (4.5).

The cases 1 and 2 above cover all the possibilities since it is not possible
to have X(0) > X;(0) given that mo serves the longest queue. Hence at the
end of slot 1 the queue lengths under m and 7 satisfy either (4.4) or (4.5). Note
that in both cases we have

N N

in(t) =Y Xi(t) (4.50)

i=1 i=1
Hence if at each slot either 4.4 or 4.5 hold then 4.5a holds at all slots and (4.2)
is satisfied at ¢ = 1. We show in the following that if the queue lengths at
slot t satisfy either (4.4) or (4.5) then we can couple the processes X and X
by choosing appropriately the connectivity, arrival and service variables at slot
t+ 1, and define 7 such that at slot ¢t + 1 one of the relations (4.4) and (4.5) is

satisfied again. From induction we can conclude that there exists a # such that
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the queue length processes under = and 7 satisty either (4.4) or (4.5) at any ¢;
hence (4.2) holds and the lemma follows. We distinguish the following cases for

X(1).
Case 1'. Relations (4.4) hold at ¢.

Let at slot ¢ 4+ 1 the queues I(¢), I(t) have the same connectivity arrival
and service variables under 7w and 7 respectively. Similarly for the queues s(#)
and 3(f). Let all queues, other than k,7, have the same connectivity, arrival
and service variables at ¢ + 1 under 7 and 7 respectively. If 7 serves quéue
I(t) at slot ¢ + 1 let # serve I(¢); if 7 serves queue s(t) let # serve 5(¢). Let 7

be identical to 7 otherwise. Then we can easily check that at ¢ + 1, (4.4) are

satisfied

Case 2. Relations (4.5) hold at ¢ and X;(t) < X;(t).

Let the connectivity, arrival and service variables at slot ¢ 4+ 1 as well as
the policy # be as in case 1’ above. If we have X3(t) < Xj(t)+2 then (4.5) hold
at slot t -+ 1. If we have X5(t) = X3{(t) + 1 the following may hold. If queues
s5(t) and 3(¢) are served under 7 and 7 respectively then at slot ¢--1 (4.5) hold.
If instead queues () and () are served then if the service is not completed,
(4.5) hold at slot t + 1. If the service is completed and we have an arrival at

queues s(t), §(¢) and no arrivals at {(¢), {(¢) then (4.4) hold at slot ¢ + 1. If the

service is completed and the arrivals are not as above then (4.5) hold at ¢ + 1.

Case 3'. Relations (4.5) hold at t and X5(t) = X;(2).
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Let the connectivity variables at slot # + 1 be as in case 1’ above. If «
serves queue I(t) at slot ¢t + 1 let # serve I(t); if 7 serves queue s(¢) let 7 serve
3(t). Let @ be identical to = otherwise. We distinguish the following cases.

A'. Queues I(t), [(t) are served under 7, # respectively.

Let the service variables of I(), I(t) be identical under =, #. Let all queues
t # 7,k have the same arrivals under both policies. If service is not completed
let queues I(t), f(t) have the same arrivals under m, 7 respectively and similarly
for queues s(t), 5(¢). If there is an arrival at s(t), §(¢) and no arrival at [(¢), i(¢)
at t + 1 then (4.4) hold at ¢ + 1, otherwise {4.5) hold. If service is completed
let queues s(t), I(t) have the same arrivals at ¢ + 1 under 7, 7 and similarly for
I(t), 3(t). Then (4.4) hold at ¢ + 1.

B'. Queues s(t), 3(t) are served under =, 7 respectively.

Let the service variables of s(t), 3(¢) be identical under w, #. Let quecues
I(t), 1(t) have the same arrivals under m, # respectively and similarly for tlhe
queues s(t), 3(¢). Let ail queues 1 # 7,k have the same arrivals under the
two policies. If service is completed then (4.5) hold at ¢ + 1. If service' is
not completed then either (4.4) or {4.5) hold depending on whether there are
arrivals at s(t), 4(t) and no arrivals at I(¢), I(¢), or not.

C’. Queue 1 #£ j, k is served under 7, 7 respectively.

Let queues I(t), I(t) under 7, 7 respectively have the same arrivals and similarly
for the queues s(t), 3(t). Let all queues ¢ # j, k have the same arrivals under
the two policies. Let queue ¢ have the same service variables under =, #. If
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there is an arrival at s(t), 3(t) and no arrival at [(¢), I(t) at ¢t + 1 then (4.4)
hold at ¢ + 1, otherwise (4.5) hold. o

We proceed now in the proof of the theorem.

Proof of Theorem 4.1: From lemma 4.1 we have that for any policy « iwe
can construct a policy m; which is similar to mp at ¢ = 1 and such that for the

corresponding total number of packets processes @), (J; we have

Ql(t) < Q(t) a.s., t= 071)"

By repeating the construction we can show that there exists a policy m; which
agrees with m; at the first slot, agrees with 7 in the second slot and is such

that for the corresponding process ¢} we have

Qg(t) _<_ Q](t) a.s., t = 0, 1, .

If we repeat the argument & times we obtain policies 7;, 7 = 1,..., k such t}i1at
policy 7; agrees with mo at the first 144 slots and for the corresponding processes

we have

Rr(t) € Qr—1(t) < .. < @1(t) < Q) a.s., t=0,1,.. (4.6)

Consider the time slots #1,%2,...{,; and a function ¢ as in part 2 of theorem 4.1.
Consider also the policy 7y, defined as above. By construction the variables
Q@+, (t1), ..., @1, (t5) have the same joint probability distribution with the vari-
ables Qo(ty),...,Q0(tn) where Qq,...,Q, are the processes of total number of
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packets in the systemn under the policies mg, 74, respectively. Hence for all z we

have

P(g(Qr, (1), @ () > 2) = P(9(Qo(tr), -, Qo(tn)) > 2). (4.7)

From 4.6 @, (t) < Q(¢) a.s. for all t =0,1,... therefore we have

P(g(Qt.(t1)s- Qe (tn)) > 2) < P(g(Q(t1), ..., Q(tn)) > ). (4.8)

Equations (4.7) and (4.8) and part 2 of theorem 4.1 completes the proof. ¢
Remark

Tﬁe fact that policy 7 in lemma 4.1 base its decisions on the lengths of the
connected queues only is not essential in the proof of the lemma. That preof
goes through even if 7 is any policy that base its decision on the history of the
lengths of all queues in the system in addition to the connectivities and past
control actions. Therefore 7y is optimal within the class of policies that base

their decisions on the complete system history.

When the connectivites are fixed (Ci(t) =1, ¢« = 1,..,N, t = 1,..) then
in the symmetric system any work conserving policy minimizes the delay. Fur-
thermore in the general case (asymmetric system), if the service processes are
1.1.d. (geometric service requirements) the optimal policy is known to be the
one that serves the nonempty queue with largest m;. In the case of varying con-
nectivities work conservation is not enough for optimality. Serving the queue
that suffers most is essential for optimal system performance. This is made

114



more plausible by our result in the next section where 1t is stated that serving
the queue that suffers less at each slot maximizes the delay in the class of work

conserving policies.
4.4.2 Worst performance within the work conserving policies

Consider the policy n’ € G which during slot ¢ allocates the server accord-

ing to the function ¢’ : Y' — {¢,1,..., N} defined by

] €, if :BiCiZO, i=1,...,N
g9'(x,c) = argmin:=i,..~ {z;¢;}, otherwise.

SN
That is 7' allocates the server at slot ¢ to the connected, nonempty queue :
(C;(t) = 1) with minimum length. The following theorem states that policy =’
maximizes in the stochastic order sense the process of total number of packets

in the system within the class of work conserving policies.

Theorem 4.2: It () is the process of total number of packets in the system
when the initial state is xo and a work conserving policy m acts on it and @,

the COI‘I‘G!SpOI'ldiIl rocess when ?l'r acts on the system then we have
EP
Q <_st Q,- (49)

The following lemuma plays a role in the proof of theorem 4.2 analogous to that

of lemma 4.1 in the proof of theorem 4.1.

Lemma 4.2: For every work conserving policy © € G there exists a work
conserving policy 7 € G which acts similarly to 71 at ¢ = 1 and 1s such that when
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the system 1s in state x¢ at ¢ = 0 and policies #, 7 act on 1t the corresponding

processes @, Q of total number of packets in the system can be constructed so
Q(t) 2. Q(t) as., t=0,1,2, ... (4.10)

Proof: By induction we construct T and we couple the realizations under
7 and 7 appropriately such that (4.10) holds. Let X,X be the queue length
processes under m, @ respectively. At slot ¢ = 1 give the same connectivity
variables under the two policies to the same queues.

If # and 7 take the same action at ¢ = 1 then let the arrival, service, and
connectivity variables be the same at the same queues under both policies in
every subsgquent slot and let 7 coincide with 7 for ¢ = 2,... Policy 7 is work
conserving therefore 7 is work conserving as well. The queue length processes
are identical under both policies and {4.10) follows immediately.

if ™ serves queue k while 7 serves queue j at ¢ = 1 then at that time slot
give the same service variable at queues & and j under 7 and % respectively.
Let the indicator variables s(t), §(t) I(t), {(t) be as in the proof of lemma 4:1.

We distinguish the following cases.

Case 1. X3(0) = X;(0)
Give the same arrival variables at ¢ = 1 to the queues 7 and &k under 7 and
m respectively. Similarly for the queues & and j under # and 7 respectively.

Give the same arrival variables under both policies to each one of the rest of
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the queues. Then at ¢t = 1 the queue lengths satisfy the following relationships
X,(1) = Xs(t) , Xult) = Kt) , Xelt) = K@), i £ hoje (411)

Case 2. X1(0) > X;(0)

At slot t = 1 give the same arrival variables to the same queues under =
and 7. If the service at ¢ = 1 is not completed then the queue lengths at ¢ =1
satisfy (4.11). If the service is completed we distinguish the following cases.

A X(0) - 1> X;(0)

In this case we can easily verify that the queue lengths satisfy the following

relationships
X=X +1, X=X -1, X)) =X:t), i #k,j. (412)

B. X(0) — 1= X,;(0)

In this case the queue lengths are as follows depending on the arrivals. If

during slot 1 a packet arrives only at queue j (under both policies) then

the queue lengths at the end of slot 1 satisfy (4.11); otherwise the queue

lengths satisfy relations (4.12).

The cases 1 and 2 above cover all the possibilities because it is not possible
to have X;(0) < X;(0) since 7’ serves the shortest queue. Hence at the end
of slot 1 the queue lengths under 7 and 7 satisfy either (4.11) or (4.12). Note

that in both cases we have

N N
in(t) = Z)&(t)
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and (4.2) is satisfied at ¢t = 1. We show in the following that if the queue lengths
at slot t satisfy either (4.11) or (4.12) then we can couple the processes X and
X by choosing appropriately the connectivity, arrival and service variables at
slot t + 1, and define # without violating the work conservation requirement,
such that at slot ¢ + 1 one of the relations (4.11) and (4.12) is satisfied. Then
from induction we can conclude that there exists a & such that the queue length
processes under 7 and 7 satisfy either (4.11) or (4.12) for any t; hence (4.2)

holds and the lemma follows. We distinguish the following cases for X(t).
Case 1'. Relations (4.11) hold at ¢.

Let at slot ¢ + 1 the queues I(t), I(#) have the same connectivity arrival
and service variables under = and % respectively. Similarly for the queues s(t)
and §(¢). Let all queues, other than k,j, have the same connectivity, arrival
and service variables at ¢ + 1 under 7 and 7 respectively. If 7 serves queue
I(t) at slot ¢ + 1 let # serve I(¢); if 7 serves queue s(t) let # serve 5(¢). Let &

be identical to 7 otherwise. Then we can easily check that at ¢ + 1, (4.11) are

satisfied
Case 2'. Relations (4.12) hold at t and Xe(t) < Xi(2).

Let the connectivity, arrival and service variables at slot £ 4- 1 be as in case
1' above. If 7 serves I(t) at ¢ + 1 let # serve [(t). If 7 serves s(t) at £ + 1 let &
serve §(t) if it is not empty, otherwise (). Let # be identical to = otherwise.
If we have X,(¢) < X;(¢) + 2 then 4.12 hold at ¢ + 1.
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If we have X3(t) < Xj(t) + 2 then (4.12) hold at slot ¢ + 1. If we have
X;5(t) = X;(t) + 1 the following may happen. If queues s(t) and 3(t) are served
under 7 and 7 respectively then at slot ¢ + 1 (4.12) hold. If instead queues (%)
and I(t} are served then if the service is not completed, (4.12) hold at slot ¢+ 1.
If the service is completed and we have an arrival at queues s(t), §(¢) and no
arrivals at I(#), I() then (4.11) hold at slot £+ 1. If the service is completed and
the arrivals are not as above then (4.12) hold at ¢t + 1. If queues s(t) and I(¢)

are served by m, T respectively then 4.12 hold at ¢ + 1.
Case 3'. Relations (4.12) hold at ¢ and X,(¢) = X;(2).

Let the connectivity variables at slot 41 be as in case 1’ above. If w serves

one of the queues (1), s(t} at slot t + 1 let 7 serve {(¢). Let © be identical to

otherwise. We distinguish the following cases.
A’. One of the queues {(t), s(t) is served under =.

Without loss of generality assume that queue [(¢) is served under =. Let the

service variables of (1), I(¢) be identical under =, #. Let all queues 7 # 7, k have
the same arrivals under both policies. If service is not completed let queues
I(t), I(t) have the same arrivals under =, # respectively and similarly for queues
s5(t), §(t). If there is an arrival at s(¢), 5(¢) and no arrival at I(¢), {(¢) at t + 1
then (4.11) hold at t+1, otherwise (4.12) hold. If service is completed let queues
s(t), I(t) have the same arrivals at ¢ + 1 under x, # and similarly for I(t), &(t).
Then (4.4) hold at ¢ + 1.
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B'. Queue 7 # j, k is served under w, 7 respectively.
Let queues I(t), I(t) under m, # respectively have the same arrivals and similarly
for the queues s(¢), 3(¢). Let all queues ¢ # 7, k have the same arrivals under
the two policies. Let queue : have the same service variables under 7, #. If
there is an arrival at s(¢), §(¢) and no arrival at I(), I() at t 4+ 1 then (4.11)

hold at t + 1, otherwise (4.12) hold. o

We proceed now to the proof of the theorem.

Proof of Theorem {.2: From lemma 4.2 we have that for any work conserv-
ing policy m we can construct a work conserving policy m1 which s similar to '
at t = 1 and such that for the corresponding total number of packets processes

@, ()1 we have

Q1(t) > Q) a.s., t=0,1,..

By repeating the construction we can show that there exists a work conserving
policy my which agrees with w1 at the first slot, agrees with ' in the second

slot and is such that for the corresponding process (J2 we have

Q2(t) = Q1(2) a.s., t=0,1,..

If we repeat the argument %k times we obtain policies m;, ¢ = 1, ..., k such that
policy m; agrees with my at the first 7¢h slots and for the corresponding processes

we have

Qu(H) 2 Qra () 2 o 2 () 2 Q1) asy £=0,1,..  (413)
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Consider the time slots #7, %2, ...t; and a function ¢ as in part 2 of theorem 4.1.
Consider also the policy m¢, defined as above. By construction the variables
Q¢ (1), .-, @1, (tn) have the same joint probability distribution with the vari-
ables @'(t1),..., Q' (tn) where @', @4, ..., Q, are the processes of total number
of packets in the system under the policies 7', 7y, ..., 7s, respectively. Hence for

all z we have

P(g(Q1, (t1), - Qe (tn)) > 2) = P(g(Q'(t1), ..., Q' (£n)) > 2)- (4.14)

From 4.13 @, (t) > Q(t) a.s. for all { = 0,1, ... therefore we have

P(g(Qu.(t1), ., @, (ta)) > 2) = P(g(Q(t1), ..., Q(2n)) > 2)- (4.15)

Equations (4.14) and (4.15) and part 2 of theorem 4.1 completes the proof. ¢

Apparently 7' has no practical significance since it maximizes the delay.
The result though in theorem 4.2 emphasizes the fact that serving the more
suffering queues improves the delay. If we consider an hierarchy of the work
conserving policies with respect to how close they follow the rule to serve the
queues that suffer most at each slot then 7 is in the top of this hierarchy and =’
in the bottom. It is intuitively appealing the fact that their delay performances

are the best and worst respectively within the class of work conserving policies.

4.4.3 Discussion

Assume that the azrrival service and connectivity processes are i.i.d. In
this case the problem of minimizing the delay can be casted as a discrete time
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Markov Decision Process. Consider the cost function defined by
_ 1 T N
Tx(x0) = lim sup B, [~ ; Zl Xi()] (4.16)
where 7 is a policy in G, x¢ is the initial system state and the expectation is
taken with respect to the probabilityA measure induced by # when the system
starts from x¢. Minimizing the delay is equivalent to minimizing (4.16) within
G. The latter minimization problem falls within the category of discrete time
Markov Decision Processes (MDP) with partial observations ([KuV86]). The
controlled Markov chain is (X(¢t — 1), C(¢t)), the control action is U(¢) and
the evolution of the chain is governed by (2.1). The observation at time ¢ is
Yi) = (X¢t-1) C(t),C(.t)). The optimal policies in MDP with partial
observations are in general nonstationary since the action taken at slot ¢ is a
function of all past observations. Thpse policies are usually hard to specify.
The optimality result obtained in section 4.1 implies that mg minimizes (4.16).
Therefore in asymmetric systems the policy that minimizes (4.16) is stationary.
In a general asymmetric system the optimization of (4.16) remains an open
problem. We conjecture that the optimal server allocation policy is stationary
in the general case as well. Nevertheless we believe that the allocation decisions
are a complicated function of the state and the policy is difficult to be specified
completely.
In our study we have assumed that the connectivities become available for
decision making in the beginning of each slot. An interesting case is when the
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connectivities are not observable and the server at slot ¢ is allocated based on
the queue lengths X (¢ —1) only. If the connectivity processes are i.1.d. then the
changing connectivity model is reduced to one with fixed connectivities where

the service variable for queue ¢ at slot ¢ is C;(¢)M; ().

4.5 Optimization of throughput and delay in a finite buffer system

When the buffers in the nodes have finite length then an arriving packet
is blocked from admission when it finds the buffers full. The stability of the
system is not an issue in this case since the queues can not grow to infinity. The
number of packets which are successfully transmitted, that is the throughput
of the system, is an important performance measure in addition to delay. In
this section we study both throughput and delay performance in a finite buffer
system with one buffer per node. A policy is obtained which is both throughput
and delay optimal.

When there is a single buffer per node an arriving packet at node ¢ during
slot t is accepted if the buffer is empty in the beginning of the slot (X;(#—1} = 0)
or node ¢ is the one selected for service at slot ¢ in which case its packet is
forwarded from its buffer in the beginning of the slot and the buffer is empty.
The queue length vector in this case belongs to {0,1}"; the queue length at

node ¢ evolves according to the equation
Xi(t) = A:(t) + Xu(t — 1)(1 — A:(0)(1 = H{U(t) = 13Ci(t)Mi(3))  (5.1)

where the variables X;(t), U({), Ci(¥), Mi(t), Ai(t) are as defined in section
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4.2, We assume that at each slot there can be at most one arrival at each node
that is the variables A;(t), ¢ = 1,.., N are binary; furthermore we assume that
the arrival and service processes have identical statistics at different nodes. The
number of packets blocked from admission into the system during slot £ is

N

B(t) = 3 A(DXi(t - 1)(1 - HU) = ) C(HM:(1))

i=1
Note that the number of packets blocked from admission mto the system plus
the number of packets which are admitted in the system during slot ¢ and
they are finally served is equal to the number of packets arrived during slot t.
Therefore maximizing thé throughput of the system is equivalent to minimizing
the number of blocked packets. Consider the policy # € G which during slot ¢

allocates the server according to the function §: V' — {e,1,..., N} defined by

€, if :Cicz'zo, i=1,...,N
j(x,0) = {

g argmini=1,...~ {p;r;c;}, otherwise.
0

Tici

That is 7 allocates the server at slot ¢ to the connected nonempty queue ¢
(Ci(t) = 1) with the smallest probability of being connected. Policy # minimizes
in the stochastic ordering sense both the process of blocked packets and the

process of total number of packets in the system.

Theorem 5.1: Consider an arbitrary policy # € G and let policies 7 and
7 schedule transmissions starting from the same initial state x at ¢ = 0. Let
@), B be the processes of total number of packets in the system and of blocked
packets respectively under #; let Q, B be the corresponding processes under 7.
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Then we have

Q S&t Qa (52)

B Sst B (53)

Proof: We construct the queue length processes X, X under #, # respectively

by appropriate coupling of the arrivals services and connectivities such that
QU< Q) as., t=0,1,... (5.4)

B(t) < B(t) a.s., t=0,1,... (5.5)

Hence (5.2), (5.3) follow.

We show that a particular partial ordering (defined next) holds between
the system states under the two policies at every slot. This partial ordering
implies relations (5.4), (5.5). Assume that the queues are indexed such that

pi <pig1, 1=1,.,N—1. Wesayx <y, x,y € {0,1}"V if

J b
in < Zyi; J = 13"7N (56)

We construct the queue length processes such that for all 7 = 0,1, .. we have
X(r) < X(7) | (5.7)

We use forward induction. At 7 = 0 we have X(0) = X(0) therefore for 7 = 0
(5.7) follows. Assume that (5.7) is true for 7 = ¢; we show that it is true for
T=1t+1as well Let A;{(t +1), Ci(t + 1), Mi(t+1), : = 1,.,N, U{t+1)
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be the arrival, connectivity, service, and control variables under # and fl,;(t +
1), Ci(t+1), Mi(t+1), i=1,.,N U(t+1) under #. First we show that the
following hold

Yt4+1)<Y({t+1) (5.8)
whefe
Vit +1) = X:()(1 - {U(t+ 1) =1}C;(t + DM (t + 1)), i =1,.,N

Vit +1) =X (1 - 1{U¢+1) =110+ DMt + 1)), i=1,..,N

Let 7(1), 7(1) be the Ith nonempty queue starting from queue 1 in states X(t),
X(¢). If 7(I) > (1) then we have Ele X:(ty=1> Ele X;(t) which contra-

dicts the induction hypothesis therefore we have

IO <iM, 1=1,.,Q(0) (5.9)

and by the assumption about the indexing of the queues

Piwy S piy 1= 1., Q). (5.10)

Because of (5.10) we may construct Cjqy(f + 1), C'}(l)(t + 1) in a common

probability space such that

We distinguish the following cases.
Case 1: No nonempty queue is connected at ¢ + 1 under 7;
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In this case no queue is served and we have

ilﬂ-(t+1)=i}{i(t), j=1,.,N (5.11)

i=1 =1

Since Cyp(t +1) =0, [ =1,..,Q(t) and because of the coupling of the connec-
tivities we have é}-(l)(t +1)=0,!=1,..,Q(t), therefore no queue with index

7= J:(Q(t)) is served and we have

ST+ 1= Xil), § <HQ) (5.12)

J
SOV 1) 2 QM) 5 > Q) (5.13)
i=1
From (5.11), (5.12) and the induction hypothesis we have Z“Z:l Yit+1) <
T_ Yi(t+1) for j < F(Q(#)) and from (5.11), (5.13) we have S1_, Yi(t+1) =
Q) < S Vi(t + 1) for 7 > 3(Q(t)). Hence relation (5.8) holds.
Case 2: Some queue is connected at ¢ + 1 under 7.
If no queue is served under # during ¢t + 1 then Y;(t +1) = X;(¢), ¢ = 1,..,N
while Y;(t + 1) < X;(t), ¢ = 1,.., N therefore (5.8) follows from the induction
hypothesis for 7 = ¢ + 1. I some queue is served under both policies then
give the same service variables to the queues under both policies. I service is
not completed then Y (¢ + 1) = X(¢), Y(t + 1) = X(¢) and (5.8) follows from
the induction hypothesis. If service is completed at ¢t + 1 then let j5 = j(lp),
70 = 7(Ip) be the queues served under # and 7 respectively. Since # serves the

nonempty queue with the smallest probability of being connected we have

Cj([)(t-l-l) =0, 1 <l<l
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From the coupling of the connectivities it is implied that
Copt+1)=0, 1<I<ly

and we have

0 = 3(l) (5.13a)

If 30 > jo then for § > jo we have

S Vi) = ZX(t)—l

I M’”

Z (t+1) (5.14)

and for § < jo we have

ZJ: t+1)_ZX(t)>ZX(t)_ZY(t+1) (5.15)

From (5.14) and (5.15), (5.8) follows. If jo < jo then for j < jo we have

7

Z (t+1)= if(,-(t) > i:Xi(t) = Z]:Yi(t +1) (5.16)

For 7 > jy we have

S

J

Y Yi(t+1) = ZX (t) — ZX,-(t)-l:iﬁ(tH) (5.17)

=1 i=1
For j» < j < jo and because of (5.13a) we have

b J

Yit+1) = ZX(t)<lo—1 Z)’h(t)-1:2j:ﬁ(t+1) (5.18)

i=1 i=1
From (5.16), (5.17), {5.18) we get (5.8) for 7 =1t + 1.

Now given that (5.8) holds we show that (5.7) holds at ¢ + 1. Let m({),
m(l) be the Ith empty queue starting from queue 1 for the states Y(t + 1),
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Y(t 4+ 1) respectively. Let Q'(t + 1), Q'(t + 1) be the number of packets in
the system when the states are Y(¢ + 1), Y (t + 1) respectively. We couple the

arrivals under the two policies such that

An(t+ 1) =Azp(t+1), =1, ,N-Q'(t+1)

Consider an arbitrary queue j and let & and & be the number of empty queues
with index less than or equal to j under # and 7 respectively. Because of (5.8)

we have k > k. We get

j j J
MXit+1) =) Vit+ 1)+ Aawt+1) (5.19)
=1 =1 =1

b J k
S OXi(t+1) =D Vit + D)+ > Anp(t+1) (5.20)
i=1 =1 =1

Z]:ﬁ(t+1)—zj:}’;(t+l)=k—fz (5.21)
i=1 i+1

From the coupling of the arrivals we have
k k k
Y Anpt+1) = Aapt+1)= 3 Anpt+1)<k-k  (5.22)
i=1 i=1 I=Fp1
Subtracting (5.20} from (5.19) and replacing from (5.21), (5.22) we get
i 3
YoX(t+ 1) =) Xi(t+1)20, j=1,.,N
=1 =1

Hence (5.7) holds for 7 = ¢ + 1. Notice that

X(t) <Xty = Q) <Q@), t=1,.
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therefore (5.7) implies (5.2).
Now we show (5.3). Let 7'(1) and j'({) be the Ith nonempty queues, starting
from queue 1, for the states Y(¢ + 1) and \?(t + 1) respectively. Couple the

arrivals at t + 1 as follows

A+ =4zt +1), I=1,.,Q (¢ +1) (5.23)

For the number of blocked packets we have

Q' (t+1) Q' (t+1)
B(t+1)= > Ap(+1), Blt+1)= > A;(t+1)
=1 =1
and from (5.23)
Q' (t+1) Q' (t+1)

Bt+1)-B(t+1)= > Apt+1)— > Apt+1)
=1 =1

Q' (t+1)

= > A+ =0
1=Q'(t+1)

therefore (5.3) holds. o
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CHAPTER 5

Stabilization of a general queueing network

5.1 Introduction

In this chapter we study a general queueing network where there 1s routing
and flow control at each queue. The control objective i1s similar to that of
chapter 2 that is stabilization of the system for a wide range of arrival and
service rates. Necessary and sufficient stabilizability conditions are obtained
which are expressed in a direct manner on the arrival and service rates. The
stability condition that we obtain for the queueing network allow us to give
an independent proof to the well known maxflow-mincut thecrem that holds in
deterministic flow networks, by constructing an appropriate queueing network
for a given flow network and considering the average rates of the customer flows
when the network is stable. Finally a model is considered where we assume
that the controller obtains delayed information about the queue lengths in the
network. Stability results are obtained for this case as well.

Notice that in the model we consider in this section there are no constraints
in the servers as there were in the model of chapter 2 and this network does not
model directly a radio network. Nevertheless it provides considerable insight
on the stabilizability properties of queueing networks as well as its connections
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with flows in deterministic networks.

This chapter is organized as follows. After the specification of the model in
section 5.2 we state and prove our main stability results in section 5.3. In section
5.4 we apply the stability results obtained in section 5.3 in deterministic flow
networks. In section 5.5 we consider the network stability problem in the case
where the queues get delayed information about the lengths of their neighboring

queues.
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5.2 The controlled queueing system

Comnsider a queueing network consisting of M queues and L classes of arriv-
ing customers. It is represented by a directed graph G (fig. 7) which contains
one node (black) for each class of arriving customers, one node {white) for each
queue and one destination node (D). The customers of class [ arrive according
to a Poisson process with rate a;. Upon arrival they join one of the queues of
the set ST which contains all the terminal queues of the arcs originating from
the node that correspond to class {. Each queue i possesses a single exponential
server, which may either idle or provide service with rate m;. A customer of
queue 1 after its service completion is routed to one of the queues of the set
S; that contains all the terminal nodes of the arcs originating at queue 1. If
node D is contained in the set 5; then the served customers of queue i may
be routed out of the system. We assume that the routing of customers upon
arrival in the network is controlled and the routing decision may depend on the
lengths of all queues of the system,that is the system state, at the arrival time
instant t. Similarly the routing of a customer completing service at queue 1 is
controlled and the routing decision is based on the system state at the time
instant of service completion. Finally we assume that the service rate of queue
i, which can take two values 0 and m;, is controlled and the decision rule may

be a function of the lengths of all queues of the system.

Let us denote by X;(t) the number of customers in queue 7 at time t; the
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custoiner receiving service at that time is included. The vector of queue lengths
of all queues of the system at time t is X(¢) = (X;(f) : ¢ = 1,...,M) and it
takes values in the state space X = Z i"f . The routing of the arriving customers
of class [ is specified by a function Rj : X —» S7 in the sense that an arriving
customer of class [ at time ¢ joins the queue Rj(X(¢—)) where X(¢—) is the
vector of queue lengths just before the time instant £.

The function Rj is called the routing rule of class [ in the following. A
served customer of queue ¢ is routed to one of the queues of the set S; (or out of
the system if D € S;) according to a function R; : & — 5, in the sense that the
customer of queue ¢ completing service at time ¢ joins queue R;(X(¢—)). The
function R; is the routing rule of queue 1. Finally the service rate of the server
of queue i is controlled according to a function F; : X — {0,m;}; the rate of
server i at time ¢ is F;(X(¢)). The function F; is called the service control rule
of queue 7. The control of the service rate available to the queues provide a
kind of flow control. An admissible conirol policy for the network consists of
a collection of routing rules, one for each customer class and each queue, and
service control rules, one for each queue of the system. Let G be the collection
of all admissible control policies. Customers of different classes are treated
identically by the control policy; also the service times of customers of different
classes are identically distributed in each queue. Hence customers of different
classes are indistinguishable after they enter the network and they differ only

in the set of queues that they can join upon arrival.
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Figure 7. The topology graph of a queueing network.
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Remark: If the servers never idle, that is F;(x) is identically equal to m;
for all 7, and the routing, in each queue and each arrival stream, is done by
random splitting with some fixed probabilities not dependent on x, then the

resulting network is Jacksonian ([4,9]).

When the network is operated by a control policy from G, and since the ar-
rivals are Poissonian and the service times exponentially distributed, the queue
length process X is a Markov chain. The rate gxx of a transition from a state

x to a state x' is as follows

mi, if Fi(x)=m,y, ot =z; — 1, :E’R,-(x) = ZRg,(x) + 1 when R;(x) # D,
I’ = and z; = z; for j # 4, Ri(x);

ae, if :c'th(x) = ZTpe(x) 1, and 2 = z; for j # Rj(x).
We define stability as follows.

Definttion 2.1: The system is stable if the distribution of the queue length
vector X(t) converges as t — oo to a probability distribution on X'

Since X 1s a Markov chain for any policy in G the stability of the system
i1s equivalent to ergodicity of X. Let the arrival and service rate vectors be
a=(a: !I=1,.,L)andm={m;: i =1,..., M) respectively. We characterize
the performance of a policy 7 by its stability region which is defined in this case
as follows.

Definttron: The stability region C, of policy 7, is the collection of all pairs
of vectors (a m) for which the system is stable under policy .

Notice that the stability region is defined to consist of pairs of arrival and

service rate vectors unlike section 2.3. The discussion in section 2.3 about the
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comparison of policies based on their stability regions is valid here as well.
Similarly to section 2.3 the system stability region is defined by C = Ureq Chr.
If a pair (a, m) belongs to C' then it is called stabilizable.

Consider the policy 7y with control rules as follows

D, if D e S,

argmin;es, (z;), otherwise,

Ri(x) = {

R.(x) = argmin(z;),
JES;

RO = {0, i
If the minimum above is achieved for more than one queue then the argmin is
defined to be equal to the minimum index of these queues. Note that in my the
routing and the service rate control rules for a queue ¢ use for decision making
queue length information from the queues of the set S; only. The queues of
this set usually correspond to neighboring nodes of the physical system under
consideration. Henceforth a distributed implementation of the policy is readily
available. Policy m¢ has the optimality property that we mentioned earlier. In

the next section we will show the optimality of mg after we characterize the

stability region C of the system.
5.3 Stabilizability results

Given a set of queues S the set Cg is defined to contain every arrival class [
the customers of which can not be routed outside of §; that is S; C S for every

[ € Cs. The set Qg 1s defined to contain every queue i, the served customers
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Figure 8. A set of queues S with the corresponding sets of arrival streams and

queues that lead customers out of S.

Figure 9. A tandem network.
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of which may be routed outside of 'S; that is S; € S for every : € @s.
In fig. 8 the sets Cs and Qs of arrival streams and queues respectively, are

illustrated for a specific set of quenes 5.

Theorem 8.1:

1) A necessary and sufficient condition for a pair of vectors (a, m) to belong

to C is that

SMa<d mi, VSc{l,., M} (3.1)

leCs 1€Qs

ii) Policy wp is optimal in the sense that Cy, = C.

The proof of the theorem will be given after two lemmas. In the rest of this
section, whenever we refer to the process X, we assume that policy my controls
the system. The ergodicity of the continous time Markov chain X is equivalent
to the ergodicity of the imbeded discrete time Markov chain ([C082]). This
chain, which is denoted by the same symbol as the continous time chain in
the following, has the same state space as the continous time and transition
probabilities

PX(t) =y|X(t—1)=x) = —g"—y.

In the study of the ergodicity in the rest of the section we will refer to the imbe-
ded Markov chain. We need to characterize first some structural properties of
the Markov chain X. Recal from section 2.3 the definition of reachability as well
as of whether two states communicate or not. The relationship “communicate”
is an equivalence relationship. We need to characterize the classes of equivalent
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states of the chain with respect to this relationship. Note first that X is not
necessarily irreducible, that is X is not a single equivalence class. Consider for
example the simple network in fig. 9. If the initial state xp is such that z9 < 3
then none of the states x such that z; > x; is reachable. The following lemma
provides a classification of the states of the process X. State 0 corresponds to

the empty network.

Lemma 3.1: If my acts on the queueing system and (3.1) holds, then the

subset of the state space
R ={x: x € X and x can be reached from state 0}

is the unique closed class of equivalent states of the Markov chain; furthermore

any state of the set X' — R is transient.

Proof: We show first that the state O can be reached from any other state
x € X. For each queue 7 let w; be the number of hops (links) of the min-
imum hop path from the node of queue ¢ to node D in the topology graph
of the network. Apparently w; > 0 for ¢ = 1,..,M. Consider the linear
function W(x}) = Ef\il wiz; on X. We claim that if for some state x € X
we have W{x) > 0 then there exists a transition with positive rate from x
to some state x' which is such that W(x) — W(x') = 1. Consider the index
d = argming;. ;;»0}{w;} which is well defined since W{x) > 0. We claim that
a service completion at queue d will lead the system in the state x' with the
above property. We distinguish the following cases.
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Case 1 : wyg = 1. Since wg = 1, the queue d may direct customers out
of the system; according to policy m all served customers of queue i will be
directed out of the system. Hence a service completion at queue d will lead the
system in a state X' such that ¢!, = 24 — 1 and z} = z; for i # d. Apparently
W(x') = W(x) - 1.

Case 2: wy > 1. By the definition of w; we have that

L if De 5,
Wiz l14 minjes; {w;}, otherwise.

Hence there exists a queue [ in Sy such that x; = 0 and w; = wg — 1. A served
customer of queue d will join an empty queue in Sy and we can always define
appropriately the indexing of the queues such that the served customer will join

the queue [. Apparently the new state x’ will be such that W{x") < W(x) —1.

We can easily see now that, by selecting the transitions appropriately,
from state x after W(x) transitions, we can eventually reach state x' such that
W(x') = 0. Apparently x' = O since for any other state the function W is
strictly positive.

By definition of the set R, and from the above result, any of its states
communicates with zero; hence any two states of the set communicate as well.
Apparently the set R is closed since if a state can be reached by a state in R
it can be reached by 0 as well and it belongs to R itself. Hence the set R is a
closed equivalence class of states. No state outside of R can belong to a closed
class of states since any state can reach the state 0 € R. Because of that it
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can not belong to a closed equivalence class of states; the latter condition is

necessary for recurrence ([Jad7]). Hence any state x € (X — R) is transient. ¢

Lemma 3.1 implies that the chain X is not irreducible; hence Foster’s cri-
terion is not directly applicable for the study of this chain. We will use a
generalization of this criterion which appears in [Tw76] and applies to nonirre-
ducible chains as well. We need first the notion of ¢-irreducibility which we

introduce next.

Definition 3.1. Suppose ¢ is a o-finite non-trivial measure on the state

space X (countable) of a Markov chain X. Then X is called ¢-irreducible if

iP[x(t) € Alx(0) =z| >0

whenever ¢(A) > 0 and for every x € X. The following theorem appears in

[TwT76].

Theorem 3.2: Let X be the imbeded chain of a continuous time Markov
chain with state space A" and transition rate matrix Q. Let ¢, be defined by
q:(:ngy , xe X .
yEX
Then a sufficient condition of ergodicity of X is that we have sup,cy gx < o0
and there exists a function V : A — R, an € > 0 and a finite set Xy C X such

that

—€> Z qx—yV(y)—V(x) , X & A
yex Ix
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and

qu—yV(y)<oo , X € Ap.
yEX Ix

Lemma 8.2: Under policy my and when condition (3.1) holds then the

Markov chain X is ¢-irreducible where ¢ is the measure in A’ defined as follows

ifxe R
¢({x})={(1): ifigﬂf’—’R'

Proof: If for a set A C X we have ¢(A) > 0 then apparently AR # 0.
Consider an element y € A[}R. Since y € R and because of lemma 3.1 we
have that from any state x € X there exists a sequence of transitions that lead
the system from x to y. Assume that there exists a sequence of k£ transitions

that lead the system from x to y. Then from standard Markov chain theory

([KSK76]) and for all m > & we have
PX(t) e AIX(0) =x] > PX(t) =y X(0)=x] >0

which proves the lemma. o
Lemma 3.8: The stability region Cr, contains all pairs of arrival and service
rate vectors (a, m) for which (3.1} holds

Proof: Let gx be defined by gx = Zye v dxy, X € X. The transition rate
gxy 18 greater than zero only if the transition from x to y corresponds to an

arrival or service completion; hence we have



Consider the function V' defined on the state space A" of the chain by V(x) =
Efil(xi)2. As we noted earlier, at each transition of the chain the length of
each queue varies at most by one; hence the following
Y EYy(y) < 2v(x) <00, x € X. (3.6)
yex ox
Apparently the set Vj defined by V, = {x : x € &, V(x) < b} has finite
cardinality for all b. In the following we will show that for some fixed € > 0
there exists some b, which may be a function of the arrival and service rates,

such that

ez Y ‘—’;—:vm ~V(x), if x¢ Vi (3.7)
yeXx

Then, from (3.5-3.7) and using theorem 3.2 we can conclude that X is ergodic.

By simple calculations in (3.7) we get

M M
q q
Y EV(y) -V =Y O vl - ad)
yEX x vEX 9= =1 i=1
. M
= Z E(Z(le(ya mz) + (yz — 331')2)
vEX Ix =7
q il q M
=D TEy 2wy —wi)+ Ty (g — 3) (3.8)
yeX L yex I o1

When ¢y, is different than 0, the transition from x to y corresponds either

to an arrival or to a service completion; hence the the states x and y differ

in at most two elements and each difference is at most one. Hence we have
M 2 . . .

Yoimt1(zi —¥:)® < 2 and for the second term in the right hand side of (3.8) we
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get

M
S N —y)? <2 (3.9)

yedA Ix =1

Now we will bound the first term of the sum in the right hand side of (3.8). Let

ai(x) be the sum of the arrival rates over all customer classes which route the

customers upon arrival to queue i when the system is in state x. Define m;;(x)

by

iy = 4 Fi(x), A Ri(x) =
mis(x) = { 0, otherwise.

By grouping together, in the first part of (3.8), the terms that correspond to the
same queue and since gxy > 0 whenever the transition from x to y corresponds

to an arrival or service completion we have

Gry o o M
Z f 225’:1'(%' - a:i) = E;: Z Z qu:z:,-(yi — x,-)
yeEX =] i=1 yeX

2 U -
= Z zi(ai(x) — Fi(x) + Z mji(x)) (3.10)

When we are in state x consider a permutation 7;,1s, ..., 237 of the queues which
is such that z;, |, < z;,m =2, ,Mand if z; |, = z;_ then in 1 < ip.
Apparently the permutation is a function of the state Note that if queue 4,
routes the served customers to queue ¢, then no queue 7 for k& < m belongs

to S;,. In view of this observation the right part of (3.10) can be written as

M A M M
D mi(ax) = Fi(x) 4+ > myu(x)) = Y 2, (ai; (%) — F; (%) + > mag(x).
i=1 7=1 =1 I=j+1

(3.11)
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For j =1,..., M — 1 we write

M M
a;; (x) — F; (x) + Z mz;z, (x) = Z a;, (x Z ai,, (X)
I=j+1 m=j+1
M M M
Z F Z X) + Z Z m!rtm(x) Z Z mi!im (X)
m=j m=j+1 m=jl=m+1 m=j+1Il=m+1

(3.11a)

By substituting (3.11a) in (3.11) for § = 1,..., M — 1 and after some calculations

we get
M M
Z Ti; aaj ij (X) + Z LLLZTTE (X)) =
7=1 =341
M M
= Z(l‘t, _3:?5;'—1)(2(151(}( ZFH(X)_l' Z Z mtr?m(x))
7=2 =3 m=j l=m+1
M M M M
Qe = FulO+ D D i (312)
Consider the sets of quenes Ty = {{; : M > { > j} 7 =1,.., L. If an incomming

customer of class [ is routed to some queue of T; it means that S7 C T}, since
otherwise the routed customer would have been routed out of Cr;; hence l € Cr;

and we have
M
dax) =Y a. (3.13)
i=j leCry

For any ii1,1m € Tj we have m;,q, (x) > 0 only if 4 € Q1;; thus we get
Z Z M (X) = Z Fu(x)=— > F(x) (3.14)
m=j [=m+1 f lEQTJ.
Relations (3.10-3.14) imply that
Z Ixy 22$ (yl — ; =
yEX U i=]
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= _Z(% zu_ (> = Y F;(x))-l——( > a— Y Fi(x)) (3.15)

Ix j=2 IECT, 1€Qy; Tx 1€CT; 1€Qr;

Whenever z;;, > ;,_,, the servers in any queue in (J7; are active since they can
route their customers in some queue out of T; which has smaller length than
they have. Hence we have

Z FI(X) = Z My if Ty >$ij_1- (3.15@)

e QTJ; [EQTj

From (3.15a), (3.15) can be written as

ZQXYZ2$ (yz_ z —

x

yeEX i=1
9 M
= —Z(LBZJ —x,-j_l)( Z ap — Z m:)-%— Z ay; — Z m:). (3.155)
x j=2 IeCr, l€Qr, & l1eCr, 1€Qr;

Consider the number ¢ defined by

Sc{I?aXM}{ Z a. — Z m;} (3.186)

’’’’’ 1€Qs
From (3.15b-3.16) we get
Ixy 2
Z Z 2 —CTi - (3.17)
yEX > q"

We can easily see that the relation V(x) > b implies that

b

We denote by d the right hand side of (3.5) in the following. From (3.17-3.18)

we get

3 Ly sz ) < %c % (3.20)

yed le
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Equations (3.8), (3.9) and (3.20) give

Ixy 2 b
> q—xV(y) —V(x) 2+ ey 7 (3.21)
YEX

If condition (3.1) holds, then ¢ will be negative as defined. Ifin (3.21) we replace

b by M (;—C(Z + €))? then we get the desired relationship (3.7). o

Proof of theorem $.1: We show first the necessity of part i. Assume that
for the set of queues S we have
Saz Y m (5.22)
leCsy tEQg
and there exists a policy that stabilizes the network. Then the Markov chain
of queue lengths x(¢) under this policy is ergodic and it has a stationary dis-
tribution. Assume that we start the network with the stationary distribution;
then X(¢) is a stationary ergodic process. Let Xg(t) be the total number of
packets at the queues of the set S at time ¢. Let D(t), A(t) be the processes of
departures by any queue of § and arrivals at any queue of the set .S respectively,

until time ¢. Then we have
Xs(t) = Xs(0) + D(t) — A(2). (3.23)

The rate of D(#) varies between 0 and ;-5 m; when all the queues of the set

(s are either empty, or full and route customers out of the system, respectively.

L210]

Since X is stationary and ergodic the ratio —

converges, almost surely as
t — 00, to a number d; that number is strictly less than zier m; since the
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network is empty with some positive probability in which case the departure
rate from the set S is equal to 0. The rate of the arrival process is at any time
greater than or equal to ), a;. Hence the ratio %t) converges almost surely
to a number A > 7, a. Then from (3.22) and (3.23) we can conclude that
Xs(t) goes to infinity a.s. as t — oo which contradicts the fact that X(t) is
ergodic.

Lemma (3.3) implies the sufficiency of condition (3.1) in part i. Part i

follows immediately from lemma 3.3 and the above necessity result. o

Stabilization of a Jacksonian network

In the network that we considered above assume that a server never idles if
its queue is not empty. For each queue 2 consider the splitting probabilities p;;,
j € Sisuchthat 0 <pi; < 1,3 s pij = 1. At each service completion instant
at queue 7 the served customer is routed within 5; according to these splitting
probabilities and independently of everything else in the system. Similarly each
arriving customer of class [ is routed within 57 according to the splitting prob-
abilities pf;, 7 € 5f. The above routing policy is called random splitting policy
in the following. As we mentioned earlier, under any random splitting policy,
the queuneing network is Jacksonian. We show that condition (3.1) is sufficient
for the existence of a random splitting policy that stabilizes the system. The

stability condition for a Jacksonian network is that the system of equations
G=vi+ ¥ api, 1<i<M (3.24)

JHES;
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has a solution {ay,...,apr) such that a; < my, i = 1,..., M ([Wa88|); where p;;
are as defined above and «; is the total arrival rate at queue ¢ from the outside,
that is in our case v; = Zl:iESf Praq-

Consider now the network operated under mg. Under (3.1) the network is
ergodic when 7wy acts on it. Consider it in stationary operation and let a; be
the departure rate from queue ¢. Let furthermore g; be the rate of exogeneous
arrivals of class [ which are routed to queue j and ¢;; the rate of the served
customers of queue ¢ which are routed to queue j. Since the network is ergodic,

at each queue : we have

ai = Z a; + Z qji

LjeS? JiES;
5 a= Y By 3 G, (3.25)
' _ aj cay )
Ljesy Ljes!
Consider the random splitting policy with splitting probabilities for queue j,
Pji = %1 t € 5; and for stream I, pf;, = %'JL (apparently the conditions for

being splitting probabilities are satisfied). For this random splitting policy, the
departure rates of each queue is a solution of the system of equations (3.24) as

indicated from (3.25) and the network is ergodic.

5.4 An alternative proof of the maxflow mincut theorem

The maxflow-mincut theorem provides a characterization of the solution
of the maxflow problem in deterministic flow networks ([PaS82]). The proof
that has been given to this theorem ([FoF53]) is based on duality theory and
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algorithmic arguments. In this section we show how this theorem is implied by
the stability results we obtained in the previous section. The maxflow problem
and the maxflow-mincut theorem has been stated in section 2.4 for the specific
network studied in that section. For the sake of completeness we briefly state
themn in this section as Well.- For more details on this subject the reader 1s
referred to [PS82].

A flow network consists of a connectivity graph G = (V, E), a capacity
assignment on the links C : E — R™T, a prespecified origin node vy and a
prespecified destinatiog node vg (fig. 10). Without loss of generality we assume
that there is no edge terminating at node vy or originating at node vy. A
feasible flow is a vector f = (f. : e € E) that satisfies the capacity constraints

0 < fo < C(e) and the flow conservation equations

Z fe= Z fe UE(V_{U(hUd})' (4'1)

e originates e terminates
at v at v

Let F be the set of feasible flows. The flow transfer f of a feasible flow f from

node vy to vg 1s

f: Z fe-

e originates
at vy

The maximum flow problem asks for the maximization of the flow transfer f

over the set of feasible flows. That is

max f.
feF f

A flow that achieves the maximum flow transfer is a maxflow.
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Figure 10. A flow network.
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Figure 11. A cut with the forward edges in boldface.



The basic theorem that characterizes the solution of the maximum flow
problem is the maxflow-mincut theorem. We need the notion of a cut of a flow
network in order to state that theorem. This is defined as a partition of the set
of nodes V into two sets W, W-’ such that the set W contains the node vy and
the set W' contains the node vq (fig. 11). A forward link of the cut is directed
from a node of W to a node of W'. The capacity C(W, W’) of the cut equals to
the sum of the capacities of the forward links. A mincut is a cut with minimum

capacity over all the cuts.

Mazflow-mincut Theorem: In a flow network the flow transfer of a maxflow

equals to the capacity of a mincut.

The proof which follows is based on the stability properties of the queueing

network that we studied in section 5.3.

For a given flow network, let say N, we construct a corresponding queueing
network () as follows. We consider one queue q(, ., for each link (v, w) of the
flow network. The served customers of queue ¢(, ) can be routed to any queue
that corresponds to links originated at node w; if w is the destination node vy
then the served customers of ¢, ) may leave the system. There is only one
stream of arriving customers with rate A; the arriving customers can be routed
to any queue ¢(,,,w) that corresponds to the link (vp, w) which originates from
node vp. In the following we are going to use interchangably the links of N and
the corresponding queues of Qn.
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Lemma 4.1: If the queueing network @y is stabilizable when the arrival
rate is A then there exists a feasible flow f in the flow network with flow transfer

A

Proof: If the queueing network is stabilizable then under 7y the Markov
chain x(t) has a stationary distribution. We start the network with the sta-
tionary distribution and the process X(t) is stationary and ergodic. Consider
a vector f € lel such that the element f, that corresponds to link e equals to
the rate of the departure process of the queue that corresponds to link e. Note
that since X(t) is a stationary process, the departure process of each queue
is stationary and the rate 1s well defined. We claim that the flow vector f is
a feasible flow for the network N with flow transfer equal to A. The rate of
the departure process in queue 7 15 less than or equal to its service rate my
which by definition equals to the capacity of the corresponding link of N. Hence
f satisfies the capacity constraints. Consider all the queues corresponding to
links originating at vg. Any exogeneous arrival is routed to one of these queues.
Furthermore these queues receive only exogeneous arrivals. Hence the sum of
the arrival rates for the queues originating at vy 1s equal to A and to the sum
of the departure rates from these queues. Consider all links originating from
vg. The sumn of their flows is equal to the sum of the departure rates of the
corresponding queues, which is equal to the sum of their arrival rates. The
later sum equals to the rate A of the arrival stream and the flow transfer of f is
indeed equal to A.
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It remains to show that f satisfles the flow conservation equations {4.1).
Consider a node v € (V —{vg, v4}). The sum of the flows of the links originating
at v 1s equal to the sum of the departure rates of the corresponding queues which
is equal to the sum of the arrival rates at the same queues. By construction
of (Qn, these queues receive traffic only from those queues that correspond to
incomming links at node v. Hence the flow conservation equations are satisfied.

<

Lemma 4.2: The queueing network @) is stabilizable if the arrival rate A

is less than the capacity of a mincut of the flow network N.

Proof: We will show that if A is less than the capacity of a mincut then
for evex."y set S5 of queues the condition (3.1) holds. Then stabilizability follows
from theorem 3.2. For every set of queues S consider the set of nodes Vg that
contains all nodes for which all the outgoing links correspond to queues that
belong to 5. If node vy does not belong to Vs that means there exists a link
originating at vy such that the corresponding queue does not belong to S; that
15 the incomming customers may be routed upon arrival out of 5. Hence Cgs
is empty and condition (3.1) holds. If vy belong to Vs then 3, ar = A
Consider the cut (Vg, V — Vs) and an arbitrary forward link (v,w). The queue
that corresponds to (v, w) belongs to S (otherwise node v would not belong to
Vs). From node w there exists an outgoing link such that the corresponding
queue does not belong to .S (otherwise w would belong to Vs). Hence the queue
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that corresponds to (v,w) may route customers out of $ and belongs to (5.
Since the queue that corresponds to an arbitrary forward link of (Vs, V — Vg)
belongs to Qg we have that

Z(Lz:/\<0(V5, V—Vs)_{ Zmi.

1eECs tEQg

Proof of the Mazflow-mincut theorem: It is easy to show that for any flow
f and any cut the total flow is less than the capacity of the cut which readily
implies that the solution of the maxflow problem should be less than or equal
to the capacity of a mincut. By lemmas 4.1, 4.2 we have that for any A less
than the capacity of a mincut there exists a feasible flow with flow transfer A.
Hence the fiow transfer of a maxflow should be greater than or equal to any

number smaller than the capacity of a mincut. The theorem then follows, ¢

5.5 Routing with Delayed Information.

Up to this section we have assumed that at each decision time instant at
queue 7 (or at the entry point of class [), the lengths of the queues in S; at
that time are available to queue :. There are several practical systems which
are modeled by the above queueing ne-twork and in which that assumption does
not apply. In those systems the queues of the queueing network correspond to
physically different nodes correspond to physically different nodes (locations)
at the actual system. The lengths of the queues in §; are communicated to
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queue 1 at certain time instants. The decision at time ¢ 1s taken according
to the lengths of the queues in 5; which have been communicated to queue 2
most recently and not of the actual lengths at time ¢. Hence in several cases
the decisions are taken based on outdated information about the system state.
In this section we study the effect of the outdated information on the system
performance. In the following we consider a model for information exchange

for which we obtain stability results in the rest of the section.

Assume that the length of queue ;7 € 5; is communicated to queue z at
random time instants that constitute a Poisson process with rate r;;. Let X;;(t)
be the most recently communicated value of the length of queue 5 to queue 1.
Similarly the length of queue ; € S} is communicated to the entry point of
class [ where the routing decisions are taken, at random time instants that
constitute a Poisson process with rate ri;. The variable X[;(t) has a similar
interpretation to that of X;;(¢). In the rest of this section let X (¢} = (X(¢) : ¢ =
LM, Xi(t): e=1,.,M, 5 €8; Xi;(¢): 1=1,..,L, 7 € Sf) and let
X be the space where this vector lies. The vector of the queue lengths at time
¢t will be denoted by X(¢). The same controls are available to the queues of
the network as in the initial model. A control policy is specified by the routing
rules R;, Rf, + = 1,....,M, I = 1,..., L for each queue and class of arriving
customers respectively, and the service rate control rules F;, ¢ = 1,..., M. The
interpretation of the control rules is as in section 2. Consider the following
control policy my, where the decisions at each queue ¢, at each decision time ¢
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depends on the available information at that queue, that is the values of the

variables X;(t), X;;(t), 7 € S;; its control rules are as follows

Ri()—{D’ if D e S;

"~ | argminjes; (z;5), otherwise,
RC — 3 .
[(x) = arg ;@gg{g(ﬂfu )

Fi(XJ — {0, if T < minjes‘.{ﬁij}

m;, otherwise.
Under 71 we can easily check that the queue length process X is not a Markov
chain. Nevertheless we can still study the ergodicity of X within the Markovian
framework. We can do that because the process X is a Markov chain since in
addition to Poisson arrivals and exponential service times, the times of message
exchanges form a Poisson process for each pair of neighboring queues. The

following proposition characterizes the stability properties of the system.

Theoremn 5.1: The necessary and sufficient ergodicity condition for X under
71 is that the message exchange rates ri;, 1 = 1,..., M, ;7 € 5; are nonnegative

and (3.1) holds for the arrival and service rates.
The proof of the theorem follows after the next lemma.

Lemma 5.1: When all the message exchange rates are positive, condition
(3.1) holds and policy =y acts on the system the subset of the state space

R ={z: z € X and z can be reached from state 0 }

15 the unique closed class of equivalent states of the Markov chain; any state in
the set & — R is transient.
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Proof: In view of the proof of lemma 3.1, for this proof we just need to show
that the state O is reachable by any other state x € A'. Consider an arbitrary
state x. After a sequeﬁce of message transmissions, a state z' may be reached
which is such that z},(t) = z}(¢) for all 4,5’s. In the model without delayed
information there is a sequence of transitions that leads the system from any
state ! (where ' is the queue length vector that corresponds to state z') to
0. Consider the same sequence of transitions and after each transition assume
that appropriate message exchanges happen such that at each node the actual
values of the neighboring queues are available. In this case the control actions of
policy 71 in the model with delayed information will be identical to those in the
initial model hence from the proof of 3.1 we have that z' will reach eventually

state 0. o
The proof of the theorem follows.

FProof of Theorem 5.1: We use theorem (3.2). Let gx = 3 ¢y ¢xy. For all

x € A we have
L M M L
QxSZGL-I-Zmi-FZZHJ‘-I-Z Z?‘}}
=1 i=1 i=1 jES; =1 jES?
hence

sup(gx) < oo. (5.1)
xEX

On the state space X consider the functions

M
Vvl(x) = me ’ VQ(X)

i=1
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Z Z(wu —z)?+ YY) (m— ), V() = ix) + Ve (x). (5.2)
Function V will play the role of a Liapunov function. It can be easily verified,
as in (3.6), that

3 By(y) <2V(x) < o (5.3)
yex ¥

Consider the set V3 = {x : x € X, V(x) < b} which has apparently finite
cardinality for each 5. We show in the following that for a fixed e there exists a
b, which may be a function of the arrival, service and message exchange rates
such that

>y quv —V(x), if x ¢ V. (5.4)
yex I

Then (5.1-2) and (5.4) imply ergodicity of X from Foster’s criterion. Consider

the sets
A(x) = {y : an arrival or service completion transfers x to y}

B(x) = {y : a message transmission transfers x to y}

The term gxy 1s strictly greater than 0 only if y € A(x) or y € B(x). Hence

the term in the right hand side of (5.4) can be written as

DBV -V = Y M) -+ Y ) - ()

yex Ix yeA(x) ** yEA(x)

+ > %&(W(Y)—TG(X))+ > q—;‘f(VQ(y)_Vz(x))v (5.5)

yE€B(x) ¥ YEB(x)
For all y € B(x) we have V{(y) = Vi(x); hence

3 q;‘—xym(y)—m(x)) =0. (5.6)

yEB(x)
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By the definition of B(x), for all y in it there are some queues 7, 7 {or an arrival
stream [ and a class j} such that the transition from x to y has rate ri; (or rf;)

and Vo(y) — Va(x) = —(z4; — z;)*. Hence we have

M L
3 Ty -1ex) <=3 z(%—w—z (z1;—2;)?) (5.7)

vEB(x) i=1 jES; €5f
where
1 1 V= L7 ] =1,..., C'
. mm{mm‘_;é..s.:M {r:;}, min. ilE,Sf’L {ri;}} o 55)
ma‘XxE)?{qx}

Relation (5.1) guarantees that h is well defined. The condition x ¢ Vi(x) in

(5.4) implies that Vi(x) > b — V3(x) which from (3.21) implies that

> S () - ) < 24+ my LT REDT (5-9)

YEA(x)

where (a)¥ is the maximum of @ and 0. We upper bound now the second term
in the sum in the right hand side of (5.5). We have first

Va(y) = Va(x) = ZZ(y;f zi)(zi — 5 +yi — v+

=1 jES;

Z Z Nz — 25 + vy —y5) (5.10)

I=1 jeS¢

From the definition of A(x) we have that

ly; =2l S 1, wij — 25+ vy —yyl < 20z — 25| +1 <2/ Te(x) + 1 (5.11)

and from (5.9),(5.10) we get

- (aly) = Va(x) £ GV + O (5.12)

YEA(x)

161



where Cq, C; are positive constants. From (5.5), (5.6), (5.7), (5.9) and (5.12)

we get
;%V(w —V(x) < —hVa(x) + C1/Va(x) + C2 + 2+ gm M;Z(ﬂt

(5.13)
The right hand side of (5.12) can indeed become less than —e for some positive ¢
irrespectively of the value of V,(x), if b is sufliciently large. Since m is negative
we have
2 [ =Va(x)*

—h%(x)+01\/%(X)+CQ + 24 Em M

< —hVa(x) + Ci1/Va(x) + C2 + 2;

hence we can select a @ such that for all & we have

-—th(x)+Cl w/%(x)+Cg+2+%m\/a);‘;Z@i < —eif /Va(x) > 6 (5.14)

If \/Va(x) < 6 then we have
o (b= Vit t
—hVa(x) + Civ/Va(x) + Co + 24 Sm #
2 (b—62)+
< -

Apparently the right hand side of (5.13) can become less than —e if b is suffi-
clently large while inequality (5.13) is not affected by that. This completes the

proof. o
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CHAPTER 6

Conclusion

Several resource allocation problems in multihop radio networks were con-
sidered in this dissertation. The problem of joint routing-scheduling for maxi-
mum throughput was addressed in a general multihop, multidestination radio
network and optimal policies were obtained. The problem of delay optimal
scheduling was considered in a tandem radio network; optimal policies and
necessary optimality conditions were found. A model of a changing connectiv-
ity single hop network were proposed. Necessary and sufficient stabilizability
conditions were obtained in this model and stabilizing policies were specified.
Scheduling policies that minimize the delay were obtained for both finite and
infinite buffer systems. Finally a general queueing network with routing and
flow control at each queue were studied and necessary and sufficient stabiliz-
ability conditions were obtained. There are several problems, directly related
to the ones we have studied, which are left open. We mention few of them next.

In chapter 2 we obtained two routing-scheduling policies that achieve max-
imum throughput. The second policy my, which does not have the implemen-
tation difficulties of my involves the selection of an activation set according to
some probability distribution on the constraint set S. Policy =; depends highly
on that probability distribution. It is interesting to study the performance of
the system under different distributions. Also notice that 71, even though it is
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simpler than g, is still centralized; it is important to find distributed imple-
mentations of that policy.

We have studied the constrained queueing system under the assumption of
slotted operation where the servers are synchronized to start service simultane-
ously at the beginning of the slot. This assumption appears to be restrictive in
certairr cases. For example, in the database model, in order for this assumption
to hold all of the transactions should have the same length so that they finish
their processing simultaneously. Obtaining stabilizing policies in the case where
customers have different service times is a problem for further investigation.

In the third chapter, for the system of parallel queues with server acti-
vation constraints implied by the tandem topology, we have shown that the
class G will contain a delay optimal policy if one exists. Notice that class &
contains all policies that maximize parallelization in service. All those policies
are myopically optimal in the sense that the activation vector at slot ¢ is such
that the number of customers in the system at slot ¢ 1s the minimum possible
given the state of the system at slot t — 1. It is interesting to study whether
similar properties hold for systems of parallel queues with different activation
constraints other than those implied by the tandem topology.

Turning to the issue of changing connectivity, an interesting variation of the
problem we studied is the case where the connectivity information is not avail-
able for decision making and the server allocation is based on information about
the queue lengths, the arrivals and the departures. If the connectivity variables
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in different slots are independent then, as we mentioned in section 4.4.3, the
server allocation problem under no connectivity information is equivalent to a
server allocation problem in a fixed connectivity system. If the connectivities
at neighboring time slots are statistically dependent then the problem of opti-
mal allocation becomes more complicated. The queue lengths are no longer a
state of the system and the problem should be as a partially observable Markov
Decision Process with the appropriate independence assumptions on the arrival
and service processes. The problem of optimal allocation in the latter case of
dependent connectivities is open for further investigation.

In our study of changing connectivity we have assumed that each queue is
either connected to the server or not, that is the connectivities are binary vari-
ables. In certain cases that assumption is inappropriate and the connectivity
should be represented by a multivalued variable where the different values cor-
respond to different connectivity qualities. It is of interest to study the resource

allocation problem under the assumption of multivalued conmnectivities.
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