
Towards Automatic Significance Analysis

for Approximate Computing

Vassilis Vassiliadis

CERTH & University of Thessaly,

Greece

vasiliad@uth.gr

Jan Riehme Jens Deussen

RWTH Aachen University, Germany

{riehme, deussen}
@stce.rwth-aachen.de

Konstantinos Parasyris

CERTH & University of Thessaly,

Greece

koparasy@uth.gr

Christos D. Antonopoulos

CERTH & University of Thessaly,

Greece

cda@uth.gr

Nikolaos Bellas Spyros Lalis

CERTH & University of Thessaly,

Greece

{nbellas,lalis} @uth.gr

Uwe Naumann

RWTH Aachen University, Germany

naumann@stce.rwth-aachen.de

Abstract

Several applications may trade-off output quality for en-

ergy efficiency by computing only an approximation of their

output. Current approaches to software-based approximate

computing often require the programmer to specify parts

of the code or data structures that can be approximated. A

largely unaddressed challenge is how to automate the analy-

sis of the significance of code for the output quality.

To this end, we propose a methodology and toolset for au-

tomatic significance analysis. We use interval arithmetic and

algorithmic differentiation in our profile-driven yet mathe-

matical approach to evaluate the significance of input and

intermediate variables for the output of a computation.

Our methodology effectively matches decisions of a do-

main expert in significance characterization for a set of

benchmarks, and in some cases offers new insights. Eval-

uation of the software infrastructure on a multicore x86 plat-

form shows energy reduction (from 31% up to 91% with a

mean of 56%) compared to fully accurate execution, with

graceful quality degradation.

Categories and Subject Descriptors F.3.2 [Logics and

meanings of programs]: [Program analysis]; G.1.0 [Numer-

ical analysis]: General—Interval arithmetic; G.1.4 [Nu-

merical analysis]: Quadrature and numerical differentiation—

Automatic differentiation

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to

lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax

+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

CGO ’16, March 12-18, 2016, Barcelona, Spain

Copyright c© 2016 ACM 978-1-4503-3778-6/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2854038.2854058

General Terms Algorithms, Performance, Experimenta-

tion

Keywords Significance analysis, Approximate computing,

Energy efficiency

1. Introduction

Big data applications, video analytics and scientific com-

puting require computing capacity and energy efficiency be-

yond what is currently possible. Even if future applications

have enough parallelism to exploit hundreds or thousands of

cores, system performance will be restrained due to extreme

power dissipation, hitting again the same power wall as sin-

gle core architectures did more than ten years ago [16].

Part of the problem of energy inefficiency is that comput-

ing systems execute programs under the assumption that all

code is equally significant for the quality of output. However,

in several application domains it is not the precise result that

matters to the user, but rather an approximation [11, 14].

Approximate computing is an emerging paradigm that

allows trading-off performance and energy efficiency with

accuracy [4, 33, 42]. It is based on the premise that spe-

cific phases of a computation may incur a high performance

and energy toll without a corresponding contribution to the

quality of the result. Approximation requires additional pro-

gramming effort to specify which code segments are approx-

imable and under which circumstances. Application devel-

opers also need to provide light-weight code versions, which

produce the approximate results in each case. Typically, this

kind of analysis is the product of a developer and domain

expert collaboration.

This work is a step towards automatic significance anal-

ysis. We introduce the dco/scorpio framework which pro-

vides a quantitative assessment of the contribution of each

block of code to the quality of the final result. Intuitively,

if an input or intermediate variable x is perturbed within

an interval, and, as a result, the variation of the value of

an output variable y is small, then x is insignificant to y.

We employ interval analysis [24] and algorithmic differen-

tiation [15, 26] to automatically quantify the significance of

computations and to detect variations in significance among

parts of code. Based on this analysis, the developer can

then use our OpenMP-like task-based programming model

to structure the computation in distinct tasks, specify their

significance and provide faster, approximate versions for

them.

We validate our method on five benchmarks from dif-

ferent domains, including video compression, imaging, sci-

entific computing and financial engineering. We apply our

methodology and execute the benchmarks at varying levels

of approximation while recording energy gains and quality

degradation. Our framework achieves energy reduction from

31% up to 91% with a mean of 56% when executing on a

multicore x86 platform, by exploiting significance and ap-

proximations to produce acceptable results.

In summary, we make the following contributions: (i) We

introduce an automated significance analysis methodology

and toolset to rank computations in a program according to

their contribution to the quality of program output. (ii) We

integrate this significance ranking to a task-based program-

ming model. (iii) We apply the methodology to a set of

benchmarks from a variety of application domains to demon-

strate its effectiveness.

The rest of the paper is organized as follows. Section 2

details the theoretical underpinnings of computational sig-

nificance analysis and introduces the tool used to compute

significance. Section 3 provides a description of the pro-

gram development workflow and corresponding program-

ming model. Section 4 discusses the experimental evalua-

tion of our framework. We explore related work in Section 5.

Section 6 concludes the paper.

2. Significance Analysis

In this section we introduce our hybrid (profile driven, yet

mathematical) analysis and focus on the mathematical back-

ground of our definition of significance. For a given input

range, significances of all intermediate computations for the

final result can be obtained with a single analysis run. We

assume that the application is given in the form of C++ code.

We also asume that its execution trace can be abstracted as a

differentiable function f : IRn −→ IR that computes a scalar

output y ∈ IR by evaluating y = f(x) (e.g. running the

code) for a given input vector x = (x0, . . . , xn−1)
T ∈ IRn.

Generalization to vector functions is straightforward and is

discussed briefly at the end of the section.

1 double f(double x0) {
2 return cos(exp(sin(x0) + x0) - x0);
3 }

Listing 1: Implementation of example function.

1 u0 = x0

2 u1 = sin(u0) u2 = u1 + u0 u3 = exp(u2)
3 u4 = u3 − u0 u5 = cos(u4)
4 y = u5

Listing 2: Elementary functions of Listing 1.

2.1 Significance as an Algorithmic Property

For input x ∈ IRn, the arithmetic evaluation of y = f(x)
given as a computer program can be written as a three part

evaluation procedure [15] with internal variables uj :

uk−n+1 = xk, k = 0, . . . , n− 1, (1)

uj = φj(ui)i≺j , j = 1, . . . , p, (2)

y = up. (3)

The input values x = (x0, . . . , xn−1)
T are copied in

Eq. 1 to internal variables u1−n, . . . , u0, and Eq. 3 stores the

final result in y. In Eq. 2 φj(ui) represents an arithmetic op-

eration (+,-,*,/), or an intrinsic function (sin, cos, exp, . . .)

of C++. Internal variables uj are used to store the result of

each elementary function evaluations, where i ≺ j denotes

a direct dependence of uj on ui, i < j.

The different elementary functions φi are provided by the

compiler run-time library1. We exploit the overloading ca-

pability of C++ to give these operations a new meaning with

specially designed data types. Note that splitting complex

expressions into elementary operations is also done by com-

pilers, while internal variables are usually stored in proces-

sor registers.

The evaluation of the compiled program for a specific in-

put x ∈ IRn leads to a unique sequence of elementary oper-

ations since all control flow decisions (branches, number of

loop iterations) are determined uniquely. This sequence of

elementary operations performed during such an evaluation

is the basis of the three part evaluation procedure.

Listing 1 shows a concrete example for C++ function

y = f(x0) with scalar input x0 and scalar output y. The re-

spective code, broken down to single elementary functions,

is given in Listing 2, where the first line corresponds to Eq. 1,

the sequence of elementary functions in Eq. 2 is represented

by lines 2–3 and line 4 corresponds to Eq. 3.

To evaluate the significance of variables uj , j = 1 −
n, . . . , p, for the final result y = up, we need to answer two

questions: (a) What is the influence of inputs x on uj , and

(b) what is the influence of uj on output y = up. Answering

(a) requires analysing the code which computes the variable

uj from its inputs u1, . . . , uj−1 (Eq. 2). The answer to (b)

requires analyzing the use of uj in obtaining the final result

y, through the computation of uj+1, . . . , up. We denote this

1 They are side-effect free and take one or two arguments.

second part with y = f(x;uj) to represent the dependency

of y on uj explicitly.

Interval arithmetic (IA) [24] is an appropriate tool to

answer the first question: Given the range of possible input

values as the input interval vector [x] = [x, x] = {x ∈
IRn|x ≤ x ≤ x} with lower bound x ∈ IRn and upper bound

x ∈ IRn, an evaluation of f in interval arithmetic is obtained

by replacing all variables and elementary functions φj with

their interval version in Eq. 1-3:

[uk−n+1] = [xk], k = 0, . . . , n− 1, (4)

[uj] = φj [ui]i≺j , j = 1, . . . , p, (5)

[y] = [up]. (6)

This will compute an interval enclosure f [x] of all possible

values of f(x) for x ∈ [x], namely f [x] ⊇ {f(x)|x ∈ [x]}.

With IA, value ranges are propagated forward through

the computation. For every variable uj , j = 1, . . . , p, we

calculate an enclosure [uj] of all possible values for the given

input range x. The impact of all inputs [xk], k = 0, . . . , n−1,

on a variable uj is combined in [uj], and can be quantified

by the width w([uj]) = uj −uj of interval [uj]: if w([uj]) is

narrow, variation of the input within the given range causes

only little variance in [uj] (small influence). On the other

hand, if w([uj]) is wide, the exact value of the input has

large influence on variable uj .

But the significance of uj for the output y cannot be

judged from this information alone. Subsequent operations

during the evaluation of y = f(x;uj) by computing uk,

k = j + 1, . . . , p, may amplify or reduce the contribution

of uj to y. Therefore, we also need to evaluate how much

y will change for different values of uj , or more formally,

to quantify the impact of [uj] on y (question (b) above).

Pure IA evaluation of f(x;uj) does not suffice, since in

the final interval value [y] the individual impact of variables

[uj] cannot be obtained separately. Our answer to question

(b) is inspired by the fact that the first order derivative of a

differentiable function at a given point describes the function

behavior in a neighborhood of that point. For a given point

x̂ ∈ IRn and a function f : IRn −→ IR differentiable at

point x̂, ∇xf(x̂) = (∂f(x̂)
∂x0

, . . . ,
∂f(x̂)
∂xn−1

)T is the gradient of

f at point x̂. The elements of gradient ∇xf(x̂) quantify the

rate of change in the function value near x̂: if the absolute

value of the partial derivative
∂f(x)
∂xi

is small, a disturbance in

xi will cause a small change in the function value f(x).
Consider a computer program implementing a differen-

tiable function y = f(x). The gradient ∇xf of f at the eval-

uation point x can be obtained by Algorithmic Differentia-

tion (AD) [15, 26] in adjoint mode. Based on the three part

evaluation procedure Eq. 1-3, adjoint evaluation propagates

the first order adjoint (denoted by subscript (1)) y(1) of out-

put y backwards through the computation towards first order

1 u(1)5 = y(1)

2 u(1)4 = − sin(u4) · u(1)5 u(1)3 = 1 · u(1)4

3 u(1)2 = exp(u2) · u(1)3 u(1)1 = 1 · u(1)2

4 u(1)0 = (−1) · u(1)4 + 1 · u(1)4 + cos(u0) · u(1)1

5 x(1)0 = u(1)0

Listing 3: Adjoint code for Listing 2.

adjoints x(1)k, k = 0, . . . , n− 1, of the inputs x:

u(1)p = y(1), (7)

u(1)i =
∑

j:i≺j

∂φj(ui)i≺j

∂ui

· u(1)j , i = p− 1, . . . , 1− n,

(8)

x(1)k = u(1)k−n+1, k = 0, . . . , n− 1, (9)

where
∂φj(ui)i≺j

∂ui
denotes the partial derivative of elementary

function φj with respect to its argument ui. After a single

adjoint propagation with y(1) = 1 the gradient ∇xy =
∇xf = (x(1)0, . . . , x(1)n−1)

T can be harvested from the

adjoints u(1)k−n+1, k = 0, . . . , n− 1, of input x. Moreover,

derivatives ∇uj
y =

∂f(x;uj)
∂uj

= u(1)j of y with respect to all

internal variables uj , j = 1, . . . , p, are accumulated during

the so-called reverse sweep.

Note that adjoint propagation expects that the original

code (Listing 2 for the example in Listing 1) has been eval-

uated beforehand. Thus intermediate variables uj , j = 1 −
n, . . . , p, hold the actual values. The first line in Listing 3

corresponds to Eq. 7, while the gradient harvesting of Eq. 9

is represented by the last line. The actual adjoint propagation

(Eq. 8) is done in lines 2–4.

AD can be applied to interval functions [34] by replacing

all variables and partial derivatives of elementary functions

in Eq. 7-9 with their interval version. Therefore, we can

compute an interval enclosure of the first order derivative

∇[uj][y] =
∂f [x;uj]
∂[uj]

, namely the derivative of the function

result [y] with respect to the internal variable [uj]:

∇[uj][y] ⊇

{

∂f(x; ûj)

∂uj

∣

∣

∣

∣

ûj ∈ [uj], x ∈ [x]

}

. (10)

In other words, the bounds of interval derivative ∇[uj][y] are

the steepest downward and upward slopes, respectively, of

y = f(x;uj) in the interval [uj], which quantify the impact

of all possible values from [uj] on the final result y.

We can now define the significance Sy(uj) of variables

uj , j = 1 − n, . . . , p, for the final result y = f(x) over the

input interval [x] as follows:

Sy(uj) = w
(

[uj] · ∇[uj][y]
)

, j = 1− n, . . . , p. (11)

Note that the interval product of [uj] and the interval deriva-

tive ∇[uj][y] is a worst case scenario, that might introduce a

considerable overestimation of the significance of uj .

2.2 Limitations

This approach comes with some limitations. A simple trans-

formation of code with real variables into an interval version

might fail for various reasons (overestimation due to wrap-

ping effect, special interval algorithms required, relational

operators). Moreover, AD computes derivatives for a given

evaluation point. The elementary function sequence in the

implementation of function f is fixed and can be represented

by a control flow free code. With IA, comparisons between

values is no longer unique: for c < [x] with c ∈ [x], the an-

swer is neither true nor false, since a part of interval [x] is

less than c whereas the remaining part is not. Since a fixed

control flow is not guaranteed, in such scenarios the analysis

is terminated and the relevant condition statement is reported

to the user. Circumventing this issue by an automatic interval

splitting approach is part of ongoing research.

Our method allows the developer to utilize all lan-

guage tools including arrays, dynamically allocated mem-

ory, pointers, and nested loops. However, the analysed code

must be differentiable, which might not apply to codes uni-

versally. Currently we consider that it is the responsibility of

the developer to check the differentiability of the code/func-

tion to be analyzed.

2.3 dco/scorpio Framework

The significance analysis of Section 2.1 is implemented in

the profile-driven tool dco/scorpio which is based on the

template class library dco/c++ (Derivative Code by Over-

loading in C++) [20, 27, 37] implementing tangent-linear and

adjoint Algorithmic Differentiation. For any C++ code im-

plementing y = f(x), dco/c++ exploits overloading of op-

erators and intrinsic functions to compute derivatives ∇xy =
∇xf(x) of outputs y with respect to input x.

For the purpose of significance analysis, dco/c++ tem-

plates were specialized with an interval base type [19] to

obtain dco::ia1s::type, which enables AD on interval func-

tions. An interval enclosure of [y] = f [x] can be obtained

for a C++ implementation of f(x) by defining all vari-

ables, required to compute the output y (including y), as

dco::ia1s::type instances (Listing 4, compare to Listing 1)

and performing a profile run. To compute the interval valued

first order derivative ∇[x][y] = ∇[x]f [x], the dco/scorpio

internal recording mechanism needs to be activated. Dur-

ing the evaluation of the code f [x] (with variables of type

dco::ia1s::type), an internal representation of the computa-

tion sequence is stored within a Dynamic DFG (DynDFG).

A DynDFG is a directed acyclic graph G = (V,E), where

each vertex uj corresponds to a dynamically executed ele-

mentary function uj = φj(ui)i≺j , and an edge ei,j ∈ E

between vertex ui and uj means that ui provided an input

operand to operation φj during execution. Moreover, the

edges are annotated with interval valued partial derivatives
∂φj [ui]
∂[ui]

which are computed during forward sweep.

Figure 1a shows the annotated DynDFG of an interval

evaluation of the example function given in Listing 1 by the

implementation given in Listing 4.

1 dco::ia1s::type f(dco::ia1s::type x0) {
2 return cos(exp(sin(x0) + x0) - x0);
3 }

Listing 4: The example of Listing 1 with double being

replaced with dco::ia1s::type.

[u0]

[u1]

[u2]

[u3]

[u4]

[u5]

∂[φ1]
∂[u0]

∂[φ2]
∂[u0]

∂[φ4]
∂[u0]

∂[φ2]
∂[u1]

∂[φ3]
∂[u2]

∂[φ4]
∂[u3]

∂[φ5]
∂[u4]

d
c
o
/
s
c
o
r
p
i
o

u
se

r
p

ro
g

ra
m

[x0]

[y]

(a)

[u0]

[u1]

[u2]

[u3]

[u4]

[u5]

∇
[u
3] [u

5]

∇
[u
2] [u

5]

∇
[u

1] [u
5]

∇
[u

0] [u
5]
=

∇
[x

0] [y] d
c
o
/
s
c
o
r
p
i
o

u
se

r
p

ro
g

ra
m

[x0]

[y]

(b)

Figure 1: Annotated DynDFG and adjoint propagation : (a)

DynDFG of f(x) with local partial derivatives. (b) Deriva-

tives available after evaluating ∇[x][y].

The scalar input [x0] of the user code will be associ-

ated with the internal variable [u0]. Five internal variables

[uj] = φj [ui]i≺j , j = 1, . . . , 5, are computed before the fi-

nal value is stored in the output value [y] of the user code.

Edges towards a vertex [uj] = φj [ui]i≺j are annotated with

local partial derivatives of the operation represented by [uj]
with respect to its arguments [ui], i ≺ j. Note that the

interval operations, DynDFG recording, and adjoint prop-

agation are hidden within the data type dco::ia1s::type of

dco/scorpio.

With first order adjoint mode, AD derivatives are com-

puted by propagating an initial adjoint y(1) = 1 backwards

through the DynDFG using the internally stored local par-

tial derivatives according to Eq. 8. After the adjoint in-

terval propagation (reverse sweep), the interval derivative

∇[x0][y] = ∇[x]f [x0] = ∇[u0][u5] can be retrieved from

dco/scorpio’s internal representation along with the inter-

val derivatives ∇[uj][u5] = ∇[uj][y] of the final result with

respect to all internal variables [uj], j = 1, . . . , 5 (Figure

1b). Using this information and Eq. 11 we can compute sig-

nificances S[y][uj] of all variables [uj], j = 0, . . . , 5.

dco/scorpio offers a set of macros (Table 1) to anno-

tate source code for significance analysis. They establish a

link between variables in the code and their internal rep-

resentation in the tool and hide all implementation details

from the user. All inputs need to be registered before the

first intermediate user variable, intermediate user variables

need to be registered straight after their computation, and

output variables last. Moreover, for a vector valued func-

tion y = F (x) with F : IRn −→ IRm, significances

Sy(uj) =
∑m−1

i=0 Syi
(uj) can be obtained by a single run

by registering all output y variables. .

Macro Description

INPUT(x,xl,xu,

. . .)

Register input variable x, increment the number

of inputs n, set [x] = [xl, xu], associate x with

the internal input variable [u
−n].

INTERMEDIATE(z,

. . .)

Register intermediate variable z, associate it with

last computed internal variable [uj].

OUTPUT(y, . . .) Register output variable y, associate it with the

last computed internal variable [up], set the ad-

joint [up](1) = 1,

ANALYSE() Start adjoint propagation to obtain ∇[uj]
[y], j =

p − 1, . . . , 1 − n, compute significance of all

registered inputs and intermediate user variables,

report the significance of registered variables.

Table 1: Macros of the dco/scorpio tool

x0 xn−1n Inputs

uL,0 uL,f−1f intermediate results at Level L

u3,0 u3,e−1

u2,0 u2,c−1 u2,0 u2,d−1

u1,0 u1,a−1 u1,0 u1,b−1

y0 ym−1

m output variables at Level 0

Figure 2: Dynamic DFG (DynDFG) of the application

3. Workflow for Systematic Significance

Driven Programming

In this section we show how significance analysis is system-

atically used to guide the programmer towards source code

annotation to expose significance information at the level of

a task. We will be using a Maclaurin Series (Listing 5) as a

running example to illustrate all aspects of the workflow:

f(x) =

n
∑

i=0

xi ≈
1

1− x
, x ∈ (−1, 1). (12)

3.1 Significance Analysis Framework

Our methodology is shown in Algorithm 1. Starting from

the application source code we produce a simplified Dyn-

DFG along with significance information for all nodes. An

example DynDFG is shown in Figure 2. We use the nota-

tion introduced in the previous section. Nodes at the top are

mapped to input vector x, leaf nodes at the bottom to the

output vector y and the remaining nodes correspond to inter-

mediate variables uj .

Steps S1 and S2 identify the output and input data of the

algorithm, respectively, and register the input data ranges.

To annotate Maclaurin Series (Listing 6) we register x as

the input data and set its value width equal to 1 (x ∈ [x −
0.5, x + 0.5] as seen in line 5). Step S3 invokes the analysis

Algorithm 1: Significance Analysis Framework

(dco/scorpio)

Input : Application source code

Output: Gout (DynDFG) along with significance tags

S1: y = (y0, . . . , ym−1)
T

S2: x = (x0, . . . , xn−1)
T

S3: G = dco/scorpio(x, y)
S4: Gs = simplify(G)
S5: Gout = findSgnfV ariance(Gs)

def findSgnfVariance(DynDFG G) {
for (L = 1; L<G.height; ++L)

if (SgnfVariance(L) >δ)

call G.removeAbove(L+1)

break

return G

}
def simplify(DynDFG G) {

for (L=0; L<G.height; ++L)

nodes = G[L]

foreach(v in nodes)

inputs = v.InputDeps()

call simplifyDep(G, inputs, v)

return G

}
def simplifyDep(DynDFG G, nodes, parent) {

foreach (v in nodes)

if(v.AntiDependent(parent))

v.Parent = parent

call simplifyDep(G, v.InputDeps(), parent)

else

call G.SetDependency(v, parent)

call simplifyDep(G, v.InputDeps(), v)

}

toolset described in the previous section to produce a graph

following the format shown in Figure 2. Each node uj is

annotated with the significance value of the corresponding

intermediate variable to the output.

Step S4 post-processes the graph produced by the signif-

icance analysis tool to eliminate internal nodes that express

anti-dependencies such as: res = res+term[i]. These oper-

ations aggregate results, and are not really part of the compu-

tation. We illustrate these aggregation nodes using a darker

color in Figure 3. Disregarding them is important for the next

step S5, which is the main step of Algorithm 1.

Step S5 traverses Gs using Breadth First Search (BFS)

starting from the output nodes at level L = 0 and moving

towards the input nodes, to construct Gout. The algorithm

detects the level L whose nodes have significance values

with statistical variance higher than δ.

Intuitively, when we detect nodes with high statistical

variance in their significance values, we have reached a level

in the DynDFG which can be used to partition the code into

tasks of different significance. Nodes uL,k with high signif-

result:

1

term4:

0.241

result:

0.759

term3:

0.245

result:

0.513

term2:

0.254

result:

0.259

term1:

0.259

result:

0

term0:

0
In:x

(a)

result:

1.0

term4:

0.241

term3:

0.245

term2:

0.254

term1:

0.259

term0:

0

In:x

(b)

Figure 3: Figure (a) illustrates the Graph containing the sig-

nificance values of the elemental computations as produced

by dco/scorpio during S3 and (b) The simplified graph af-

ter S4 for the Maclaurin Series example.

icance for the program outputs y can be made to correspond

to output variables of significant tasks, and the program-

mer can restructure the code around this information. On the

other hand, if the algorithm terminates at the inputs x of the

code without detecting any significance variations, it is guar-

anteed that nodes which reside in the same level are (almost)

equally important. Parameter δ is dependent on application

characteristics and the sensitivity to significance variations

required by the programmer. When the analysis terminates,

the method produces a DynDFG containing nodes up to level

L+ 1 with their significance value.

In Figure 3 we show the DynDFGs produced in steps S3

and S4 for the Maclaurin Series, respectively. Figure 3b is

also the result of S5. The last step of our analysis terminates

at L = 1 since there are large variations between node

significances at this level. Note that, the first term has a

significance of 0. Note that a significance value of 0 means

that the related computation can be substituted by a constant

value which is 1 in this case, since pow(x, 0) = 1. The most

significant term is the second one and every term computed

afterwards is less significant than the one before it.

3.2 Programming Model for Code Significance

The next step of the workflow is to restructure the applica-

tion into distinct tasks of work. The nodes of graph Gout at

level L are the outputs of those tasks, where L denotes the

task granularity according to which the programmer restruc-

tures the code. The developer uses this information to ap-

proximate the least significant intermediate results of level

L + 1 to create approximate implementations of tasks that

produce elements of level L. In the case of Maclaurin Se-

ries, dco/scorpio returns different significance for terms

1 double maclaurin_series(double x, int N)
2 {
3 double result = 0.0;
4

5 for (int i=0; i<N; ++i)
6 {
7 double term = pow(x, i);
8 result += term;
9 }

10

11 return result;
12 }

Listing 5: The Maclaurin Series original implementation.

1 double maclaurin_series(dco::ia1s::type x, int N)
2 {
3 dco::ia1s::type result = 0.0;
4

5 INPUT(x, x-0.5, x+0.5);
6 for (int i=0; i<N; ++i)
7 {
8 dco::ia1s::type term = pow(x, i);
9 result = result + term;

10 }
11

12 OUTPUT(result);
13 ANALYSE();
14

15 return result.toDouble ();
16 }

Listing 6: Listing 5 enhanced with dco/scorpio

macros.

1 void task(double *term , double x, int pos) {
2 *term = pow(x, pos);
3 }
4

5 void approx(double *term , double x, int pos) {
6 *term = pow_fast(x, pos);
7 }
8

9 double maclaurin(double x, int N, double waitRatio
) {

10 double temp[N], result = 0.0;
11

12 temp [0] = 1.0;
13 for (int i=1; i<N; ++i) {
14 double significance = (N-i+1)/(double)(N+2);
15 #pragma omp task significance(significance) \
16 approxfun(approx) in(x, pos) out(temp[i:i]) \
17 label(maclaurin)
18 task(temp+i, x, i);
19 }
20 #pragma taskwait label(maclaurin) ratio(waitRatio)
21

22 for (int i=0; i<N; ++i)
23 result = result + temp[i];
24 return result;
25 }

Listing 7: The Maclaurin Series implementation after the

analysis performed by dco/scorpio.

computed at Listing 5, line 7. The developer inspects Gout

(Figure 3b) to identify tasks which compute a term.

We extend the latest version of OpenMP [29]. Both par-

allelism and significance are expressed via #pragma direc-

tives. Tasks are specified using the #pragma omp task di-

rective (Listing 7, lines 15 to 17), and their significance is

specified via the significant() clause. Depending on their sig-

nificance, tasks may be approximated or dropped at runtime.

Lines of Code

Benchmark Domain Sequential Parallel (P) Approx. Function (A) Significance clause (S) Overhead(%)

Sobel Filter Image Filter 143 174 35 1 20.7%
DCT Multimedia 157 198 0 1 ≈ 0%

Fisheye Multimedia 457 500 94 1 19%
N-Body Physics 560 574 88 2 15.7%

BlackScholes Finance 278 286 89 1 31.5%

Table 2: Lines of code of the sequential and parallel (task-based) version of the benchmark applications, and the extra code

added to support significance-driven execution via our programming model. The overhead of the extra code is given relative

to the parallel code A+S
P

. Note that the approximations have been implemented by copying the original code and performing

modifications which reduce its computational complexity as hinted by our analysis method.

The programmer may provide alternative, approximate

task implementations, through the approxfun() clause. Task

input and output are specified via the in() and out() clauses.

Finally, label() can be used to group tasks under a common

identifier to allow for task-group level synchronization.

Explicit barrier-like synchronization is supported via the

#pragma omp taskwait directive. It can serve as a global bar-

rier, or a barrier for a specific task group using the label()

clause. taskwait can be used to control the minimum quality

of application results. The ratio() clause instructs the run-

time to execute (at least) the specified percentage of tasks

accurately, while respecting task significance; more signifi-

cant tasks should be executed accurately. The ratio serves as

a single knob to enforce a minimum quality in the quality /

performance-energy optimization space.

We now revisit the Maclaurin Series example, according

to the analysis results depicted in Figure 3b. The algorithm

is ported to our task-based programming model (Listing 7)

so that each task computes a single term according to the

analysis shown in Figure 3b. Noticing the monotonicity of

the term significance values we choose to use the function in

line 14 to communicate the significance of tasks to the run-

time system. Approximations of the task significance values

(e.g. via interpolation) may be used, with no penalty, as long

as they capture the significance ranking of the tasks.

For tasks which produce multiple outputs, task signifi-

cance corresponds to the maximum significance of its out-

puts. Finally, the developer provides approximate versions

of the tasks (Listing 7, lines 5 − 7), involving an approxi-

mate version of pow(); the latter offers higher performance

and energy efficiency at the expense of lower precision.

4. Experimental Evaluation

We evaluate our approach with five applications, consisting

of six different computational kernels. We intentionally in-

clude well-known kernels in our benchmark set, so that we

can validate the results of the significance analysis. For each

kernel we follow Algorithm 1, to restructure the kernel code

in tasks, and come up with approximate versions. We evalu-

ate the effectiveness of our significance tagging and approx-

imation choices by studying the output quality and perfor-

mance of these kernels, while varying the percentage of tasks

that are executed accurately. Then we compare our method

with loop perforation [35], a compiler technique for skipping

selected loop iterations. Table 2 outlines our benchmarks and

shows the overhead in terms of lines of code with respect to

a task-based, implementation of the benchmarks.

4.1 Benchmarks

4.1.1 Sobel Filter

Sobel Filter is a 2D filter for edge detection in images which

convolves the image with a 3x3 block filter, once in the hori-

zontal and once in the vertical direction. Afterwards, it com-

bines the results (tx and ty) of the two convolutions to com-

pute an intermediate value t =
√

t2x + t2y . The output pixels

are then produced by clipping t to the range of [0, 255].
For the significance analysis we use a set of images used

in image compression benchmarking [5]. The analysis indi-

cates that the first level of high variance between the sig-

nificance of computations in the DynDFG is the one during

which the convolutions take place. Three distinct blocks of

computations are identified. The first one (A) uses the filter

coefficients 2 and −2 and the other two (B, and C) use 1
and −1. The analysis shows that A is twice as significant

as the other two. Finally, the computations which aggregate

convolutions results and produce output pixels show little

significance variance across all pixels.

Based on these results, we implement Sobel Filter using

two groups of tasks. The first group consists of three types

of tasks, one for each part of the convolution kernel. We ap-

proximate the tasks by dropping the respective computation.

We set the significance of tasks computing A to 1.0, thereby

forcing accurate execution regardless of the requested ratio

of computations. Tasks B and C receive a significance of

0.5; since one third of the tasks are significant (tasks A),

tasks B and C will only be executed if the user requested

ratio is higher than 0.33. The second task group uses the re-

sults computed by the first one to produce the output image

pixels. These tasks always execute accurately, since the anal-

ysis indicates that they have high significance for the output.

 0 1 2 3 4 5 6 7

0

1

0

1

2

3

4

5

6

7

Figure 4: The DCT significance mapped on the 8x8 block of

DCT coefficients. The top left corner has the highest value

and drops in a wave-like pattern towards the opposite corner.

0 1280X coordinates

Y
 c

o
o

rd
in

a
te

s

0

960

0

1

Figure 5: Significance values of the InverseMapping kernel.

4.1.2 Discrete Cosine Transformation

Discrete Cosine Transformation (DCT) is a module of video

compression kernels, which transforms a block of 8x8 im-

age pixels to a block of 8x8 frequency coefficients. Low fre-

quency coefficients are closer to the upper left corner of the

8x8 block, whereas high frequency coefficients reside in the

lower right corner.

Analysis reveals a variation in significance at level L = 1
of the DynDFG which corresponds to the computation of

individual frequency coefficients. It takes into account the

invocation of the DCT, quantization, de-quantization and

inverse-DCT stages. The resulting coefficient significances

are shown in Figure 4. The diagonal zig-zag path corre-

sponds to the importance of coefficients according to the

wisdom of image/video compression experts. The signifi-

cance pattern that emerges from the analysis verifies this do-

main expert wisdom, thereby validating our approach.

We structure DCT using 15 tasks in total, one for each of

the diagonals in Figure 4. Each task operates on coefficients

of the same or similar significance. Task significance gradu-

ally drops with increasing distance from the top-left corner.

4.1.3 Fisheye Lens Image Correction

Fisheye transforms images distorted by fisheye-shaped lens

back to the natural-looking perspective space [6]. The algo-

rithm associates integer coordinates of the output image to

X coordinates

Y
 c

o
o

r
d

in
a

te
s

0 1

0

1

(a) Pixels (0,1) and

(0,2)

X coordinates

Y
 c

o
o

r
d

in
a

te
s

0 1

0

1

(b) Pixels (0,0) and

(0,3)

X coordinates

Y
 c

o
o

r
d

in
a

te
s

0 1

0

1

(c) Pixels (1,1) and

(1,2)

X coordinates

Y
 c

o
o

r
d

in
a

te
s

0 1

0

1

(d) Pixels (1,0) and

(1,3)

X coordinates

Y
 c

o
o

r
d

in
a

te
s

0 1

0

1

(e) Pixels (2,1) and

(2,2)

X coordinates

Y
 c

o
o

r
d

in
a

te
s

0 1

0

1

(f) Pixels (2,0) and

(2,3)

X coordinates
Y

 c
o

o
r
d

in
a

te
s

0 1

0

1

(g) Pixels (3,1) and

(3,2)

X coordinates

Y
 c

o
o

r
d

in
a

te
s

0 1

0

1

(h) Pixels (3,0) and

(3,3)

b a a b

h g g h

f e e f

d c c d

Interpolation
coordinates (input)

(x,y)

1

0

(i)

Figure 6: Significance graphs for the pixels in the 4x4 block

of BicubicInterp with respect to the interpolated output im-

age; letters in (i) point to the corresponding graphs.

real-valued coordinates in the distorted image (InverseMap-

ping kernel). Bicubic interpolation on a 4x4 window is then

applied to calculate each pixel value of the output image

from the neighbouring pixels of the corresponding point on

the input image (BicubicInterp kernel).

Figure 5 depicts the output of the significance analysis

for the InverseMapping kernel applied on an image whose

dimensions in the natural looking space are 1280x960. The

effect of fisheye-shaped lens is to expand the pixels closest to

the boundary, and push together pixels that are near the cen-

ter. Thus, computing coordinates for pixels near the border

is more sensitive to imprecision than for those at the center.

BicubicInterp uses weighted averages to produce the in-

terpolated pixel value. The grey rectangle of Figure 6i shows

the area in which the interpolated pixel resides. Figures 6a-

6h show the corresponding significance values of the pixel-

pairs, mapped on the discretized input coordinate space. The

results indicate that the inner 2x2 pixel block, which directly

surrounds the coordinates of the input point, contains the two

most significant pairs of pixels (Figures 6 c and e).

Each task of Fisheye computes a block of 128x64 out-

put pixels. It invokes InverseMapping for each pixel of the

block to calculate the coordinates in the distorted space and

feeds them to BicubicInterp to interpolate the pixel value.

We use the significance pattern of InverseMapping to assign

higher significance values to tasks which are closer to the

image border, and lower to those near the center. The ap-

Q
u

a
li

ty

(P
S

N
R

(d
B

))

0 0.2 0.5 0.8 1
0

20

40

60

80

0

100

200

300

400

500
Sobel Filter

0 0.2 0.5 0.8 1
0

10

20

30

40

0

100

200

300

400

500
DCT

0 0.2 0.5 0.8 1
0

20

40

60

0

50

100

150
Fisheye

E
n

er
g

y

(J
o

u
le

s)

Q
u

a
li

ty

(R
el

.
E

rr
o

r)

0 0.2 0.5 0.8 1
0.00%

1.00%

2.00%

3.00%

4.00%

0

2000

4000

6000
8000

10000
N-Body

0 0.2 0.5 0.8 1
0.00%

5.00%

10.00%

15.00%

0

50

100

150

200
Blackscholes

E
n

er
g

y
(J

)

(J
o

u
le

s)

Quality Sgnf

Quality Perf

Energy Sgnf

Energy Perf

Figure 7: Output quality (blue bars, left y-axis) and energy consumption (blue lines, right y-axis) for the 5 benchmarks, as a

function of the ratio of accurately executed tasks (x-axis). The results obtained by loop perforation are depicted in red.

proximate version of tasks invokes InverseMapping only for

the pixels which lie on the border of the 128x64 block and

uses interpolation to compute the coordinates of internal pix-

els. For BicubicInterp we exploit a transitive property of sig-

nificance: it is sensible to opt for an approximate execution

of computations which use approximate input data. In tasks

where InverseMapping was executed approximately, Bicu-

bicInterp uses only the pixels pairs in Figures 6 c and e.

4.1.4 N-Body

This kernel simulates the kinematic behaviour (position and

velocity) of liquid Argon atoms within a bounded space,

under the effects of a force produced by a Lennard-Jones

pair potential [17]. The potential is defined as a function of

distance (r) and two material specific constants (σ and ǫ):

V (r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(13)

We compute the significance of each atom’s state with

respect to the state of all other atoms. The results, once again,

confirm domain expert wisdom: the significance is strongly

correlated with the distance between atoms. The greater the

distance between atom A and atom B, the less the kinematic

properties of one affect the other.

The task-based version of N-Body partitions the 3D con-

tainer of the particles into regions. Every few time-steps it

assigns particles to regions based on their location. For each

given atom, one task per region is instantiated to calculate

the forces that operate on the atom due to the particles con-

tained in that specific region. Neighboring regions to the one

that envelopes the target atom are tagged with higher signif-

icance values than those which are further away.

4.1.5 BlackScholes

BlackScholes is a benchmark of the Parsec suite [7]. It im-

plements a mathematical model for a market of derivatives,

which calculates the buying and selling of assets so as to

reduce the financial risk.

Significance analysis indicates that the computation of

a stock price can be broken down to 4 blocks of code A,

B, C, D, with sig(A) > sig(B) ≫ sig(C) > sig(D).
The least important parts (C and D) are approximated using

less accurate but faster implementations of mathematical

functions such as exp and sqrt [22].

4.2 Loop Perforation

As a reference, we use versions of the benchmarks which

utilize loop-perforation [35] to trade-off energy consumption

with output quality. We perforate the loops in such a way that

the same percentage of computations is skipped as the per-

centage of computations approximated by our runtime. Sim-

ilarly to [35], we find that loop perforation is not applicable

on BlackScholes since it does not use any loops within the

computation of a stock’s price. The perforated version of So-

bel Filter skips the computation for a percentage of the rows

of the image. In DCT we perforate the double nested loops

which compute the coefficients of an 8x8 block of pixels. In

Fisheye we drop the computation of some of the output im-

age rows similarly to Sobel. Finally, the original version of

N-Body computes the forces affecting a particle by iterating

all other particles in a loop, whereas the perforated version

skips some iterations of the loop.

4.3 Performance Results

We execute all applications for different degrees of approx-

imation, varying the ratio of tasks that are executed accu-

rately. The blue-colored bars in Figure 7 show the effects

on output quality. For Sobel Filter, DCT, and Fisheye we

use Peak Signal to Noise Ratio (PSNR) with respect to the

fully accurate execution as a quality metric (higher is better).

Note that, PSNR is a logarithmic metric. For N-Body and

BlackScholes we evaluate the relative error (lower is better)

with respect to the fully accurate execution.

The quality of the output gradually increases with the

number of tasks that are executed accurately, in all bench-

marks. This shows that the significance-driven approach can

indeed lead to well-behaved approximate applications. Note

that DCT and N-Body produce high-quality output even for

relatively low accurate task ratios. The more distinct the sig-

nificance properties of an algorithm are, the smaller the qual-

ity penalty due to approximation.

We measure performance and energy consumption for an

Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz CPU with

14 cores and 128 GBs of RAM. The blue-colored lines in

Figure 7 show the energy cost of approximate executions

(execution times are not shown here for brevity, they follow

the same pattern). The energy for a fully accurate execution

of each application corresponds to the rightmost data point

of the respective plot. The results of loop-perforation corre-

spond to the red-colored bars and lines in Figure 7.

Executing more tasks in (light-weight) approximate mode

results in lower energy consumption, as expected. In some

applications (Sobel Filter, Fisheye) perforated versions are

more energy efficient that the corresponding significance-

based ones due to the overhead of our task-based implemen-

tation. However, approximations driven by the analysis re-

sults lead to higher quality of results compared with perfo-

ration at the same ratio of accurate computations. This ef-

fect is more profound for DCT, Fisheye and N-Body. This

difference in quality significantly outweighs overheads of

the task-based implementation. For example in N-Body the

significance-based approximation achieves a relative error of

0.006% already with a fully approximate execution, at an en-

ergy cost of 820 Joules. The perforated version requires 80%
of the iterations to be executed accurately to achieve a rela-

tive error of 0.02%, at an energy budget of 5475 Joules. The

same effect is observed in Sobel Filter.

Our methodology results in better quality for all bench-

marks compared with loop-perforation. On average, Sobel

Filter, DCT, and Fisheye produce images with 3.91 dB,

10.96 dB, and 6.9 dB higher PSNR compared to their per-

forated versions. Similarly, N-Body produces relative errors

which are on average 6 orders of magnitude lower than those

introduced by the perforated version.

5. Related Work

We classify related work into a) software frameworks which

include programming models, compiler and runtime tech-

niques, and b) hardware-based techniques.

5.1 Software Frameworks

The Chisel [23] framework, given a reliability and option-

ally a hardware accuracy specification, automatically selects

approximate kernel operations to synthesize an approximate

computation to a) minimize energy consumption, and b) sat-

isfy reliability and accuracy requirements. Similarly to our

approach, Chisel utilizes interval analysis and code differen-

tiation. However our method is more efficient because only

it requires a single analysis run for a fixed input range. Our

analysis can also help developers gain insight to an applica-

tion since it allows them to “visualize” the significance for

different parts of the computation. Furthermore, our frame-

work utilizes off-the shelf multi-core processors without any

necessity for instruction-level information. Also contrary to

Chisel, it allows dynamic adaptation of the running code in

the sense that a single binary may operate at different energy

gain/output quality configurations using the ratio knob [40].

Topaz [1] is a task-based framework for platforms which

may be used to approximate computations by executing

them unreliably. It uses an online outlier detection mecha-

nism to detect and correct, unacceptable task results through

re-execution on reliable hardware. Our framework fully au-

tomates significance analysis of individual operations and

provides a first step towards automating the exploitation of

analysis information to partition code in tasks. Topaz expects

applications to be split into critical and non-critical sections.

Green [4] allows the programmer to write a precise ver-

sion of a task and several versions of varying levels of pre-

cision. A runtime system monitors application QoS online

and dynamically chooses the task version to use in order to

provide a target QoS value. Green does not perform any au-

tomatic significance analysis: it is completely up to the user

to specify candidate loops and functions amenable to ap-

proximation. ASAC is a sensitivity analysis technique which

perturbs program variables and observes the effect on the

outputs of the program [30]. A variable whose perturbation

within a value interval does not affect the output beyond a

user-defined threshold is considered non-critical and can be

approximated. Our analytical framework presents a mathe-

matically sound methodology to prove the significance of

computations and assist in transforming the code to a collec-

tion of tasks with varying degrees of significance.

Abstract Interpretation [8, 9] is a compile-time frame-

work to approximate programs’ behavior, without executing

them. It can be used to produce approximations of code re-

gions. In [21], semantics for evaluation in IA and forward

mode AD are given, that can be applied to simple examples.

However, Abstract Interpretation can only answer about a

potential interference to the output for any dataset but can-

not characterize the impact of such interference for one par-

ticular input. No IA or AD tool based on abstract interpre-

tation seems to exist that can compute interval enclosures or

derivatives for production codes. Although there are reverse

propagation techniques in abstract interpretation, no equiv-

alent to adjoint mode AD seems to exist. Adjoint mode is

the enabling technology for the efficient estimation of the

impact of all intermediate variables to the final result.

Mutation [28] via a process akin to genetic algorithms

identifies instructions within a program that impact its out-

put quality. Much like typical profiling methodologies it is

sensitive to the selection of test sets [10]. More importantly,

it cannot provide a quantitative assessment of the effect of

computations to the final result.

EnerJ [33] proposes approximate programming by allow-

ing the developers to declare data structures that may be

subject to approximate computation in return for increased

performance. It allows operations to be computed in aggres-

sively voltage-scaled processors and data structures to be

stored in DRAM with low refresh rate and SRAM with low

supply voltage. Exposing approximate computing to the pro-

grammer requires expanding the processor ISA with unreli-

able instructions that offer no guarantee that a certain opera-

tion will be performed correctly [12].

Petabricks [2] is a parallel language that allows program-

mers to provide multiple alternative implementation of a

code. These versions exhibit various performance vs. QoS

behaviors and allow the user to select, at execution time,

the most suitable one. Building on this idea, [3] uses ge-

netic tuning algorithms to search the space of candidate

algorithmic versions and accuracies in order to select the

best approximate version. [36] provides guidelines for man-

ual code transformation for approximate computing. These

frameworks delegate the control of approximate code exe-

cution to the programmer, exploiting application-specific in-

variants. Paraprox [32] is a compiler and runtime platform

that identifies common patterns found in data-parallel ker-

nels, written in CUDA or OpenCL, and replaces them with

approximate template-based kernels.

ApproxIt [42] is a framework for approximate compu-

tation of iterative-based methods, based on a lightweight

quality control mechanism. The error-resilient and error-

sensitive parts of each application are identified during an of-

fline characterization phase by several simulations on repre-

sentative inputs. Then, at online stage, reconfiguration of ap-

proximation modes are performed at certain iterations con-

sidering the time-varying resilience requirements of each ap-

plication and respecting the user-specified output quality.

Loop perforation is a compiler technique that drops loop

iterations deemed less significant for the output quality while

keeping critical loop iterations that must always be exe-

cuted [35]. It uses profiling to find the set of critical loop

iterations that result to crashes and quality degradation if

skipped. Our hybrid approach relies on mathematical foun-

dations to identify the least significant portions of an appli-

cation which may have a finer granularity compared to the

body of an iteration.

5.2 Hardware Frameworks

ERSA [18] is a multi-core architecture where cores are ei-

ther fully reliable or have relaxed reliability. ERSA uses an

explicit and application-specific mapping of code to cores

with different levels of reliability. Some additional ideas on

hardware support for approximate computation are quality

programmable vector processors using ISA extensions [41],

ISA extensions with approximate semantics in general pur-

pose CPUs [12], neural networks that approximate the re-

sults of a code region in hardware [13], and low-voltage

probabilistic storage [31].

Architecture Vulnerability Factor (AVF) [25], Hardware

Vulnerability Factor (HVF) [39], and Program Vulnerabil-

ity Factor (PVF) [38] aim at providing metrics which indi-

cate the level of error masking for a program which executes

on unreliable hardware. They simulate applications and per-

form fault injections at various locations (on-chip structures,

registers, memory, etc) to determine their respective Vulner-

ability Factor by judging if an error impacts the output re-

sults. These methods cannot be used to determine the rele-

vant importance of computations with respect to output qual-

ity and require specialized hardware.

6. Conclusions

In this paper, we presented dco/scorpio, the first frame-

work that produces a mathematically rigorous approach to

automate specification of computational significance. Using

interval analysis and algorithmic differentiation techniques,

we developed a method that captures significance variations

of operations with respect to the output of an application.

A programmer uses this analysis to partition an application

into OpenMP-like tasks and to rank these tasks according to

their contribution to the output result.

We validated our methodology across a number of bench-

marks by showing that dco/scorpio produces significance

rankings that are close to what a domain expert would spec-

ify. Comparison of our approach against the compiler tech-

nique loop perforation [35], indicates that judiciously select-

ing approximate tasks and approximation conditions is cru-

cial in order to achieve energy efficiency at a graceful degra-

dation of the output quality.

As part of future work, we plan to improve the framework

by extending significance analysis to a wider range of in-

put intervals to accommodate the fact that code significance

is input-dependent for some benchmarks. Automatic detec-

tion of light-weight functions to approximate tasks is another

area we are planning to explore. Moreover, we intend to in-

vestigate alternative analysis scenarios by combining the ro-

bustness of algorithmic differentiation to Monte Carlo-based

methodologies. Finally, our current approach expects a sin-

gle kernel and its respective input-data ranges. We plan to

expand our framework to treat kernels as reusable compo-

nents in the spirit of libraries.

Acknowledgments

This work has funded by The European Commission’s

7th Framework Programme (FP7/2007- 2013) under grant

agreement FP7-323872 (Project ”SCoRPiO”).

References

[1] S. Achour and M. C. Rinard. Approximate Computation with Outlier

Detection in Topaz. In OOPSLA 2015, pages 711–730. ACM, 2015.

[2] J. Ansel, C. P. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,

and S. P. Amarasinghe. PetaBricks: a Language and Compiler for

Algorithmic Choice. In PLDI ’09, June 15-21, 2009, 2009.

[3] J. Ansel, Y. L. Wong, C. P. Chan, M. Olszewski, A. Edelman, and

S. P. Amarasinghe. Language and Compiler Support for Autotuning

Variable-Accuracy Algorithms. In CGO ’11, April 2-6, 2011, 2011.

[4] W. Baek and T. M. Chilimbi. Green: A Framework for Supporting

Energy-conscious Programming Using Controlled Approximation. In

PLDI ’10, ACM, 2010.

[5] A. Becker, T. Richter, N. Fröhling, P. Fraser, T. Story, W. J. Cosshall,

D. Coffin, and B. Lindbloom. Image Compression benchmark. 2015.

[6] N. Bellas, S. M. Chai, M. Dwyer, and D. Linzmeier. Real-time fisheye

lens distortion correction using automatically generated streaming

accelerators. In FCCM ’09, 2009.

[7] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,

Princeton University, January 2011.

[8] P. Cousot. Abstract interpretation based formal methods and future

challenges. In Informatics, Springer, 2001.

[9] P. Cousot and R. Cousot. Abstract Interpretation: A Unified

Lattice Model for Static Analysis of Programs by Construction or

Approximation of Fixpoints. In POPL 1977, ACM, 1977.

[10] M. Delamaro and J. Offutt. Assessing the Influence of Multiple Test

Case Selection on Mutation Experiments. In ICSTW, March 2014.

[11] A. Doucet, S. Godsill, and C. Andrieu. On Sequential Monte Carlo

Sampling Methods for Bayesian Filtering. Statistics and computing,

10(3):197–208, 2000.

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture

Support for Disciplined Approximate Programming. In ASPLOS

XVII, ACM, 2012

[13] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural

Acceleration for General-Purpose Approximate Programs. In

MICRO-45, 2012.

[14] Í. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. Approx-

Hadoop: Bringing Approximations to MapReduce Frameworks. In

ASPLOS ’15, ACM, 2015.

[15] A. Griewank and A. Walther. Evaluating Derivatives: Principles and

Techniques of Algorithmic Differentiation. SIAM, 2nd edition, 2008.

[16] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward

Dark Silicon in Servers. In MICRO-31(4):6–15, July 2011. ISSN

0272-1732.

[17] J. E. Jones. On the Determination of Molecular Fields. I. From the

Variation of the Viscosity of a Gas with Temperature. Proceedings

of the Royal Society of London A: Mathematical, Physical and

Engineering Sciences, 106(738):441–462, 1924. ISSN 0950-1207.

[18] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra. ERSA:

Error Resilient System Architecture for Probabilistic Applications. In

DATE ’10, European Design and Automation Association, 2010.

[19] M. Lerch, G. Tischler, J. W. von Gudenberg, W. Hofschuster, and

W. Krämer. FILIB++, a fast interval library supporting containment

computations. ACM Trans. Math. Softw., 32(2):299–324, 2006.

[20] J. Lotz, U. Naumann, R. Hannemann-Taḿas, T. Ploch, and A. Mitsos.

Higher-order Discrete Adjoint ODE Solver in C++ for Dynamic

Optimization . Procedia Computer Science, 51:256–265, 2015. ISSN

1877-0509. International Conference On Computational Science,

ICCS 2015, Computational Science at the Gates of Nature.

[21] M. Martel. An Overview of Semantics for the Validation of Numerical

Programs. In R. Cousot, editor, Verification, Model Checking, and

Abstract Interpretation, 6th International Conference, VMCAI 2005,

January 17-19, 2005, Proceedings, volume 3385 of Lecture Notes in

Computer Science, pages 59–77. Springer, 2005.

[22] P. Mineiro. fastapprox. http://code.google.com/p/

fastapprox/, 2012.

[23] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard.

Chisel: Reliability- and Accuracy-aware Optimization of Approximate

Computational Kernels. In OOPSLA ’14, ACM, 2014.

[24] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval

Analysis. Society for Industrial and Applied Mathematics, 1 edition,

January 2009.

[25] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin. A

Systematic Methodology to Compute the Architectural Vulnerability

Factors for a High-Performance Microprocessor. In MICRO-36, IEEE

Computer Society, 2003.

[26] U. Naumann. The Art of Differentiating Computer Programs: An

Introduction to Algorithmic Differentiation, volume 24. Siam, 2012.

[27] U. Naumann, J. Lotz, K. Leppkes, and M. Towara. Algorithmic

Differentiation of Numerical Methods: Tangent and Adjoint Solvers

for Parameterized Systems of Nonlinear Equations. ACM Trans.

Math. Softw., 41(4):26:1–26:21, Oct. 2015. ISSN 0098-3500.

[28] J. Offutt. A mutation carol: Past, present and future. Information

and Software Technology, 53(10):1098–1107, 2011. ISSN 0950-

5849. http://www.sciencedirect.com/science/article/

pii/S0950584911000838. Special Section on Mutation Testing.

[29] OpenMP Architecture Review Board. OpenMP Application Program

Interface (version 4.0). Technical report, July 2013.

[30] P. Roy, R. Ray, C. Wang, and W. F. Wong. ASAC: Automatic

Sensitivity Analysis for Approximate Computing. In LCTES ’14,

2014.

[31] M. Salajegheh, Y. Wang, A. A. Jiang, E. Learned-Miller, and

K. Fu. Half-Wits: Software Techniques for Low-Voltage Probabilistic

Storage on Microcontrollers with NOR Flash Memory. ACM Trans.

Embed. Comput. Syst., 12(2s):91:1–91:25, May 2013. ISSN 1539-

9087.

[32] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. Paraprox: Pattern-

based Approximation for Data Parallel Applications. In ASPLOS ’14,

ACM, 2014.

[33] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and

D. Grossman. EnerJ: Approximate Data Types for Safe and General

Low-power Computation. In PLDI ’11, ACM, 2011.

[34] H. Schichl and A. Neumaier. Interval Analysis on Directed Acyclic

Graphs for Global Optimization. Technical report, J. Global

Optimization, 2004.

[35] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard.

Managing Performance vs. Accuracy Trade-offs with Loop Perfora-

tion. In ESEC/FSE ’11, ACM, 2011.

[36] J. Sloan, J. Sartori, and R. Kumar. On Software Design for Stochastic

Processors. In DAC ’12, ACM, 2012.

[37] Software and Tools for Scientific Engineering, RWTH Aachen

University, Germany. Derivative Code by Overloading in C++

(dco/c++). http://fsnew.stce.rwth-aachen.de/research/

software/dco-c.

[38] V. Sridharan and D. Kaeli. Eliminating microarchitectural dependency

from Architectural Vulnerability. In HPCA ’09, IEEE Press, Feb 2009.

[39] V. Sridharan and D. R. Kaeli. Using Hardware Vulnerability Factors

to Enhance AVF Analysis. In ISCA ’10, ACM, 2010.

[40] V. Vassiliadis, C. Chalios, K. Parasyris, C. D. Antonopoulos,

S. Lalis, N. Bellas, H. Vandierendonck, and D. S. Nikolopoulos. A

Significance-driven Programming Framework for Energy-constrained

Approximate Computing. In CF ’15, ACM, 2015.

[41] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and

A. Raghunathan. Quality Programmable Vector Processors for

Approximate Computing. In MICRO-46, ACM, 2013.

[42] Q. Zhang, F. Yuan, R. Ye, and Q. Xu. ApproxIt: An Approximate

Computing Framework for Iterative Methods. In DAC ’14, ACM,

2014.

