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An extension of approximate computing, significance-based computing 
exploits applications’ inherent error resiliency and offers a new 
structural paradigm that strategically relaxes full computational 
precision to provide significant energy savings with minimal 
performance degradation. 

T he IT industry’s unprec-
edented growth in 
recent decades—fueled 
by aggressive shrinking 

of transistor size and substan-
tial increases in energy-efficient, 
high-performance devices—has 
enabled promising new comput-
ing paradigms such as the Internet 
of Things. But several engineering 
issues threaten this trend. As hun-
dreds of cores are integrated within 
a single chip, power consumption 
will increase to such a degree that 
soon more than half the transistors 
in each chip will have to be pow-
ered off to avoid burnout. And as 
process technology progresses to 
lower geometries, circuits become 
more prone to performance varia-

tions and so do not always meet the 
desired specifications, resulting in 
unexpected failures throughout the 
device’s operation lifetime. 

Consequently, to guarantee their 
products’ fault-free operation, man-
ufacturers introduce redundancy 
at various levels of design abstrac-
tion trying to detect and correct any 
single failure. Unfortunately, such 
measures lead to significant power 
overhead, further increasing on-
chip power consumption. Even more 
problematic, simply scaling supply 
voltage to save power is often not 
a viable option under these condi-
tions, because circuits become more 
prone to faults at low voltages.

Overcoming the energy scal-
ing barrier is motivating designers 

to seek innovative breakthroughs 
to better deal with these power 
consumption factors. One promis-
ing new paradigm is approximate 
computing, which exploits the fault 
tolerance inherent in many ap-
plication classes as a way to relax 
traditional requirements for 100 
percent computational precision. 
For example, recent research has 
shown that utilizing applications’ in-
herent error resiliency in domains 
such as signal processing, multime-
dia operations, high-performance 
computing, and data analytics can 
achieve marked energy savings. 

However, most current approxi-
mate computing techniques are 
applied ad hoc and thus limited to 
specific algorithms and software 
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blocks. What’s needed, we believe, 
is greater algorithmic rigor cou-
pled with a solid methodology that 
can better characterize and exploit 
application resiliency, targeting in-
creased power efficiency for all 
future systems. Thus we propose 
significance-based computing as a 
more disciplined approach to the ap-
proximate computing model.

SIGNIFICANCE-BASED 
COMPUTING
Not every algorithm part or execu-
tion phase plays an equal role in 
determining the quality of service 
(QoS) for users in most application 
domains. Some control codes and 
computations contribute higher 
quality results than others, and so 
they are more critical for ensuring 
adequate system operation. 

We call this characteristic “com-
putational significance,” and we 
consider it a property that all system 
layers should exploit efficiently and 
in a disciplined manner, particularly 
as designers tackle the so-called 
energy wall and increasing reli-
ability issues arise in sub–28-nm 
geometries.

The goal of significance-based 
computing is to allow approximate 
computation on top of unreli-
able components—always within 
user-provided quality bounds—by 
educated control of error occur-
rence and propagation throughout 
the algorithm. The resulting 
significance-based systems se-
lectively protect the execution of 
significant computations while al-
lowing a controlled error amount 
in less significant parts of the algo-
rithm, thus minimizing the energy 
required to support the system, yet 
still enabling it to produce useful 
results.

Mathematically, in a given com-
putation, the significance of any 
intermediate result/variable can be 
correlated to 
the degree to which its value ac-
tually affects the output, or, more 

generally, a quality metric of the 
output. Classical first-order and 
potential higher-order derivative in-
formation can serve as indicators 

for such sensitivity, and hence for 
determining significance under cer-
tain problem-domain-dependent 
constraints.

EXAMPLE
We can illustrate significance-based 
computing’s potential viability using 
a simple but important example 
from the high-performance comput-
ing domain.

Iterative solvers repeatedly refine 
the estimates used for solving a 
system of equations until they reach 
the required accuracy level. Soft 
errors occurring in the solvers’ state 
can be allowed to remain without 
noticeable influence on the quality 
of results. Alternatively, these errors’ 
impact can be mitigated by increas-
ing the number of iterations invoked 
to reach convergence, which imposes 
a cost. In the worst case, soft errors 
may break convergence altogether.

 Fortunately, most soft errors that 
materialize as bit flips in the solver’s 
state don’t induce this extreme worst-
case scenario; thus, iterative solvers 
are suitable candidates for execution 
on inherently unreliable hardware. 
Iterative solvers also have built-in 
resilience, which can secure a satis-
factory result—again, sometimes at 
the cost of additional iterations.

An iterative solver’s convergence 
rate provides a metric of significance 
for the individual iterations (in other 
words, for the sensitivity to vari-
ables within each iteration). If, for 
example, a method exhibits a loga-
rithmic convergence rate, then the 
algorithm’s last few iterations are 

far more significant for convergence 
than the preceding ones, because 
errors in early iterations can be cor-
rected by subsequent iterations. 

This, in turn, dictates an execu-
tion strategy whereby we can allow 
early iterations to be computed 
imprecisely.

An energy-efficient approach to 
imprecise iteration execution uses 
processor cores and memories that 
operate below their nominal volt-
age, thus risking timing errors but 
achieving dramatic power savings. 
The application and system software 
can statically or adaptively control 
the solution quality by assigning 
high significance to the algorithm’s 
late iterations, or by executing ad-
ditional iterations if necessary. On a 
finer-grained scale, we can consider 
the algorithm’s sensitivity to errors 
in only designated parts of the 
binary representation of each itera-
tion’s variables.  

The weighted Jacobi method can 
serve as a representative use case. 
Jacobi iteratively solves the system 
Ax = b for a diagonally dominant 
matrix A. The algorithm iterates 
until the convergence condition ∥Ax 
− b∥ ≤ limit is satisfied, with con-
vergence guaranteed if A is strictly 
diagonally dominant. We, therefore, 
use convergence as a quality metric.

Our analysis of the code suggests 
that, most commonly, the solver 
can be executed on unreliable hard-
ware and tolerate the vast majority 
of soft errors that manifest as single 
bit flips. In this example, only errors 
in the exponent field of the iteration 
matrix A’s double-precision func-
tional programming (FP) elements 
would violate the convergence 
criterion; errors in the mantissa 

The goal of significance-based computing is to 
allow approximate computation on top of unreliable 
components—always within user-provided quality 
bounds.
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(especially for early iterations) can 
be fixed by later iterations. 

We experimented with re-
placing one reliable x86 core 
operating at nominal voltage 
with 16 equivalent—in terms of 

general microarchitecture and 
industry standard architecture—
unreliable x86 cores operating 
at near-threshold voltage and 
commensurately low frequency. 
We were able to achieve energy 
savings up to 67 percent from 
significance-based execution, with-
out performance degradation.

Though encouraging, such 
an exercise would not be viable 
from a chip-area perspective. 
Heterogeneous architectures that 
blend a few reliable cores with many 
cores that can operate in either 
reliable or unreliable regions would 
provide a more viable tradeoff in 
terms of high performance, low 
power, and resilience.

A SIGNIFICANCE-BASED 
HARDWARE AND  
SOFTWARE STACK
Currently, we are attempting to 
realize such heterogeneous architec-
tures, along with a proper software 
stack that guides system operation, 
according to the significance-based 
computing paradigm principles 
being pursued under the project 
rubric Significance-Based Computing 
for Reliability and Power Optimiza-
tion (SCoRPiO; www.scorpio-project.
eu). Here we briefly present the main 
elements of our approach. 

Application  
development support
Starting from the higher layers 
of abstraction, the programmer 

should be able to determine and 
express significance values for dif-
ferent code parts in an easy and 
intuitive way. At the same time, it 
is important to exploit the under-
lying hardware platform’s parallel 

execution capability. To this end, we 
follow a directives-based approach, 
whereby parts of the program are 
explicitly marked as separate tasks 
with differing significance values, 
depending on how strongly the 
intermediate results these tasks 
compute affect the final computa-
tional output. 

Operationally, the difference 
between significant and non-
significant tasks is that the latter 
can execute unreliably, and thus 
may be allowed to fail or produce 
wrong results. To handle such side 
effects, the programmer can pro-
vide lightweight check functions 
that detect errors and control their 
propagation in the computation by 
taking appropriate action. Moreover, 
the programmer is able to provide 
metrics—or even code—that allow 
end-result quality assessment, in 
addition to specifying quality, per-
formance, and energy constraints. 

Given that programmer pro-
ductivity is a primary concern, it’s 
important to devise methods that 
either automatically determine 
significance for different interme-
diate variables or at least assist the 
programmer in this characterization 
process. As one example, SCoRPiO 
is investigating automatic differ-
entiation (AD) in combination with 
interval analysis to compute the 
degree to which each task contrib-
utes to final program output quality. 
AD methods enable a fine-grained 
sensitivities analysis of numerical 

simulations, thus representing a 
preprocessing/profiling stage for 
an energy-aware compilation. 
Combinations of AD with interval 
arithmetic and/or stochastic meth-
ods, such as Monte Carlo, are also 
being considered.

Hardware architecture
At the base of the system, we’ve de-
signed and developed a many-core 
platform where cores and their 
respective cache memories can 
operate in a conventional, fully re-
liable mode, as well as in a lower 
power, but unreliable mode. The 
main goal is to limit conventional 
redundancy-based schemes’ power 
and performance overheads that try 
to protect every instruction equally 
against any fault. 

We’ve also developed arithme-
tic units and memories that can 
exploit many applications’ proba-
bilistic nature and relax reliability 
constraints for some processed and 
stored data to provide power-saving 
benefits. Further, we expect power 
gains through targeted, opportu-
nistic, and aggressive powering of 
some platform parts below nominal 
values.

In particular, each core’s mode of 
operation is a function of its voltage 
and frequency settings. For example, 
“unreliable” mode may correspond 
to ultra-low energy configurations 
in which supply voltage is set below 
nominal values, causing occasional 
or even systematic circuit timing 
errors. This platform can serve as a 
co-processing accelerator, coupled 
with a fully reliable (that is, master) 
CPU hosting an off-the-shelf operat-
ing system.

Even when operating in un-
reliable mode, a core still has to 
guarantee minimum reliability 
to support crucial functions such 
as flow control, crash detection, 
or even soft failure recognition 
along with concomitant OS feed-
back. In addition, unreliable CPUs 
should offer a special set of reliable 

Operationally, the difference between significant 
and non-significant tasks is that the latter can 
execute unreliably, and thus may be allowed to fail 
or produce wrong results. 
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instructions and hardened memory 
areas that the system software and/
or application code can use to imple-
ment critical operations, such as 
updating loop counters or perform-
ing pointer arithmetic.

We analyze cores and memories 
under scaled voltages and varia-
tions, and extract and integrate 
accurate fault and power models 
in a simulator. The goal is to de-
velop significance-based execution 
schemes at the software level.

System software
Aside from low-level drivers, all mat-
ters pertaining to actual application 
execution management on top of the 
many-core accelerator platform can 
be implemented as a runtime system 
that lives above the OS. A thin run-
time skin is also required on each 
accelerator core to support con-
trolled application code execution. 
The objective is typically to schedule 
an application’s tasks on available 
cores so as to optimize execution 
in terms of completion time and/or 
energy consumption. 

Significance-based computing 
introduces an additional aspect: al-
though significant tasks must be 
scheduled for execution on reli-
able cores, less significant tasks can 
be executed on unreliable cores, 
thereby allowing the platform, in 
part, to operate at a lower volt-
age, trading output quality and/
or performance for lower energy 
consumption. 

Tradeoffs are typically appli-
cation- and even input-specific. 
Thus, the runtime has to monitor 
application execution and gather 
information that can be used to 
make educated scheduling, memory 
management, and configuration de-
cisions. Of particular importance 
here is handling errors resulting 
from unreliable execution. The run-
time has to detect, assess the effect 
of, and even attempt to repair such 
errors—combining low-level hard-
ware support with higher-level 

metadata—and also check func-
tions, whether provided by the 
application, produced by the anal-
ysis tools, or obtained through a 
combination of both.

Overall, we expect the 
system we’re developing 
to be able to aggressively 

reduce its power footprint by 
opportunistically powering hard-
ware modules at below-nominal 
values. We see significance-based 
computing as laying a foundation 
not only for approaching the theo-
retical limits of energy reduction 
in CMOS technology, but also for 
accepting hardware faults in a con-
trolled manner.  In doing so—and in 
viewing  eventual reliability issues 
not as a problem but rather as an 
opportunity to rethink computation 
conceptually in novel ways—we 
believe that we can allow the semi-
conductor industry to progress 
beyond 22-nm nodes and move 
safely into the post-Moore era. 
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