
	82	 COMPUTER	 Published by the IEEE Computer Society	 0018-9162/14/$31.00 © 2014 IEEE

STANDARDSGREEN IT

Energy Efficiency
through Significance-
Based Computing
Dimitrios S. Nikolopoulos and Hans Vandierendonck,
Queen’s University of Belfast

Nikolaos Bellas, Christos D. Antonopoulos, and
Spyros Lalis, University of Thessaly

Georgios Karakonstantis and Andreas Burg, École
Polytechnique Fédérale de Lausanne

Uwe Naumann, RWTH Aachen University

An extension of approximate computing, significance-based computing
exploits applications’ inherent error resiliency and offers a new
structural paradigm that strategically relaxes full computational
precision to provide significant energy savings with minimal
performance degradation.

T he IT industry’s unprec-
edented growth in
recent decades—fueled
by aggressive shrinking

of transistor size and substan-
tial increases in energy-efficient,
high-performance devices—has
enabled promising new comput-
ing paradigms such as the Internet
of Things. But several engineering
issues threaten this trend. As hun-
dreds of cores are integrated within
a single chip, power consumption
will increase to such a degree that
soon more than half the transistors
in each chip will have to be pow-
ered off to avoid burnout. And as
process technology progresses to
lower geometries, circuits become
more prone to performance varia-

tions and so do not always meet the
desired specifications, resulting in
unexpected failures throughout the
device’s operation lifetime.

Consequently, to guarantee their
products’ fault-free operation, man-
ufacturers introduce redundancy
at various levels of design abstrac-
tion trying to detect and correct any
single failure. Unfortunately, such
measures lead to significant power
overhead, further increasing on-
chip power consumption. Even more
problematic, simply scaling supply
voltage to save power is often not
a viable option under these condi-
tions, because circuits become more
prone to faults at low voltages.

Overcoming the energy scal-
ing barrier is motivating designers

to seek innovative breakthroughs
to better deal with these power
consumption factors. One promis-
ing new paradigm is approximate
computing, which exploits the fault
tolerance inherent in many ap-
plication classes as a way to relax
traditional requirements for 100
percent computational precision.
For example, recent research has
shown that utilizing applications’ in-
herent error resiliency in domains
such as signal processing, multime-
dia operations, high-performance
computing, and data analytics can
achieve marked energy savings.

However, most current approxi-
mate computing techniques are
applied ad hoc and thus limited to
specific algorithms and software

r7gre.indd 82 6/25/14 5:37 PM

	 JULY 2014	 83

blocks. What’s needed, we believe,
is greater algorithmic rigor cou-
pled with a solid methodology that
can better characterize and exploit
application resiliency, targeting in-
creased power efficiency for all
future systems. Thus we propose
significance-based computing as a
more disciplined approach to the ap-
proximate computing model.

SIGNIFICANCE-BASED
COMPUTING
Not every algorithm part or execu-
tion phase plays an equal role in
determining the quality of service
(QoS) for users in most application
domains. Some control codes and
computations contribute higher
quality results than others, and so
they are more critical for ensuring
adequate system operation.

We call this characteristic “com-
putational significance,” and we
consider it a property that all system
layers should exploit efficiently and
in a disciplined manner, particularly
as designers tackle the so-called
energy wall and increasing reli-
ability issues arise in sub–28-nm
geometries.

The goal of significance-based
computing is to allow approximate
computation on top of unreli-
able components—always within
user-provided quality bounds—by
educated control of error occur-
rence and propagation throughout
the algorithm. The resulting
significance-based systems se-
lectively protect the execution of
significant computations while al-
lowing a controlled error amount
in less significant parts of the algo-
rithm, thus minimizing the energy
required to support the system, yet
still enabling it to produce useful
results.

Mathematically, in a given com-
putation, the significance of any
intermediate result/variable can be
correlated to
the degree to which its value ac-
tually affects the output, or, more

generally, a quality metric of the
output. Classical first-order and
potential higher-order derivative in-
formation can serve as indicators

for such sensitivity, and hence for
determining significance under cer-
tain problem-domain-dependent
constraints.

EXAMPLE
We can illustrate significance-based
computing’s potential viability using
a simple but important example
from the high-performance comput-
ing domain.

Iterative solvers repeatedly refine
the estimates used for solving a
system of equations until they reach
the required accuracy level. Soft
errors occurring in the solvers’ state
can be allowed to remain without
noticeable influence on the quality
of results. Alternatively, these errors’
impact can be mitigated by increas-
ing the number of iterations invoked
to reach convergence, which imposes
a cost. In the worst case, soft errors
may break convergence altogether.

 Fortunately, most soft errors that
materialize as bit flips in the solver’s
state don’t induce this extreme worst-
case scenario; thus, iterative solvers
are suitable candidates for execution
on inherently unreliable hardware.
Iterative solvers also have built-in
resilience, which can secure a satis-
factory result—again, sometimes at
the cost of additional iterations.

An iterative solver’s convergence
rate provides a metric of significance
for the individual iterations (in other
words, for the sensitivity to vari-
ables within each iteration). If, for
example, a method exhibits a loga-
rithmic convergence rate, then the
algorithm’s last few iterations are

far more significant for convergence
than the preceding ones, because
errors in early iterations can be cor-
rected by subsequent iterations.

This, in turn, dictates an execu-
tion strategy whereby we can allow
early iterations to be computed
imprecisely.

An energy-efficient approach to
imprecise iteration execution uses
processor cores and memories that
operate below their nominal volt-
age, thus risking timing errors but
achieving dramatic power savings.
The application and system software
can statically or adaptively control
the solution quality by assigning
high significance to the algorithm’s
late iterations, or by executing ad-
ditional iterations if necessary. On a
finer-grained scale, we can consider
the algorithm’s sensitivity to errors
in only designated parts of the
binary representation of each itera-
tion’s variables.

The weighted Jacobi method can
serve as a representative use case.
Jacobi iteratively solves the system
Ax = b for a diagonally dominant
matrix A. The algorithm iterates
until the convergence condition ∥Ax
− b∥ ≤ limit is satisfied, with con-
vergence guaranteed if A is strictly
diagonally dominant. We, therefore,
use convergence as a quality metric.

Our analysis of the code suggests
that, most commonly, the solver
can be executed on unreliable hard-
ware and tolerate the vast majority
of soft errors that manifest as single
bit flips. In this example, only errors
in the exponent field of the iteration
matrix A’s double-precision func-
tional programming (FP) elements
would violate the convergence
criterion; errors in the mantissa

The goal of significance-based computing is to
allow approximate computation on top of unreliable
components—always within user-provided quality
bounds.

r7gre.indd 83 6/25/14 5:37 PM

	84	 COMPUTER

GREEN IT

(especially for early iterations) can
be fixed by later iterations.

We experimented with re-
placing one reliable x86 core
operating at nominal voltage
with 16 equivalent—in terms of

general microarchitecture and
industry standard architecture—
unreliable x86 cores operating
at near-threshold voltage and
commensurately low frequency.
We were able to achieve energy
savings up to 67 percent from
significance-based execution, with-
out performance degradation.

Though encouraging, such
an exercise would not be viable
from a chip-area perspective.
Heterogeneous architectures that
blend a few reliable cores with many
cores that can operate in either
reliable or unreliable regions would
provide a more viable tradeoff in
terms of high performance, low
power, and resilience.

A SIGNIFICANCE-BASED
HARDWARE AND
SOFTWARE STACK
Currently, we are attempting to
realize such heterogeneous architec-
tures, along with a proper software
stack that guides system operation,
according to the significance-based
computing paradigm principles
being pursued under the project
rubric Significance-Based Computing
for Reliability and Power Optimiza-
tion (SCoRPiO; www.scorpio-project.
eu). Here we briefly present the main
elements of our approach.

Application
development support
Starting from the higher layers
of abstraction, the programmer

should be able to determine and
express significance values for dif-
ferent code parts in an easy and
intuitive way. At the same time, it
is important to exploit the under-
lying hardware platform’s parallel

execution capability. To this end, we
follow a directives-based approach,
whereby parts of the program are
explicitly marked as separate tasks
with differing significance values,
depending on how strongly the
intermediate results these tasks
compute affect the final computa-
tional output.

Operationally, the difference
between significant and non-
significant tasks is that the latter
can execute unreliably, and thus
may be allowed to fail or produce
wrong results. To handle such side
effects, the programmer can pro-
vide lightweight check functions
that detect errors and control their
propagation in the computation by
taking appropriate action. Moreover,
the programmer is able to provide
metrics—or even code—that allow
end-result quality assessment, in
addition to specifying quality, per-
formance, and energy constraints.

Given that programmer pro-
ductivity is a primary concern, it’s
important to devise methods that
either automatically determine
significance for different interme-
diate variables or at least assist the
programmer in this characterization
process. As one example, SCoRPiO
is investigating automatic differ-
entiation (AD) in combination with
interval analysis to compute the
degree to which each task contrib-
utes to final program output quality.
AD methods enable a fine-grained
sensitivities analysis of numerical

simulations, thus representing a
preprocessing/profiling stage for
an energy-aware compilation.
Combinations of AD with interval
arithmetic and/or stochastic meth-
ods, such as Monte Carlo, are also
being considered.

Hardware architecture
At the base of the system, we’ve de-
signed and developed a many-core
platform where cores and their
respective cache memories can
operate in a conventional, fully re-
liable mode, as well as in a lower
power, but unreliable mode. The
main goal is to limit conventional
redundancy-based schemes’ power
and performance overheads that try
to protect every instruction equally
against any fault.

We’ve also developed arithme-
tic units and memories that can
exploit many applications’ proba-
bilistic nature and relax reliability
constraints for some processed and
stored data to provide power-saving
benefits. Further, we expect power
gains through targeted, opportu-
nistic, and aggressive powering of
some platform parts below nominal
values.

In particular, each core’s mode of
operation is a function of its voltage
and frequency settings. For example,
“unreliable” mode may correspond
to ultra-low energy configurations
in which supply voltage is set below
nominal values, causing occasional
or even systematic circuit timing
errors. This platform can serve as a
co-processing accelerator, coupled
with a fully reliable (that is, master)
CPU hosting an off-the-shelf operat-
ing system.

Even when operating in un-
reliable mode, a core still has to
guarantee minimum reliability
to support crucial functions such
as flow control, crash detection,
or even soft failure recognition
along with concomitant OS feed-
back. In addition, unreliable CPUs
should offer a special set of reliable

Operationally, the difference between significant
and non-significant tasks is that the latter can
execute unreliably, and thus may be allowed to fail
or produce wrong results.

r7gre.indd 84 6/25/14 5:37 PM

	 JULY 2014	 85

instructions and hardened memory
areas that the system software and/
or application code can use to imple-
ment critical operations, such as
updating loop counters or perform-
ing pointer arithmetic.

We analyze cores and memories
under scaled voltages and varia-
tions, and extract and integrate
accurate fault and power models
in a simulator. The goal is to de-
velop significance-based execution
schemes at the software level.

System software
Aside from low-level drivers, all mat-
ters pertaining to actual application
execution management on top of the
many-core accelerator platform can
be implemented as a runtime system
that lives above the OS. A thin run-
time skin is also required on each
accelerator core to support con-
trolled application code execution.
The objective is typically to schedule
an application’s tasks on available
cores so as to optimize execution
in terms of completion time and/or
energy consumption.

Significance-based computing
introduces an additional aspect: al-
though significant tasks must be
scheduled for execution on reli-
able cores, less significant tasks can
be executed on unreliable cores,
thereby allowing the platform, in
part, to operate at a lower volt-
age, trading output quality and/
or performance for lower energy
consumption.

Tradeoffs are typically appli-
cation- and even input-specific.
Thus, the runtime has to monitor
application execution and gather
information that can be used to
make educated scheduling, memory
management, and configuration de-
cisions. Of particular importance
here is handling errors resulting
from unreliable execution. The run-
time has to detect, assess the effect
of, and even attempt to repair such
errors—combining low-level hard-
ware support with higher-level

metadata—and also check func-
tions, whether provided by the
application, produced by the anal-
ysis tools, or obtained through a
combination of both.

Overall, we expect the
system we’re developing
to be able to aggressively

reduce its power footprint by
opportunistically powering hard-
ware modules at below-nominal
values. We see significance-based
computing as laying a foundation
not only for approaching the theo-
retical limits of energy reduction
in CMOS technology, but also for
accepting hardware faults in a con-
trolled manner. In doing so—and in
viewing eventual reliability issues
not as a problem but rather as an
opportunity to rethink computation
conceptually in novel ways—we
believe that we can allow the semi-
conductor industry to progress
beyond 22-nm nodes and move
safely into the post-Moore era.

Acknowledgments
This research has received funding from

the European Commission’s Seventh

Framework Programme (FP7/2007-2013)

under grant agreement FP7-323872 (Proj-

ect “SCoRPiO”).

Dimitrios S. Nikolopoulos is a pro-
fessor and chair of high-performance
and distributed computing at the
School of Electronics, Electrical En-
gineering, and Computer Science,
Queen’s University of Belfast. Contact
him at d.nikolopoulos@qub.ac.uk.

Hans Vandierendonck is an assistant
professor of high-performance and
distributed computing at the School
of Electronics, Electrical Engineering,
and Computer Science, Queen’s Uni-
versity of Belfast. Contact him at h.
vandierendonck@qub.ac.uk.

Nikolaos Bellas is an associate
professor in the Department of Elec-
trical and Computer Engineering at
the University of Thessaly and a re-
search associate at CERTH. Contact
him at nbellas@inf.uth.gr.

Christos D. Antonopoulos is an as-
sistant professor in the Department
of Electrical and Computer Engineer-
ing at the University of Thessaly and
a research associate at CERTH. Con-
tact him at cda@inf.uth.gr.

Spyros Lalis is an associate profes-
sor in the Department of Electrical
and Computer Engineering at the
University of Thessaly and a re-
search associate at CERTH. Contact
him at lalis@inf.uth.gr.

Georgios Karakonstantis is a
research associate in the Telecom-
munications Circuits Lab at the
École Polytechnique Fédérale de
Lausanne. Contact him at georgios.
karakonstantis@epfl.ch.

Andreas Burg is a professor and di-
rector of the Telecommunications
Circuits Lab at the École Polytech-
nique Fédérale de Lausanne. Contact
him at andreas.burg@epfl.ch.

Uwe Naumann is a professor of
computer science at RWTH Aachen
University, Germany, and member
of the Numerical Algorithms Group,
Oxford, UK. Contact him at nau-
mann@stce.rwth-aachen.de.

	 Selected CS articles and
	 columns are available for free at
http://ComputingNow.computer.org.

Editor: Kirk Cameron, Department of
Computer Science, Virginia Tech;
greenit@computer.org

r7gre.indd 85 6/25/14 5:37 PM

