
 1

1. Introduction
In the last few years, we have seen the emergence of a number

of video standards for applications spanning from wireless low-
rate, to high definition broadcast video. These systems have been
implemented with a variety of single core or multi-core
technologies from general purpose processors (GPPs) to fixed
ASICs.

This paper describes the porting of the AVS (Audio Video
Standard) [1] video decoder to Tensilica’s Diamond 388VDO
dual core [2], a heterogeneous dual core processor which consists
of two cores with video specific instruction extensions. The AVS
was drafted by the A/V work group of China to replace older and
royalty-burdened standards such as MPEG-2 and H.264 mainly in
consumer applications. We start from an open source
implementation of the AVS decoder, OpenAVS [3], which targets
a general processor platform (GPP), and we gradually transform
the code to enable a dual core implementation on the Diamond
388VDO core. Our aim is to achieve real time, 25 fps, progressive
D1 resolution (720x576) AVS video decoding.

The Diamond family of processors includes preconfigured
versions of the 32-bit Xtensa configurable architecture optimized
for video encoding and decoding. Diamond uses the capability of
the Xtensa architecture to configure a processor core by adding
extra application-specific instructions. Its enhanced instruction set
supports all popular video codecs such as MPEG-4, H.264, VC-1
(all in Main Profile) for performance up to D1 resolution, i.e.
720x576x25 (PAL) or 720x480x30 (NTSC) pixels/sec. Our
contribution is to use the Diamond toolset (IDE, cross-compiler,
functional and cycle-accurate simulators, debugger) to port a new
video standard to the architecture based on ISA extensions
tailored for older video standards.

As shown in Fig. 1, Diamond 388VDO is a heterogeneous dual
core processor which consists of two Xtensa cores with video
specific instruction extensions. The two Xtensa cores in 388VDO
are referred to as Stream processor and Pixel processor. The main
task of the Stream processor is to parse and decode the video
bitstream. The Pixel processor performs most of the heavy duty
computations of video decoding using SIMD instructions (called
Tensilica Extension Instructions, TIEs). It is used to accelerate
motion compensation (including quarter pixel interpolation and
reconstruction), intra prediction, inverse quantization
(optionally), inverse transform and the deblocking filter. Both
these processors have tightly coupled instruction and data SRAM
memories that are used to reduce memory access latency and
increase bandwidth.

Data transfers between the local SRAMs of the two cores and
between the SRAMs and main memory is accomplished with a
multichannel DMA engine which runs asynchronously to the
execution cores. Any of the two cores can set up and initiate a 2D
DMA transaction by describing, among other things, the size of
the memory access patterns, source and destination addresses, and
the priority schemes between channels.

The challenge of mapping a new video decoder in a multi-core
engine like the 388VDO is to detect and extract parallelism at all
levels of granularity, especially at the higher levels.

2. AVS Video Standard Optimization
To give an indication of the relative complexity of the various

modules, we profiled the OpenAVS code in a baseline Xtensa
RISC processor with perfect (zero-wait) memory using an AVS
input bitstream compressed at approximately 4 Mbps. Fig. 2
shows that Motion Compensation (MC) contributed almost 2/3 of
the total execution time, whereas the second most computationally
complex function is Deblocking filter (DB) at only 12.9%.
According to the profiling, the baseline processor will have to be
clocked at 1.73 GHz to meet a 25 frames/sec performance
requirement under the perfect memory scenario.

Our optimization strategy focuses on the most expensive
functions of the AVS decoder such as motion compensation and
deblocking filter. We describe a sequence of three optimizations
steps that improve the performance of the video decoder from
1.73 GHz down to 359 MHz (shown in Table I).

Software Optimizations
The first step is to re-write parts of the code to improve the

memory locality of the data accesses and minimize the need to
access data from the main memory.

For example, the following OpenAVS code includes two main
loops to process a frame as shown below:
 for (MbIndex = 0; MbIndex < no_MBs; < MbIndex++) {

 ParseOneMacroblock; // Parsing, VLD

 McIdctRecOneMacroblock; // Inverse transform, MC

 }

 for (MbIndex = 0; MbIndex < no_MBs; < MbIndex++) {

 DeblockOneMacroblock // Deblocking

 }

The problem with this reference OpenAVS code is that using
two separate loops causes the whole frame to spill to the main
memory: the output frame of the MC has to be stored to the main
memory, and then retrieved back by the Deblock filter.

We introduce a data structure that stores the three pixel rows
above and the three pixel columns on the left of the macroblock
MB(c,r) after MC. These 720x3x2 + 16x3x2 = 4416 bytes are the
only pixel data needed for the Deblocking filter of MB(c,r). By
using these pixel data as inputs to the Deblocking filter, we can
fuse the two loops, and avoid spilling a whole frame to the
memory. This optimization is similar to loop tiling which is
frequently used by optimizing compilers to improve spatial
locality in the cache hierarchy of a processor.

SIMD level parallelism

Motion Compensation
Motion Compensation is the process of compensating for the

movement of rectangular blocks of pixels between frames. The
precision of motion vectors is quarter pixel for luma components

Mapping the AVS Video Decoder on a Heterogeneous Dual-Core SIMD
Processor

Nikolaos Bellas, Ioannis Katsavounidis, Maria Koziri, Dimitris Zacharis
University of Thessaly

Volos, Greece
nbellas@uth.gr

 2

and 1/8 pixel for chroma. As luma and chroma samples at sub-
sample positions do not exist, it is necessary to generate them
from nearby coded samples. Most of the complexity of the MC
module, approximately 40% of the total execution time, is due to
the quarter pixel interpolation.

In AVS, the predictive value at half sample position can be
obtained with horizontal or vertical interpolation using the four-
tapping filter F1 (-1, 5, 5, -1) and the predictive value at quarter
sample position can be obtained with interpolation using the four-
tapping filter F2 (1, 7, 7, 1). The interpolation at quarter pixels
requires integer and half sample values (Fig. 3). For example, the
quarter pixel value a is given by: ''7'7' EbDeea +++= and

)7)64'((>>+= aclipa .

One of the main challenges to SIMD vectorization is that
motion compensation may require memory loads of multiple bytes
from memory positions which are not vector aligned. The
Diamond 388VDO pixel processor supports a large number of
unaligned load instructions that can be used for the
implementation of motion compensation with the usage of TIEs.
For example, the unaligned load instruction xvd_lda_16x8 returns
16 bytes, i.e. an entire macroblock row, and by using the
appropriate SIMD TIE instructions, one can calculate the vertical
filter for any block size.

These SIMD optimizations provide a 4.8x speed up to the
interpolation kernel, the function that iterates in an 8x8 pixel
block to compute the interpolated pixels. The effect to the total
execution time is 1.8x speed up compared to the version with
Variable Length Decoding (VLD) optimizations (Table I).

Deblocking filter

The deblocking filter is a low pass filter across block
boundaries applied as a last step in the decoder just before storing
the reconstructed block of pixels back in the main memory. It is
used to smooth block edges to improve the appearance of the
reconstructed frame in image areas with low spatial frequency.
Filtering is applied in two steps; first along horizontal edges and
then across vertical edges of each 8x8 block. Fig. 4 shows that
only the top rows of the current 8x8 luma block B(c, r) and the
bottom rows of the luma block B(c, r-1) are affected from the
deblocking filter, depending on the value of the boundary strength
parameter Bs. It can take the value 0 (no filtering), 1 (medium
filtering) and 2 (heavy filtering).

A data parallel implementation of the Deblocking filter uses the
pixel processor TIEs to implicitly unroll the loop and vectorize
the computations of Fig. 5. The pixels p0, p1, p2, q0, q1, q2 of
Fig. 4 become 8 or 16-pixel vectors P0, P1, P2, Q0, Q1, Q2. The
vectorization has the potential to speed up execution time of the
inner loop by a factor of 8 or 16 provided that the vectors are 8 or
16 bytes aligned, respectively.

In the vectorized version of the code, the parts of the code with
conditional execution semantics are predicated, so that an
instruction has effect only if the predicate is true. The average
speed up of all the Deblocking filter kernels is 3.35. The
collective effect of SIMD parallelization improves total execution
time by an additional 2.26x, for a total speed up of 2.67 compared
to the initial OpenAVS code. As before, we assume a perfect
memory system with zero-wait cycles.

Task level parallelism

A heterogeneous dual core processor allows simultaneous
execution of different parts of the AVS decoder for a single or
even for multiple macroblocks. There are two major steps to port
the AVS decoder to a multi-core system. First, the code and the
related data structures should be partitioned and allocated to
corresponding memory spaces. Second, a communication
mechanism must be set up to transfer data between the two cores.

Functions are dedicated to one core only, and not split across
different cores. Each executable is placed in the local SRAM of
the corresponding processor. It is important to achieve a balanced
load partitioning between the two cores in order to achieve the
theoretical maximum speed up of 2. In our case, the stream
processor to pixel processor load ratio was 45%-55%.

The multi-channel DMA is used in three different cases:
• to transfer the luma and chroma coefficient blocks together

with other control parameters for each macroblock from
the local SRAM of the stream processor to the local SRAM
of the pixel processor,

• to transfer pixel blocks of previous frames from main
memory to the local SRAM of the pixel processor. These
blocks are used for interpolation and motion compensation
in the pixel processor.

• To transfer the final pixel blocks from the local SRAM of the
pixel processor back to the main memory – both in order to
be displayed and in order to be used for motion
compensation during decoding of subsequent frames.

The DMA engine interleaves data transfer and computation to
increase system performance. The non-blocking functionality of
the DMA requires that the stream and pixel processors
synchronize their execution at specific points. The DMA unit
decouples the execution of the two cores which can schedule their
data transfer and data receipt at their own pace, without executing
at lock step to each other.

To increase the degree of decoupling, multiple buffering is used
to allow the two cores to work on macroblock data that are further
away. Our current implementation uses a two MB overlap
between the two cores, which means that the stream processor is
processing MBn+2, whereas the pixel processor is still at MBn.
Deeper buffering schemes require a substantial increase of
internal SRAM requirements.

The dual core mapping resulted in an additional performance
improvement of 1.8x, out of the ideal 2x, due to the overhead
associated with the DMA set up, and the load imbalance. The
total speed up of almost 5x compared to a software x86-based
implementation, enables real-time, 25fps decoding of D1 frames.

3. References
[1] Jose Lau, “MPEG-4, AVS deliver better video compression more

flexible format,” Electronic Times Asia, June 1st, 2006.
[2] “Diamond Standard Core Processor Architecture,” Tensilica White

Paper, July 2007.
[3] http://sourceforge.net/projects/openavs

 [4] “VDO Instruction Set Architecture (ISA) Extensions Reference
Manual,” July 2007

 3

Figure 1: Diamond 388VDOVideo Engine Block Diagram

AVS Decoder Profiling Motion Compensation Profiling

Motion Comp

Intra
Prediction

Parsing &
Entropy Coding

Deblocking

Inverse Transform &
Inverse Quant

Other

Luma,
B picture

Chroma,
B picture Luma,

P picture

Chroma,
P picture

Reconstruct
Motion Comp

64.4%

4.5%
8.6%

12.9%

6.1%

3.5%

39.8%

28.9%
13.5%

9.3%

8.5%

Figure 2: Execution profiling of the software OpenAVS decoder (a)
Motion Compensation amounts to 64.4% of the total execution time
(b) Details on the Motion Compensation profiling

Figure 3: Interpolation of Luma components

Figure 4: Adjacent pixels for the horizontal deblock filter

 4

Figure 5: The AVS Luma Deblocking Block Diagram.

Table I: Summary performance results for the Diamond
388VDO acceleration. The Equivalent Fclk shows the clock
frequency of the Diamond core to decode 25fps at 720x576 D1
resolution. All the rows except for the last one refer to a single
core engine.

Optimization Equivalent
Fclk

(MHz)

Speedup
factor

Baseline OpenAVS code 1730 1
Software Optimizations 1461 1.18
SIMD parallelization (TIEs)

1. Parsing and VLD only
2. (1) plus MC, Intra

Prediction, inverse Transform
3. (2) plus Deblocking

1354

748

 649

1.28

2.31
2.67

Dual Core 359 4.8

