
 1

1. Introduction 
In the last few years, we have seen the emergence of a number 

of video standards for applications spanning from wireless low-
rate, to high definition broadcast video. These systems have been 
implemented with a variety of single core or multi-core 
technologies from general purpose processors (GPPs) to fixed 
ASICs. 

This paper describes the porting of the AVS (Audio Video 
Standard) [1] video decoder to Tensilica’s Diamond 388VDO 
dual core [2], a heterogeneous dual core processor which consists 
of two cores with video specific instruction extensions. The AVS 
was drafted by the A/V work group of China to replace older and 
royalty-burdened standards such as MPEG-2 and H.264 mainly in 
consumer applications. We start from an open source 
implementation of the AVS decoder, OpenAVS [3], which targets 
a general processor platform (GPP), and we gradually transform 
the code to enable a dual core implementation on the Diamond 
388VDO core. Our aim is to achieve real time, 25 fps, progressive 
D1 resolution (720x576) AVS video decoding.  

The Diamond family of processors includes preconfigured 
versions of the 32-bit Xtensa configurable architecture optimized 
for video encoding and decoding. Diamond uses the capability of 
the Xtensa architecture to configure a processor core by adding 
extra application-specific instructions. Its enhanced instruction set 
supports all popular video codecs such as MPEG-4, H.264, VC-1 
(all in Main Profile) for performance up to D1 resolution, i.e. 
720x576x25 (PAL) or 720x480x30 (NTSC) pixels/sec. Our 
contribution is to use the Diamond toolset (IDE, cross-compiler, 
functional and cycle-accurate simulators, debugger) to port a new 
video standard to the architecture based on ISA extensions 
tailored for older video standards.  

As shown in Fig. 1, Diamond 388VDO is a heterogeneous dual 
core processor which consists of two Xtensa cores with video 
specific instruction extensions. The two Xtensa cores in 388VDO 
are referred to as Stream processor and Pixel processor. The main 
task of the Stream processor is to parse and decode the video 
bitstream. The Pixel processor performs most of the heavy duty 
computations of video decoding using SIMD instructions (called 
Tensilica Extension Instructions, TIEs). It is used to accelerate 
motion compensation (including quarter pixel interpolation and 
reconstruction), intra prediction, inverse quantization 
(optionally), inverse transform and the deblocking filter. Both 
these processors have tightly coupled instruction and data SRAM 
memories that are used to reduce memory access latency and 
increase bandwidth.  

Data transfers between the local SRAMs of the two cores and 
between the SRAMs and main memory is accomplished with a 
multichannel DMA engine which runs asynchronously to the 
execution cores. Any of the two cores can set up and initiate a 2D 
DMA transaction by describing, among other things, the size of 
the memory access patterns, source and destination addresses, and 
the priority schemes between channels.  

The challenge of mapping a new video decoder in a multi-core 
engine like the 388VDO is to detect and extract parallelism at all 
levels of granularity, especially at the higher levels.  

2. AVS Video Standard Optimization 
To give an indication of the relative complexity of the various 

modules, we profiled the OpenAVS code in a baseline Xtensa 
RISC processor with perfect (zero-wait) memory using an AVS 
input bitstream compressed at approximately 4 Mbps. Fig. 2 
shows that Motion Compensation (MC) contributed almost 2/3 of 
the total execution time, whereas the second most computationally 
complex function is Deblocking filter (DB) at only 12.9%. 
According to the profiling, the baseline processor will have to be 
clocked at 1.73 GHz to meet a 25 frames/sec performance 
requirement under the perfect memory scenario.  

Our optimization strategy focuses on the most expensive 
functions of the AVS decoder such as motion compensation and 
deblocking filter. We describe a sequence of three optimizations 
steps that improve the performance of the video decoder from 
1.73 GHz down to 359 MHz (shown in Table I).  
 

Software Optimizations 
The first step is to re-write parts of the code to improve the 

memory locality of the data accesses and minimize the need to 
access data from the main memory.  

For example, the following OpenAVS code includes two main 
loops to process a frame as shown below: 
 for (MbIndex = 0; MbIndex < no_MBs; < MbIndex++) { 

   ParseOneMacroblock;  // Parsing, VLD 

   McIdctRecOneMacroblock; // Inverse transform, MC 

 } 

 for (MbIndex = 0; MbIndex < no_MBs; < MbIndex++) { 

   DeblockOneMacroblock // Deblocking 

 } 

The problem with this reference OpenAVS code is that using 
two separate loops causes the whole frame to spill to the main 
memory: the output frame of the MC has to be stored to the main 
memory, and then retrieved back by the Deblock filter. 

We introduce a data structure that stores the three pixel rows 
above and the three pixel columns on the left of the macroblock 
MB(c,r) after MC. These 720x3x2 + 16x3x2 = 4416 bytes are the 
only pixel data needed for the Deblocking filter of MB(c,r). By 
using these pixel data as inputs to the Deblocking filter, we can 
fuse the two loops, and avoid spilling a whole frame to the 
memory. This optimization is similar to loop tiling which is 
frequently used by optimizing compilers to improve spatial 
locality in the cache hierarchy of a processor. 

 
SIMD level parallelism 

Motion Compensation  
Motion Compensation is the process of compensating for the 

movement of rectangular blocks of pixels between frames. The 
precision of motion vectors is quarter pixel for luma components 
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and 1/8 pixel for chroma. As luma and chroma samples at sub-
sample positions do not exist, it is necessary to generate them 
from nearby coded samples. Most of the complexity of the MC 
module, approximately 40% of the total execution time, is due to 
the quarter pixel interpolation.  

In AVS, the predictive value at half sample position can be 
obtained with horizontal or vertical interpolation using the four- 
tapping filter F1 (-1, 5, 5, -1) and the predictive value at quarter 
sample position can be obtained with interpolation using the four-
tapping filter F2 (1, 7, 7, 1). The interpolation at quarter pixels 
requires integer and half sample values (Fig. 3). For example, the 
quarter pixel value a is given by: ''7'7' EbDeea +++= and 

)7)64'(( >>+= aclipa . 

One of the main challenges to SIMD vectorization is that 
motion compensation may require memory loads of multiple bytes 
from memory positions which are not vector aligned. The 
Diamond 388VDO pixel processor supports a large number of 
unaligned load instructions that can be used for the 
implementation of motion compensation with the usage of TIEs. 
For example, the unaligned load instruction xvd_lda_16x8 returns 
16 bytes, i.e. an entire macroblock row, and by using the 
appropriate SIMD TIE instructions, one can calculate the vertical 
filter for any block size.  

These SIMD optimizations provide a 4.8x speed up to the 
interpolation kernel, the function that iterates in an 8x8 pixel 
block to compute the interpolated pixels. The effect to the total 
execution time is 1.8x speed up compared to the version with 
Variable Length Decoding (VLD) optimizations (Table I). 

 
Deblocking filter 

The deblocking filter is a low pass filter across block 
boundaries applied as a last step in the decoder just before storing 
the reconstructed block of pixels back in the main memory. It is 
used to smooth block edges to improve the appearance of the 
reconstructed frame in image areas with low spatial frequency. 
Filtering is applied in two steps; first along horizontal edges and 
then across vertical edges of each 8x8 block. Fig. 4 shows that 
only the top rows of the current 8x8 luma block B(c, r) and the 
bottom rows of the luma block B(c, r-1) are affected from the 
deblocking filter, depending on the value of the boundary strength 
parameter Bs. It can take the value 0 (no filtering), 1 (medium 
filtering) and 2 (heavy filtering).  

A data parallel implementation of the Deblocking filter uses the 
pixel processor TIEs to implicitly unroll the loop and vectorize 
the computations of Fig. 5. The pixels p0, p1, p2, q0, q1, q2 of 
Fig. 4 become 8 or 16-pixel vectors P0, P1, P2, Q0, Q1, Q2. The 
vectorization has the potential to speed up execution time of the 
inner loop by a factor of 8 or 16 provided that the vectors are 8 or 
16 bytes aligned, respectively. 

In the vectorized version of the code, the parts of the code with 
conditional execution semantics are predicated, so that an 
instruction has effect only if the predicate is true. The average 
speed up of all the Deblocking filter kernels is 3.35. The 
collective effect of SIMD parallelization improves total execution 
time by an additional 2.26x, for a total speed up of 2.67 compared 
to the initial OpenAVS code. As before, we assume a perfect 
memory system with zero-wait cycles. 

 
Task level parallelism 

A heterogeneous dual core processor allows simultaneous 
execution of different parts of the AVS decoder for a single or 
even for multiple macroblocks. There are two major steps to port 
the AVS decoder to a multi-core system. First, the code and the 
related data structures should be partitioned and allocated to 
corresponding memory spaces. Second, a communication 
mechanism must be set up to transfer data between the two cores. 

Functions are dedicated to one core only, and not split across 
different cores. Each executable is placed in the local SRAM of 
the corresponding processor. It is important to achieve a balanced 
load partitioning between the two cores in order to achieve the 
theoretical maximum speed up of 2. In our case, the stream 
processor to pixel processor load ratio was 45%-55%.  

The multi-channel DMA is used in three different cases: 
• to transfer the luma and chroma coefficient blocks together 

with other control parameters for each macroblock from 
the local SRAM of the stream processor to the local SRAM 
of the pixel processor, 

• to transfer pixel blocks of previous frames from main 
memory to the local SRAM of the pixel processor. These 
blocks are used for interpolation and motion compensation 
in the pixel processor. 

• To transfer the final pixel blocks from the local SRAM of the 
pixel processor back to the main memory – both in order to 
be displayed and in order to be used for motion 
compensation during decoding of subsequent frames. 

The DMA engine interleaves data transfer and computation to 
increase system performance. The non-blocking functionality of 
the DMA requires that the stream and pixel processors 
synchronize their execution at specific points. The DMA unit 
decouples the execution of the two cores which can schedule their 
data transfer and data receipt at their own pace, without executing 
at lock step to each other.  

To increase the degree of decoupling, multiple buffering is used 
to allow the two cores to work on macroblock data that are further 
away. Our current implementation uses a two MB overlap 
between the two cores, which means that the stream processor is 
processing MBn+2, whereas the pixel processor is still at MBn. 
Deeper buffering schemes require a substantial increase of 
internal SRAM requirements.  

The dual core mapping resulted in an additional performance 
improvement of 1.8x, out of the ideal 2x, due to the overhead 
associated with the DMA set up, and the load imbalance. The 
total speed up of almost 5x compared to a software x86-based 
implementation, enables real-time, 25fps decoding of D1 frames. 
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Figure 1: Diamond 388VDOVideo Engine Block Diagram 
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Figure 2: Execution profiling of the software OpenAVS decoder (a) 
Motion Compensation amounts to 64.4% of the total execution time 
(b) Details on the Motion Compensation profiling 

 
 
 

 

 

 

Figure 3: Interpolation of Luma components 

 

Figure 4: Adjacent pixels for the horizontal deblock filter 
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Figure 5: The AVS Luma Deblocking Block Diagram. 

 
 

 
 

 
 
 
 
 
 

Table I: Summary performance results for the Diamond 
388VDO acceleration. The Equivalent Fclk shows the clock 
frequency of the Diamond core to decode 25fps at 720x576 D1 
resolution. All the rows except for the last one refer to a single 
core engine.  

Optimization Equivalent 
Fclk 

(MHz) 

Speedup 
factor 

Baseline OpenAVS code 1730 1 
Software Optimizations  1461 1.18 
SIMD parallelization (TIEs) 

1. Parsing and VLD only 
2.  (1) plus MC, Intra 

Prediction, inverse Transform 
3.  (2) plus Deblocking 

 
1354 

 
748 

  649 

 
1.28 

 
2.31 
2.67 

Dual Core  359 4.8 


