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ABSTRACT 

   In this paper, we propose a design paradigm for energy efficient 

and variation-aware operation of next-generation multicore 

heterogeneous platforms. The main idea behind the proposed 

approach lies on the observation that not all operations are equally 

important in shaping the output quality of various applications and 

of the overall system. Based on such an observation, we enable all 

levels of the software design stack, including the programming 

model, compiler, operating system (OS) and run-time system to 

identify the critical tasks and ensure correct operation of such tasks 

by assigning them to dynamically adjusted reliable cores. 

Specifically, based on error rates and operating conditions 

identified by a sense-and-adapt (SeA) unit, OS selects and sets the 

right mode of operation of the overall system. The run-time system 

identifies the critical/less-critical tasks based on special directives 

and schedules them to the appropriate cores that are dynamically 

adjusted for highly-accurate/approximate operation by tuning their 

voltage/frequency. Cores that execute less significant operations 

can operate at voltages less than what is required for correct 

operation and consume less power, if required, since such tasks do 

not need to be always exact as opposed to the critical ones. Such 

scheme can lead to energy efficient and reliable operation, while 

reducing the design cost and overheads of conventional 

circuit/micro-architecture level techniques. 
 
 

Categories, Subject Descriptors – C.4 [Performance of Systems]: 

Design Studies, Reliability 
 

General Terms – Algorithms, Design, Reliability 
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1. INTRODUCTION 

  As transistors are getting smaller, spatial and temporal variations can 

have an unpredictable impact on gate delay and consequently lead to 

delay failures threatening the functionality and operational 

reliability of next generation systems [1]. Conventional wisdom for 

error-free operation dictates designing with margins (up-scaling 

voltage or clock) and adding extra hardware for detection and 

correction of any error [2]. However, such techniques come at high 

design and fabrication costs since they require major architecture 

changes and increased power, limiting the exploitation of energy 

and performance benefits of technology scaling. In addition, 

techniques such as voltage scaling [3] that can effectively reduce 

power consumption aggregate the random variations, and thus 

cannot be applied abruptly. Therefore, in order to ensure correct 

operation, while staying under the power and performance 

envelopes, new design paradigms are required that can efficiently 

tackle any error induced by variations or voltage scaling. 

   In this paper, we depart from conventional techniques and propose a 

software level approach for coping with variations and ensuring energy 

efficient operation. The main novelty of our approach is the synergy 

between all levels of software stack that are able to identify, schedule 

and execute the tasks that are necessary for obtaining acceptable 

quality under the given operating conditions. We classify tasks 

according to degrees of criticality, spanning from operation critical 

control tasks that need to execute reliably (such as OS functions), to 

non-critical tasks that do not contribute substantially to the output 

quality. Such classification allow us to reduce the requirement of exact 

computation of less-critical tasks and reduce power in case that best 

quality is not achievable or required by the user by mapping them to 

less-reliable cores that run at low voltage.  

2. VARIATION AWARE SOFTWARE STACK 

  The proposed scheme is depicted in Fig. 1. Significant 

computations of an application are clustered in structures by using 

directives (#pragmas) at the programming level. By considering 

such pragmas, the compiler analyzes the data/control flow graph of 

the application and performs optimization that benefits the critical 

tasks. Run-time system is then responsible for mapping each task 

to different cores depending on their significance and the mode of 

operation set by the OS. Note that the mode of operation is set by 

OS dynamically based on a list of policies, the degree of spatial 

and temporal variations identified by the SeA unit and the 

quality/performance/energy requirements. In addition, OS monitors 

the progress of the application checking control points, identifying 

stale pointers and estimating error rates. In case that something 

goes wrong, OS intervenes and replays at least the critical tasks.  

 3. SOFTWARE-HARDWARE SYNERGY 

   Apart from software level support, robust operation is also 

assisted by tuning parameters at the hardware level. Specifically, 

based on the selected operational mode, and the criticality of 

scheduled tasks, SeA unit adjusts the voltage and frequency of 
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Figure 1: Proposed Design Approach 
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each core (if needed reliable circuit schemes are activated [2]) to 

meet the required reliability, energy, performance and quality 

requirements. Computationally significant tasks and OS operations 

are mapped to cores that operate under higher voltage and thus are 

reliable, as opposed to the less-significant tasks that are mapped to 

approximate cores running at lower voltage, thus consuming lower 

power. For instance, as shown in Fig. 1, the core that is scheduled 

to execute task of significance 1 is running at a lower Vdd1 < Vdd2 

than the core executing the task of higher significance equal to 2. 

Note that voltage values Vdd1 and Vdd2 are typically lower than the 

nominal voltage required for correct execution, thus leading to 

potential timing violations. However, such violations affect only 

the less-critical tasks. Therefore, our scheme allows the reduction 

of power, if needed, with minor quality reduction (approximate 

computation) since only the less critical tasks can get affected by 

potential errors induced by voltage scaling/variations. Note that 

some parts of the hardware that are responsible for executing 

critical OS and control tasks run always at a ‘safe’ mode, utilizing 

also some circuit techniques [2]. Overall, the proposed approach 

departs from existing works on approximate and variation-aware 

computing [2,3,4,5] that mainly target hardware level 

modifications rather than software level solutions. The proposed 

scheme provides a generic variation-aware solution, requiring 

limited software changes and dynamic tuning of the accuracy of 

each core based on the operational modes and critical tasks.  

4. DESIGN EXAMPLE 

     Our approach lies on the fact that in almost all DSP systems 

some computations are less significant and can be approximated if 

best quality is not required or is not achievable due to hardware 

non-idealities. An example of such an application is the inverse 

discrete cosine transform (iDCT) that is ubiquitous part of video 

and imaging standards. iDCT transforms an 8x8 block of 

frequency components to spatial components (pixels). Based on the 

human visual system the high frequency components of each 8x8 

block can be classified as less-significant since any error in their 

computation cannot be easily identified by the human eye. On the 

other hand, human eye is very sensitive to low-frequency 

components (usually contained at the upper 4x4 block of iDCT) 

and thus are classified as critical operations [5]. To be more 

specific let us write a part of the IDCT computation: 
 

[w0 w1 w2 w3]
T = C1z0 + C2z4 + C2 [z1+ z2+ z3]

 T + C4 [z5+ z6+ z7]
T 

 

where Ci contain the  iDCT coefficients and zi are input frequency 

coefficients [5]. This equation represents each output wi in terms of 

significant and less significant computations. Specifically, C1 

computations represent low frequency (thus significant) 

components, whereas computations C2 to C4 represent gradually 

increasing frequency components (decreasing importance). 

According to the proposed approach C1 represents significant tasks 

that need to be executed correctly under any condition. On the 

other hand, the exactness of C2 to C4 computations can be relaxed 

offering room for trade-offs between power and quality.  

     The significant tasks are clustered in segments and their 

significance is denoted by appropriate directives as shown in 

pseudo code of Fig. 2. Computations of higher significance are 

marked with a sig pragma with a larger number. The directives are 

identified by the compiler and the run-time system appoints each 

task to cores of different degree of accuracy. Specifically, C1 is 

appointed at an accurate core running at nominal Vdd, whereas C2-4, 
at cores with scaled Vdds. Depending on the power, quality 

requirements computations C2-4 can be executed at cores with 

higher degree of voltage scaling. For instance, under ultra low 

power requirements all less-significant tasks operate at low Vdd, 

risking their exact computation. In case that low power needs to be 

combined with good quality, then only C4 is scheduled for 

execution at a core with lower Vdd, thus only C4 may not be 

computed correctly resulting in an approximate output.  

5. PRELIMINARY EVALUATION 

     To evaluate the efficacy of the proposed software based 

approach and configure the OS policies we implemented a digital 

camera on a Altera FPGA DE-2 board utilizing the on board Nios 

processor. Ubiquitous parts of such system are the JPEG 

encoder/decoder which are based on DCT/iDCT blocks. Following 

our approach we clustered significant tasks in segments as 

described above. In case that low power is required then user can 

tune the on-board switches and the system adjusts to them by 

allowing errors to affect some of the less-significant tasks while 

ensuring accurate operation of tasks with higher significance. In 

this case voltage can be reduced leading to lower power at minor 

quality degradation. The power-quality trade-offs under the 

different operational modes along with some resultant images are 

shown in Figs. 3 and 4, respectively. Results show that over 50% 

power savings at a cost of 30% quality reduction are possible (in 

terms of peak- signal-to-noise-ratio (PSNR)) in case that only the 

most critical task C1 is computed accurately.  

6. CONCLUSION 

     A unique design paradigm for energy efficient and variation-

aware operation based on synergy among all levels of software 

stack along with minimum hardware support is presented. The 

proposed scheme monitors the error rates under various 

environmental/operating conditions and based on the 

power/performance/quality requirements, it dynamically adjusts 

the robustness of each core depending on the significance of tasks 

that are scheduled to run. We believe that such scheme can emerge 

as a promising candidate for energy efficient and reliable operation 

on next generation platforms.  
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   Figure 3: Power-Quality Trade-offs   

      

 

(a)                                  (b)                                      (c)  
Figure 4: Quality at (a) mode 1 (all operations correct), (b) mode 2 

operations C1-2 are computed accurately, (c) mode 3 only C1 is correct 

 

[w0, w1, w2, w3] = 0;
#pragma sig 3

[w0, w1, w2, w3] += C1 z0 ; 
#pragma sig 2

[w0, w1, w2, w3] += C3 [z1 z2 z3 ] T ; 
#pragma sig 1

[w0, w1, w2, w3] += C2 z4 ; 
#pragma sig 0

[w0, w1, w2, w3] += C4 [z5 z6 z7 ] T ; 

  
  Figure 2: Significance-driven     

     directives in iDCT code. 
 


