
Significance-Driven Computation on Next-Generation Unreliable Platforms

Georgios Karakonstantis
1
, Nikolaos Bellas

2
, Christos Antonopoulos

2
, Georgios Tziantzioulis

2
, Vaibhaf Gupta

3
, Kaushik Roy

3

Swiss Federal Institute of Technology (EPFL), Switzerland1 University of Thessaly, Greece2 Purdue University, U.S.A3

georgios.karakonstantis@epfl.ch, {nbellas, cda, getziadz}@uth.gr, {gupta64, kaushik}@purdue.edu

ABSTRACT

 In this paper, we propose a design paradigm for energy efficient

and variation-aware operation of next-generation multicore

heterogeneous platforms. The main idea behind the proposed

approach lies on the observation that not all operations are equally

important in shaping the output quality of various applications and

of the overall system. Based on such an observation, we enable all

levels of the software design stack, including the programming

model, compiler, operating system (OS) and run-time system to

identify the critical tasks and ensure correct operation of such tasks

by assigning them to dynamically adjusted reliable cores.

Specifically, based on error rates and operating conditions

identified by a sense-and-adapt (SeA) unit, OS selects and sets the

right mode of operation of the overall system. The run-time system

identifies the critical/less-critical tasks based on special directives

and schedules them to the appropriate cores that are dynamically

adjusted for highly-accurate/approximate operation by tuning their

voltage/frequency. Cores that execute less significant operations

can operate at voltages less than what is required for correct

operation and consume less power, if required, since such tasks do

not need to be always exact as opposed to the critical ones. Such

scheme can lead to energy efficient and reliable operation, while

reducing the design cost and overheads of conventional

circuit/micro-architecture level techniques.

Categories, Subject Descriptors – C.4 [Performance of Systems]:

Design Studies, Reliability

General Terms – Algorithms, Design, Reliability

Keywords – Energy Efficient, Software, Approximate Computing

1. INTRODUCTION

 As transistors are getting smaller, spatial and temporal variations can

have an unpredictable impact on gate delay and consequently lead to

delay failures threatening the functionality and operational

reliability of next generation systems [1]. Conventional wisdom for

error-free operation dictates designing with margins (up-scaling

voltage or clock) and adding extra hardware for detection and

correction of any error [2]. However, such techniques come at high

design and fabrication costs since they require major architecture

changes and increased power, limiting the exploitation of energy

and performance benefits of technology scaling. In addition,

techniques such as voltage scaling [3] that can effectively reduce

power consumption aggregate the random variations, and thus

cannot be applied abruptly. Therefore, in order to ensure correct

operation, while staying under the power and performance

envelopes, new design paradigms are required that can efficiently

tackle any error induced by variations or voltage scaling.

 In this paper, we depart from conventional techniques and propose a

software level approach for coping with variations and ensuring energy

efficient operation. The main novelty of our approach is the synergy

between all levels of software stack that are able to identify, schedule

and execute the tasks that are necessary for obtaining acceptable

quality under the given operating conditions. We classify tasks

according to degrees of criticality, spanning from operation critical

control tasks that need to execute reliably (such as OS functions), to

non-critical tasks that do not contribute substantially to the output

quality. Such classification allow us to reduce the requirement of exact

computation of less-critical tasks and reduce power in case that best

quality is not achievable or required by the user by mapping them to

less-reliable cores that run at low voltage.

2. VARIATION AWARE SOFTWARE STACK

 The proposed scheme is depicted in Fig. 1. Significant

computations of an application are clustered in structures by using

directives (#pragmas) at the programming level. By considering

such pragmas, the compiler analyzes the data/control flow graph of

the application and performs optimization that benefits the critical

tasks. Run-time system is then responsible for mapping each task

to different cores depending on their significance and the mode of

operation set by the OS. Note that the mode of operation is set by

OS dynamically based on a list of policies, the degree of spatial

and temporal variations identified by the SeA unit and the

quality/performance/energy requirements. In addition, OS monitors

the progress of the application checking control points, identifying

stale pointers and estimating error rates. In case that something

goes wrong, OS intervenes and replays at least the critical tasks.

 3. SOFTWARE-HARDWARE SYNERGY

 Apart from software level support, robust operation is also

assisted by tuning parameters at the hardware level. Specifically,

based on the selected operational mode, and the criticality of

scheduled tasks, SeA unit adjusts the voltage and frequency of

Application

Compiler

Run time sys. Sig. 3 Less Sig. 2

Process Sensors, Operating Conditions, User Requirements

Combine Outputs, Check Output

Sense and Adapt

S
o
f
t
w
a
r
e

Vdd_core_i

#pragma sig [0…N]
z1=reg [i+ …] + reg [i+…] + …

#pragma sig [0…N]
zN = …

H
a
r
d
w
a
r
e

OS
Energy/
Quality
Policies

OS

Tuned for
accurate

operation
(Nominal Vdd

HW assist)

Freq._core_i

Less Sig. 1

Vdd2>Vdd1

Tuned for
accurate

operation
(Nominal Vdd

HW assist)

Tuned for
approximate

operation
(Over-scaled

Vdd)

Tuned for
approximate

operation
(Over-scaled

Vdd)

Figure 1: Proposed Design Approach

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.
DAC'11, June 5-10, 2011, San Diego, California, USA

Copyright © 2011 ACM 978-1-4503-0636-2/11/06...$10.00

each core (if needed reliable circuit schemes are activated [2]) to

meet the required reliability, energy, performance and quality

requirements. Computationally significant tasks and OS operations

are mapped to cores that operate under higher voltage and thus are

reliable, as opposed to the less-significant tasks that are mapped to

approximate cores running at lower voltage, thus consuming lower

power. For instance, as shown in Fig. 1, the core that is scheduled

to execute task of significance 1 is running at a lower Vdd1 < Vdd2

than the core executing the task of higher significance equal to 2.

Note that voltage values Vdd1 and Vdd2 are typically lower than the

nominal voltage required for correct execution, thus leading to

potential timing violations. However, such violations affect only

the less-critical tasks. Therefore, our scheme allows the reduction

of power, if needed, with minor quality reduction (approximate

computation) since only the less critical tasks can get affected by

potential errors induced by voltage scaling/variations. Note that

some parts of the hardware that are responsible for executing

critical OS and control tasks run always at a ‘safe’ mode, utilizing

also some circuit techniques [2]. Overall, the proposed approach

departs from existing works on approximate and variation-aware

computing [2,3,4,5] that mainly target hardware level

modifications rather than software level solutions. The proposed

scheme provides a generic variation-aware solution, requiring

limited software changes and dynamic tuning of the accuracy of

each core based on the operational modes and critical tasks.

4. DESIGN EXAMPLE

 Our approach lies on the fact that in almost all DSP systems

some computations are less significant and can be approximated if

best quality is not required or is not achievable due to hardware

non-idealities. An example of such an application is the inverse

discrete cosine transform (iDCT) that is ubiquitous part of video

and imaging standards. iDCT transforms an 8x8 block of

frequency components to spatial components (pixels). Based on the

human visual system the high frequency components of each 8x8

block can be classified as less-significant since any error in their

computation cannot be easily identified by the human eye. On the

other hand, human eye is very sensitive to low-frequency

components (usually contained at the upper 4x4 block of iDCT)

and thus are classified as critical operations [5]. To be more

specific let us write a part of the IDCT computation:

[w0 w1 w2 w3]
T = C1z0 + C2z4 + C2 [z1+ z2+ z3]

 T + C4 [z5+ z6+ z7]
T

where Ci contain the iDCT coefficients and zi are input frequency

coefficients [5]. This equation represents each output wi in terms of

significant and less significant computations. Specifically, C1

computations represent low frequency (thus significant)

components, whereas computations C2 to C4 represent gradually

increasing frequency components (decreasing importance).

According to the proposed approach C1 represents significant tasks

that need to be executed correctly under any condition. On the

other hand, the exactness of C2 to C4 computations can be relaxed

offering room for trade-offs between power and quality.

 The significant tasks are clustered in segments and their

significance is denoted by appropriate directives as shown in

pseudo code of Fig. 2. Computations of higher significance are

marked with a sig pragma with a larger number. The directives are

identified by the compiler and the run-time system appoints each

task to cores of different degree of accuracy. Specifically, C1 is

appointed at an accurate core running at nominal Vdd, whereas C2-4,
at cores with scaled Vdds. Depending on the power, quality

requirements computations C2-4 can be executed at cores with

higher degree of voltage scaling. For instance, under ultra low

power requirements all less-significant tasks operate at low Vdd,

risking their exact computation. In case that low power needs to be

combined with good quality, then only C4 is scheduled for

execution at a core with lower Vdd, thus only C4 may not be

computed correctly resulting in an approximate output.

5. PRELIMINARY EVALUATION

 To evaluate the efficacy of the proposed software based

approach and configure the OS policies we implemented a digital

camera on a Altera FPGA DE-2 board utilizing the on board Nios

processor. Ubiquitous parts of such system are the JPEG

encoder/decoder which are based on DCT/iDCT blocks. Following

our approach we clustered significant tasks in segments as

described above. In case that low power is required then user can

tune the on-board switches and the system adjusts to them by

allowing errors to affect some of the less-significant tasks while

ensuring accurate operation of tasks with higher significance. In

this case voltage can be reduced leading to lower power at minor

quality degradation. The power-quality trade-offs under the

different operational modes along with some resultant images are

shown in Figs. 3 and 4, respectively. Results show that over 50%

power savings at a cost of 30% quality reduction are possible (in

terms of peak- signal-to-noise-ratio (PSNR)) in case that only the

most critical task C1 is computed accurately.

6. CONCLUSION

 A unique design paradigm for energy efficient and variation-

aware operation based on synergy among all levels of software

stack along with minimum hardware support is presented. The

proposed scheme monitors the error rates under various

environmental/operating conditions and based on the

power/performance/quality requirements, it dynamically adjusts

the robustness of each core depending on the significance of tasks

that are scheduled to run. We believe that such scheme can emerge

as a promising candidate for energy efficient and reliable operation

on next generation platforms.

Acknowledgement: We would like to thank Anand Raghunathan

and Andreas Burg for their comments and suggestions.

REFERENCES

[1] S. Borkar et. al., “Designing reliable systems from unreliable components:

 The challenges of transistor variability and degradation,” IEEE Micro,

 2005, pp. 10-16.
[2] Dan Ernst, et al., “Razor: Circuit-Level Correction of Timing Errors for

 Low- Power Operation,” IEEE Micro, 2004, pp.10-20.

[3] B. Shim, et al., “Reliable Low-Power Digital Signal Processing via
 Reduced Precision Redundancy,” IEEE TVLSI, 2004, pp. 497-510.

[4] L. Leem, et al., “ERSA: Error-Resilient System Architecture for

 Probabilistic Applications,” IEEE DATE, 2010.
[5] G. Karakonstantis, et al., “System Level DSP Synthesis Using Voltage

Overscaling, Unequal Error Protection & Adaptive Quality Tuning,”

IEEE SiPS, 2009.

21

23

25

27

29

31

33

35

37

39

0

10

20

30

40

50

60

8X8 7X7 6X6 5X5 4X4 3X3 2X2

% Power Savings

Quality (PSNR)

P
o

w
e

r
S

a
v
in

g
s

Q
u

a
li
ty

 (
P

S
N

R
)

Q1 Q2 Q3

1
Accurate:

Approximate:

Approximate operations
and voltage scaling increase

C1-C4 C1-C3

C4

C1-C2

C3-C4

C1

C2-C4

 Figure 3: Power-Quality Trade-offs

(a) (b) (c)
Figure 4: Quality at (a) mode 1 (all operations correct), (b) mode 2

operations C1-2 are computed accurately, (c) mode 3 only C1 is correct

[w0, w1, w2, w3] = 0;
#pragma sig 3

[w0, w1, w2, w3] += C1 z0 ;
#pragma sig 2

[w0, w1, w2, w3] += C3 [z1 z2 z3] T ;
#pragma sig 1

[w0, w1, w2, w3] += C2 z4 ;
#pragma sig 0

[w0, w1, w2, w3] += C4 [z5 z6 z7] T ;

 Figure 2: Significance-driven

 directives in iDCT code.

