

1

Abstract

Smart cameras using FPGAs require an automation method
to simplify the design process and to ensure both
computation and memory performance are met.
Reconfigurable logic allows exploration of different
hardware accelerators and memory-hierarchy
configurations based on application needs. This paper
presents a streaming architecture template that is generated
from high level program descriptions. A smart camera
development platform, the software architecture, and
demonstration template are also described.

1. Introduction
Embedded smart cameras using computer vision methods

for video analysis [1,2] can benefit from reconfigurable
FPGA platforms to provide the necessary performance and
flexibility [3]. The levels of integration of modern FPGAs
have advanced to a point where all functions of a complex
System on Chip (SoC) can be mapped onto a single die.
FPGA manufacturers have embedded scalar processor
cores, multipliers, and SRAM memories in order to speed-
up commonly used algorithms. They also offer peripherals,
fixed IP functions, and even synthesizable processor cores
for further customization. Architecture designs for smart
camera applications can be configured on the FPGA
platform to better optimize the memory subsystem and
computation structures.

This paper presents a streaming architecture template
which consists of hardware accelerators and memory
subsystem to support the computation and bandwidth
requirements. The design process consists of a stream
programming model with the familiarity of a high level
programming language. The hardware accelerators are
generated from user defined kernels while the streaming
memory subsystem is capable of automatic prefetching and
alignment. Following the design process allows a larger
segment of engineers that may not have expertise in system
architecture and hardware design to prototype on FPGAs.
Since particular hardware structures are abstracted out with
a software-only front end interface, application
development becomes less complicated.

Furthermore, applications related to video analysis are
often limited by bandwidth because of the imbalance
between processor and memory performance [4]. Even

though FPGAs continue to provide larger numbers of
configurable logic blocks that can be mapped to processing
elements to speed up computation, the interconnect delays
and slow memories can become bottlenecks. The
streaming model decouples the descriptions of memory
access sequences from the computation within a kernel,
thus making the customization of each of these two
components (computation and memory access) easier and
more amenable to optimization. The system is then
synthesized for an FPGA in a development kit with
integrated image sensors and peripherals for video
analysis.

The structure of the paper is as follows: Section 2
presents the related work relevant to this paper; Section 3
gives a brief presentation of the system architecture,
stream programming model, and architecture template;
Section 4 describes a smart camera development platform
and the associated software platform; Section 5 concludes
the paper.

2. Related Work
Stream processing is a computational model that

operates on sequences of ordered data (streams) using
computation kernels (filters) [5]. While both industry and
academia have studied the concurrency of computation and
data movement, this streaming model provides a new and
interesting framework that brings together both task and
data level parallelism within the same context. The
programmer explicitly defines the data accesses and
computation separately, thereby exposing concurrency and
locality for the compiler to schedule both in hardware.

The computation and data movement characteristics of
smart camera applications are a good match for the stream
model of computation. Making data movement explicit and
describing which portions of the application can be
computed in parallel enable compilers to optimize data
movement and match it to the available hardware
accelerators.

A number of streaming processor architectures have
been developed over recent years. Examples of stream
processors include RAW [6], Imagine [7], Merrimac [8],
and the RSVP™ architecture [9,10]. Stream processors are
similar to vector processors in their ability to hide latency,
amortize instruction overhead, and expose data parallelism
by operating on large sets of data. However, stream

Reconfigurable Streaming Architectures for Embedded Smart Cameras

Sek M. Chai, Nikolaos Bellas, Greg Kujawa, Tom Ziomek,
Linda Dawson, Tony Scaminaci, Malcolm Dwyer, Dan Linzmeier,

 Embedded Systems Research, Motorola Labs,
(sek.chai@motorola.com)

2

(a) (b)

Scalar
Processor

Memory
Controller

Application-Specific
Peripherals

Stream
unit

Buffers

DRAM

Streaming
Accelerators

Stream
unit

Streaming
Accelerators

Stream
unit

Bus network

Control
Registers

Multiplexer Tree

FU

co
nt

ro
l

FU

co
nt

ro
l

Reg
Reg

Acc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

Bus Line Buffer

Stream Buffer

To other
Input Stream

St
re

am
 U

ni
t

D
at

a
Pa

th

Addr
Queue

(a) (b)

Scalar
Processor

Memory
Controller

Application-Specific
Peripherals

Stream
unit

Buffers

DRAM

Streaming
Accelerators

Stream
unit

Streaming
Accelerators

Stream
unit

Bus network

Scalar
Processor

Memory
Controller

Application-Specific
Peripherals

Stream
unit

Buffers

DRAM

Streaming
Accelerators

Stream
unit

Streaming
Accelerators

Stream
unit

Bus network

Control
Registers

Multiplexer Tree

FU

co
nt

ro
l

FU

co
nt

ro
l

Reg
Reg

Acc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

Bus Line Buffer

Stream Buffer

To other
Input Stream

St
re

am
 U

ni
t

D
at

a
Pa

th

Addr
Queue

Control
Registers

Multiplexer Tree

FU

co
nt

ro
l

FU

co
nt

ro
l

FU

co
nt

ro
l

FU

co
nt

ro
l

Reg
Reg

Acc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

Bus Line Buffer

Stream Buffer

To other
Input Stream

St
re

am
 U

ni
t

D
at

a
Pa

th

Addr
Queue

Figure 1. (a) Generated streaming accelerators, (b) Integration of streaming accelerators in SoC design

processors support a more complex access pattern by
allowing the programmer to explicitly define the data
movement.

There are also other classes of streaming architectures
with origins from reconfigurable FPGA platforms. These
architectures rely on the flexibility of the platform to
synthesize streaming accelerators based on programmer
definition. In comparison to the above mentioned
architectures, a set of compiler tools create optimized
hardware configurations rather than map computation onto
ASIC designs. These architectures are associated with the
programming language or compiler tool that allows
software developers to configure hardware for stream
computation. Examples include SCORE [11], ASC [12],
and Streams-C [13].

This paper describes a streaming architecture template
comprised of hardware accelerators and a memory
subsystem to perform the computational heavy lifting for a
scalar processor. The accelerators are generated from
program instructions while the memory subsystem is based
on a description of data shape in memory. This
programming model uses an extension on the format
presented in [9, 10], and is described in Section 3. Using the
stream computation model, which separates description of
computation and communication, the accelerator and
memory subsystem can be optimized separately on the
FPGA for different applications.

The FPGA platform allows different configurations of
the accelerator and memory subsystem. While there are
many FPGA development boards available from either
FPGA or third party vendors, it is the understanding of
these authors that none are made specifically for embedded
computer vision. Readers are referred to [14] for a review
of available FGPA development boards. FPGA board
support packages with key components for image
processing (hardware and software templates for image
processing, integrated device drivers for one or more image
sensors, and standard application example) are usually not

available on a generic development kit. This paper presents
these elements in an FPGA platform (Watson) to support
the streaming accelerators. Once optimized for a particular
class of computer vision applications, the design can be
ported into standard or structured-ASIC design flows for
fabrication and productization.

3. System Architecture
3.1. Design flow

The design process consists of the application
programmer describing the application in a high level
language such as C. For computationally intensive kernels,
such as loops, hardware accelerators are generated to lift
the heavy computation load from the scalar processors.
Scalar processors are reserved for normal conditional code
since that code is not easily parallelizable and generated
hardware is not efficient [15]. Our streaming architecture
template, shown in Figure 1, is dedicated for high
throughput, parallelizable code, with support for all kinds
of parallelism (instruction, data, and task).

The overall design flow and automation tool is
described in [16]. The design flow is not unlike [17] with
the exception of the streaming architecture templates. This
paper is focused on the streaming architecture template
and its use in embedded smart cameras. In Section 4, an
example application is accelerated in hardware using this
flow. Currently, the kernels are described using a stream
data flow graph (sDFG). A compiler can then create a
parameterized hardware description of the hardware
accelerator. This description is used to generate RTL
(Verilog), and later synthesized onto the FPGA.

3.2. Streaming Hardware Architecture Template
There are two parts to the architecture template: the

streaming data path and the stream unit (Figure 1a).
Computations are mapped to the data path, while the

3

SPAN = 4

STRIDE=2 SKIP=92SA

0 1 2 3 4 5

92

0 1 2 3

4 5 6 7

8 9 10 11

vld
(v1)

vld
(v2)

vadd

Vst
(v0)

Program code

SPAN = 4

STRIDE=2 SKIP=92SA

0 1 2 3 4 5

92

0 1 2 3

4 5 6 7

8 9 10 11

vld
(v1)

vld
(v2)

vadd

Vst
(v0)

vld
(v1)

vld
(v2)

vadd

Vst
(v0)

Program code

Figure 2. Kernel computation (sDFG) and memory

access (stream descriptors) are extracted from
program code

stream unit forms the system’s memory hierarchy. Each
data path and stream unit have their own generation
process.

The architecture uses stream units to prefetch data from
memory and turn data streams into FIFO queues of stream
elements for the data path. Each stream unit handles all
issues regarding loading/storing of data including: address
calculation, byte alignment, data ordering, and bus
interfacing. The stream unit consists of one or more input
and output stream modules, and is generated to match the
characteristics of the programmer’s description of the
stream data (stream descriptors), the characteristics of the
bus-based system and the streaming data path. An address
generation unit actively creates memory addresses for the
system bus while bus line buffers temporarily store bus
data. Stream buffers are used to reorder and align the data
based on computational needs. Readers are referred to [18]
for more details about the reconfigurable elements of the
stream unit.

A data path is generated to execute a given kernel
defined in the program code. There is a network of
functional units that produce and consume streaming data
elements. A reconfigurable link is formed by a tree of
multiplexers and line queues to direct proper data elements
to each functional unit. The control logic is distributed and
spatially near the corresponding functional unit,
multiplexer, and line queues. This was done to avoid long
interconnects in critical paths. The reconfigurable
parameters of the data path include the following: type of
functional units (ALUs, multipliers, shifters, etc), the
custom operation performed within a type (e.g. only
addition or subtraction for an ALU), the width of the
functional unit, the size and number of storage elements, the
interconnect between functional units, and the bandwidth to
and from the stream unit. Readers are referred to [19] for
more details about the reconfigurable data path and the

sDFG mapping process.
 Figure 1b illustrates an example SoC that can be placed

into the FPGA along with the generated hardware
accelerators. A set of peripherals is used to control external
components of the embedded smart camera on the
development board, described later in Section 4.

3.3. Stream Programming Model
Computation and data accesses for the streaming

accelerator are defined separately in the program code, as
shown in Figure 2. We are using a stream data flow graph
(sDFG) language to express operations composing the
streaming operations in a machine independent manner. A
sDFG consists of nodes representing basic arithmetic,
logic, and load/stores operations. The directed edges of the
sDFG represent the dependency of one operation on the
output of the previous operation [9,10]. The use of a
graphing language is very useful in describing signal
processing applications and has been used in computer
vision applications [20].

Memory access patterns are expressed using a
programming API, called a stream descriptor. A stream
descriptor is represented by the tuple (Type,
Start_Address, Stride, Span0, Skip0, Span1, Skip1, Size),
where:
• Type indicates the element size in bytes (Type is 0 for
bytes, 1 for 16-bit half-words, etc.).
• Start_Address represents the memory address of the first
stream element.
• Stride is the spacing, in number of elements, between
two consecutive stream data elements.
• Span0 is the number of elements that are gathered
before applying the skip0 offset.
• Skip0 is the offset applied between groups of span0
elements, after the stride has been applied.
• Span1 is the number of elements that are gathered
before applying the skip1 offset.
• Skip1 is the offset applied between groups of span1
elements, after the stride and the Skip0 have been applied.

The Stride, Span, Skip, and Type fields define the shape
of the data stream in memory, while Start_Address defines
the location of the first data element. The grouping and
order in which data is accessed defines a Stream Record
and corresponds to the desired alignment for the
computation kernel. Multidimensional or even non-regular
shapes can be created by extending the defined semantics
of each stream descriptor. Figure 2 shows an example of a
memory access pattern described by a stream descriptor,
which is loaded into the stream unit (shown previously in
Figure 1) to move data on the system bus.

Stream descriptors have been used to optimize transfers
from I/O devices [21] and from memory [22]. Similar
techniques to describe the shape of memory accesses have
also been used for trace generation [23,24]. Stream
descriptors are a language extension to specify memory

4

access patterns, which is used by dedicated stream units to
prefetch and assemble data. The stream descriptors and
compiler manipulations are active research areas. Readers
are referred to [9,10] for more details.

4. Smart Camera Development Kit
4.1. Hardware Platform

The generated hardware accelerator and peripherals,
described in Section 3, are synthesized onto an FPGA on a
smart camera development board (Watson). This section
presents the hardware aspects of the platform. The Watson
platform offers a wide variety of peripherals, highlighted in
Table 1. Many combinations of these peripherals may be
used in a particular system, but the full description is
beyond the scope of this paper. Figure 3 illustrates the main
Watson board and four image sensor boards.

This section will describe three unique attributes of the
Watson platform: multiple image sensor support, separable
memory banks, and FPGA system reconfiguration. As in
many reference platforms such as [25], there are certain
features that are standard. However, the authors believe that
these three features are key enablers to deploy certain
embedded smart camera applications.
4.1.1 Multiple Image Sensor Interfaces

The Watson platform implements two types of image
sensor interfaces, a 10-bit parallel data bus plus
control/clock signals, and a low voltage differential
signaling (LVDS) serial bus interface known in the industry
as BusLVDS. The LVDS interface greatly reduces the
signal and pin count of the sensor interface and also allows
the sensors to be placed remotely, up to five meters away,
from the processing engine. Four ribbon-cable connectors
are located on the bottom of the Watson board and on each
of the sensor daughter cards to provide for the parallel
interfaces to the image sensors. Although the Watson board
originally implemented four RJ45 connectors (located on
the top of the board) to provide for the LVDS interfaces,
these connectors have since been replaced by 9-pin IEEE-
1394b beta (Firewire-B) connectors. Extensive testing has
shown that the RJ-45 connectors and cabling are too lossy

at the current LVDS bit rates of 320 and 486 Mbits/sec and
that IEEE-1394b connectors and cables are much more
suitable for use at these high bit rates. Several image
sensor daughter boards with Micron image sensors were
designed onto the Watson printed circuit board panel,
ranging in resolution from VGA, MT9V022 & MT9V111,
to three megapixels, MT9T001 [26]. Depending on each
sensor’s available hardware interfaces, either the parallel
or the LVDS interfaces may be used to collect the sensor
data for processing inside the FPGA. The Watson board is
capable of supporting up to eight Micron image sensors
when each of four pairs of sensors are configured to
operate in Micron’s proprietary dual-sensor (lockstep)
LVDS mode. The daughter cards implement only one
sensor per board so the overall system is limited to four
image sensors at this time. It should be noted that the
available bus bandwidth in the FPGA determines how
many sensors can be used simultaneously so a tradeoff
between the number of sensors in the system and the frame
rates of each sensor interface constitute the necessary
compromises.

All of the logic required to implement both the parallel

Table 1. Highlighted features of the FPGA-based smart camera board
Attributes Description

FPGA FPGA device (one of three different Virtex 4 FX devices, XC4VFX40, XC4VFX60, XC4VFX100) in
FF1152, 35x35 mm size Ball Grid Array (BGA) package, with embedded Power PC (PPC) core.

DDR Banks Double Data Rate (DDR) SDRAM, 128 Mbytes, 200 MHz, MT46V16M16FG chips
Image Sensors Up to four pairs of image sensors: parallel or low voltage differential signaling (LVDS) connections
UART Universal Asynchronous Receiver Transceiver (UART); 120kbps at RS-232 output levels.
FLASH Memory 32 Mbytes, 120nsec, MT28F128J3BS chips
Ethernet 10/100/1000 BaseT, Marvell 88E1111 PHY, RJ45 connector with integrated magnetics
USB OTG Universal Serial Bus (USB) on-the-go (OTG) Revision 2 compliant, 480 Mbit/sec
Display RGB Video Monitor Output. Analog Devices ADV7123, 15-pin D-shell connector
GPIO General Purpose Input/Output (Eight inputs, eight outputs), DIP switch and LED indicators
Compact Flash Three mode operation: Memory mode, Input/Output mode and True IDE mode
Power Supply Wide voltage range from +5V to +30V. Designed to withstand harsh automotive environments

Figure 3. FPGA-based smart camera development kit

5

Table 2. Flash and RAM usage
Description Flash RAM (runtime)
Bootloader 129KB --
Bootloader
settings 1KB --

Linux Kernel 670KB
(compressed)

1.5MB
(uncompressed)

Linux
Filesystem

4.7MB
(compressed)

16MB (13MB data,
3MB unused)

and LVDS serial interfaces is contained within the Micron
sensor and the FPGA. Those Micron sensors that support
LVDS mode contain an embedded serializer that generates
the differential data and clock signals directly to the
Firewire-B cable. The FPGA contains the LVDS receivers
and a custom deserializer module that outputs parallel
interface signals identical to those generated by the Micron
sensor when it is operating in the parallel interface mode.
This enables the use of a common sensor interface module
(SIF) within the FPGA that is programmed by software to
either accept data directly from the sensor (parallel mode)
or from the deserializer module (LVDS mode). The SIF
supports sensor resolutions up to 16 megapixels and
interfaces to DDR memory via cache-line DMA transfers
on the bus without software intervention. Software only
needs to program setup information into the SIF registers to
match that of the sensor being used.
4.1.2 Separable memory banks

Two banks of Double Data Rate (DDR) DRAM reside on
the Watson platform, each consisting of 64 MB. The
external databus width is 32 bits and has a maximum clock
speed of 200 MHz. The memory banks may be configured
as two 64 MB banks of 32 bit wide memory for a single
Power PC (PPC) core, one 32 bit wide, 64 MB bank for
each PPC core or one 64 bit wide bank of 128MB for a
single PPC core. The configuration is application dependent
so if a wider memory bandwidth is necessary for a
particular design, a 64-bit wide interface may be used to
maximize the throughput.
4.1.3 FPGA system reconfiguration

The Watson platform is designed for maximum
flexibility for a variety of applications. One of the key
components to Watson is to have the ability to remotely
change both the software and hardware-configuration when
updating algorithms or applications. Configuration circuitry
has been incorporated into the Watson platform to allow
this feature, i.e. remotely updating software and hardware.
Platform flash devices are used to configure the FPGA at
power up. Once these devices detect that power has been
applied to the system, they proceed to configure the FPGA
with the selected hardware configuration. When the system
is up and running, a different hardware configuration may
be programmed into the platform flash devices which
effectively changes the makeup of the application hardware
upon the next configuration cycle.

4.2. System Software
The computation kernels (sDFG) and stream

descriptors, described in Section 3, can be integrated into
the system software on the Watson platform. While there
are many aspects of the software that could be described,
this section describes only the Linux operating system
(OS) and demonstration template since they are the key
components for embedded computer vision applications.
4.2.1 Linux OS

The Linux OS (kernel version 2.4) is being ported to the
Watson platform as part of the development kit to support
application developers. The porting task involves porting a
bootloader to the Watson platform, porting the Linux
kernel and setting up a file-system suitable for a disk-less
system. Software device drivers for the image sensor
interfaces, described in Section 4.1.1, will be provided to
capture images from external sensors. In addition, device
drivers for I2C transfer protocol using the GPIO to control
external Micron image sensors are also provided. Using
the provided device driver API, application developers can
control the image sensors to set exposure gain, region of
interest, and other operating parameters.

Table 2 shows a Flash and RAM usage-list to offer an
insight to available memory for application developers.
While there are many variations on how an application can
be setup, the information in the table shows the base
memory usage for the OS, bootloader, and filesystem.
Additional memory would be necessary to set up frame
buffers for the image sensor data and display. The frame
buffers are dependent on image sensor size and the region
of interest for video analysis. Optimization of Flash and
RAM usage can be made to further reduce the size of the
basic OS setup.
4.2.2 Live View Template Software

A base demonstration application can reduce the
learning curve for users with examples on functional code.
Two such templates will be available. Both consist of the
basic image capture process from image sensor interface,
storage and retrieval from memory, and transfer to an
output device.

One template runs directly on the PowerPC embedded

Allocate a free input buffer
Start an image capture into input buffer
Wait for the image capture to complete
Allocate a new free input buffer
Start an image capture into input buffer
Allocate a free output buffer
Process the image, from input buffer to output buffer
Free input buffer
Set video controller to use newly-filled output buffer
Free previous output buffer used by video controller
Repeat

Allocate a free input buffer
Start an image capture into input buffer
Wait for the image capture to complete
Allocate a new free input buffer
Start an image capture into input buffer
Allocate a free output buffer
Process the image, from input buffer to output buffer
Free input buffer
Set video controller to use newly-filled output buffer
Free previous output buffer used by video controller
Repeat

Figure 4. Pseudocode for example Live-View software

6

Morphological
Filters

Connected
Components

Of Pixels

Monochrome
Image

Binarized
Image

Ranked
candidate
regions

License
Plate
String

LP region scaling,
Binarization and
noise reduction

Connected Components
in regions &

Character Extraction

Character
Comparison &

matching

for each candidate license plate (LP) location

for each
character

Character
locations
in region

Morphological
Filters

Connected
Components

Of Pixels

Monochrome
Image

Binarized
Image

Ranked
candidate
regions

License
Plate
String

LP region scaling,
Binarization and
noise reduction

Connected Components
in regions &

Character Extraction

Character
Comparison &

matching

for each candidate license plate (LP) location

for each
character

Character
locations
in region

Figure 5. License Plate Recognition (LPR) is a series
of kernels separated by decision logic

Table 3. Peripherals and Bus Components
Module
Name

FPGA
Slices Module Name

FPGA
Slices

DCR 1 WatchDog 89
JTAG 1 BRAM wrapper 262
PLB bus 264 DDR Controller 824
OPB bus 72 LVDS module 155
Bus bridge 677 Ethernet 2708
GPIO 148 Image Sensor IF 314
Flash
Controller 190 LCD Controller 187
Compact
Flash 685

Interrupt
Controller 134

Reset 39 Clock Generator 40

Timer 269 UART 303
Subtotal 7362 (29%)

Table 4. Generated hardware accelerators
Streaming
Kernels

FPGA
Slices

Throughput
(Bytes/cycle)

Frequency
(MHz)

Binarization 189 1 218
Open Filter 731 0.15 188
Edge Detection 1677 0.07 174
Quantization 236 2 219
Column DCT 1148 1.23 171
Row DCT 1129 0.94 149
(LPF) Color
Processing 2687 1.1 121
(HPF) Color
Processing 2529 1.33 177

in the Virtex 4 FPGAs, without Linux or any other OS, and
therefore does not use the Linux device driver. This
software displays the sensor image on a monitor via the
video connector. Figure 4 shows this live-view process and
the use of frame buffers in memory. The buffer sizes
depend on the sensor (e.g. number of pixels multiplied by
the bytes per pixel). For the video controller, the buffer size
is VGA (640x480 pixels) at 4 bytes per pixel. Excluding the
various image buffers, the live-view template runs under
64KB, which includes stack space, string constants, and
other compiled items. For more advanced video analysis,
multiple frame buffers that are sized to a smaller region of
interest may be used for different hardware accelerators.
For example, separate frame buffers can be allocated for
different hardware accelerators to perform DCT and low-
pass filters.

The second template is a simple client-server application.
This software runs on Linux and interacts (via TCP) with a
separate Java program that executes on a PC or other
remote computer. The template software captures sensor
frames via the Linux device driver and transmits the image
data over a network. The Java software receives this data
and renders it on the PC’s display. It also allows the user to

interactively view and modify the values of all sensor
configuration registers.

4.3. Application Mapping
This section presents results from mapping an SoC onto

the Watson platform using the design flow as described in
Section 3. The intent of this section is to show the
utilization of the FPGA for a basic design, as shown
previously in Figure 1b. There are many other
configurations with different system performance that can
be explored in the design using streaming hardware
accelerators. Table 3 shows the FPGA slices obtained from
synthesis results for different peripherals and bus
components. The list is shown for a single PowerPC
(PPC) core design, subtotaling 29% of the total number of
gates in the Xilinx Virtex XC4VFX60-11. For dual PPC
core designs, additional peripherals and bus components
would be needed, consuming approximately 42% of the
total number of gates. Table 4 shows the synthesis results
for various streaming kernels that can be mapped to
hardware accelerators. The results are shown for a
configuration consuming the minimum amount of area.
Other configurations, derived from unrolling the loops and
increasing the number of functional units, can be also be
generated.

 Several video analysis applications using computer
vision methods can be accelerated in hardware with
improved speedups in performance over a single scalar
processor. For instance, in a lane departure warning
application, hardware acceleration of the image warping
and hough transforms can speed up the performance six-
fold. In a license plate recognition (LPR) application,
morphological filters that are mapped to streaming
hardware accelerators can improve its frame-rate by
approximately 1.18 times over a single ARM946ES (16KB
I/D cache, 100 MHz) processor. As shown in Figure 5, the
morphological filters are only one of many in a series of
computation kernels in the entire application. Additional
speedups are anticipated when other portions of the
application, currently allocated to the scalar core, are
accelerated in hardware. The current design process allows
the user to select the portion of the processing chain to
accelerate by coding the kernels in stream data flow graphs

7

.DataPathBegin
// Functional Units
fu(adder0, adder, 1);
fu(logic0, logic, 1);
fu(sin1, InStream, 1);
... more ...

// Functional Unit Slices
sfu(adder0.0, {vsub, vabs, vnop}, {32,32,16}, 1, 1);
sfu(logic0.0, {vmin, vmax, vif, vnop}, {16,16,32,16}, 1, 1);
sfu(sin1.0, {vld, vnop}, {16}, 0, 1);
... more ...

// Line Queues
queue(Qadder0_0_0, adder0.0, [31..0], 1);
queue(Qlogic0_0_0, logic0.0, [15..0], 1);
queue(Qsin1_0_0, sin1.0, [15..0], 1);
... more ...

.DataPathEnd

.ControlPathBegin
cstep(3)
//
// Operations for each Functional Unit
ctl_ops(adder0, {{vsub.s32.u32.u16}, {vnop}, {vabs.u32.s32.u16}});
ctl_ops(logic0, {{vmax.u16.u16.u32.u16}, {vnop}, {vmin.u16.u16.u32.u16});
ctl_ops(sin1, {{vld.u16}, {vnop}, {vnop});
... more ...

// Operands for each Functional Unit Slice Input
ctl_opnds(adder0.0.A, {{Qlogic2_0_0.0}, {vnop}, {Qadder0_0_0.0});
ctl_opnds(adder0.0.B, {{Qlogic3_0_0.0}, {vnop}, {vnop});
ctl_opnds(logic0.0.A, {{Qsin1_0_0.0}, {vnop}, {Qlogic0_0_0.0});
ctl_opnds(logic0.0.B, {{Qsca_z15_0_0.0}, {vnop}, {Qsca_z0_0_0.0});
ctl_opnds(logic0.0.C, {{vnop}, {vnop}, {vnop});
... more ...

// Controls for each Queue
ctl_queue(Qadder0_0_0, {{1}, {0}, {1}});
ctl_queue(Qlogic0_0_0, {{1}, {0}, {1}});
... more ...

.ControlPathEnd

+vld

logic

+vld

logic

Figure 7. Data path template description

FU Alloc

Functional Unit (FU)
instantiation+

Iteration Interval
Determination

1

FU FU

vld

vadd vshl

vmulvsub

vst

Streaming DFG +
Stream Descriptors +
Resource Constraints +
System Constraints

Build
Stream IF

Build
Data Path

3

Synthesis and
Place&Route

5

Modulo
Scheduling

2
vld, vadd

vmul

vsub, vshl

0
1
..
II-1

Generate
Verilog.v

4
Streaming

Architecture
Template

FPGA Verilog
Files

FU Alloc

Functional Unit (FU)
instantiation+

Iteration Interval
Determination

1

FU FU

vld

vadd vshl

vmulvsub

vst

vld

vadd vshl

vmulvsub

vst

Streaming DFG +
Stream Descriptors +
Resource Constraints +
System Constraints

Build
Stream IF

Build
Data Path

3

Synthesis and
Place&Route

5

Modulo
Scheduling

2
vld, vadd

vmul

vsub, vshl

0
1
..
II-1

Generate
Verilog.v

4
Streaming

Architecture
Template

FPGA Verilog
Files

Figure 6. Example design flow (as a sequence of steps) to generate streaming hardware accelerators

(sDFG). Readers are referred to [18] for more details of the
hardware acceleration of the LPR application.

Figure 6 illustrates the example design flow as a
sequence of five steps. The sDFG, stream descriptors, and
other resource constraints (such as maximum gate count
and maximum bandwidth) are used by a compiler to
allocate a set of functional units (step 1). Then using
modulo scheduling techniques similar to [27,28,29], a
sequence of events are arranged so that the functional units

can operate properly (step 2). The sequence of events is
similar to a series of VLIW (very long instruction word)
operations. The streaming hardware accelerator, consisting
of a data path and stream unit, is then selected (step 3). An
interim hardware description file is used to describe the
components within the accelerator. As shown in Figure 7,
sDFG nodes and arcs have been associated with hardware
resources such as functional units and queues. A set of
state machines is also listed to generate the proper control
signals. The hardware is then generated (step 4) and
synthesized (step 5) into the FPGA.

The performance numbers provided in this paper are for
a nominal design configuration within the system-design
space. Given larger gate resources, the performance can
improve by leveraging the inherent task and data
parallelism of the applications. With the design flow and
Watson platform described in this paper, an application
designer can easily explore the different hardware
accelerator configurations and prototype their computer
vision methods quickly. Using the streaming hardware
accelerators, the hardware platform and system software
described in this paper form an integrated smart camera
development kit.

5. CONCLUSION
This paper presents a streaming architecture template

and development platform dedicated for embedded
computer vision applications. The design process is a part
of a design automation flow whereby hardware
accelerators are used to execute computationally intensive
kernels. In addition, the memory hierarchy is configured to
support automatic data prefetching and alignment. The
software architecture and live-view demonstration
template are shown with reports on the memory usage and
gate-count consumption on the FPGA. With this design
process, application designers can now focus on
application development rather than the complicated

8

design process.
There are many future research activities to fully

automate the design process. A set of compiler tools are
being investigated to automatically select user kernels for
acceleration. Additional parameters for the stream
descriptors are considered to describe a moving region of
interest within an image window.

References
[1] M. Bramberger, A. Doblander, A. Maier, B. Rinner,

“Distributed Embedded Smart Cameras for Surveillance
Applications,” Computer, February 2006, pp. 68-75.

[2] W. Wolf, B. Ozer, T. Lv, “Smart Cameras as Embedded
Systems,” Computer, September 2002, pp. 48-53

[3] W.J. MacLean, “An Evaluation of the Suitability of FPGAs
for Embedded Vision Systems”, Computer Vision and
Pattern Recognition (CVPR), vol 3, June 2005, pp.131-138.

[4] P. Ranganathan, S. Adve, N.P. Jouppi, “Performance of
image and video processing with general-purpose processors
and media ISA extensions,” Proceedings of the 26th Annual
International Symposium on Computer Architecture
(ISCA’99), May 1999, pp. 124-135.

[5] S.P. Amarasinghe; W. Thies, “Architecture, languages and
compilers for the Streaming Domain,” PACT 2003 Tutorial,
http://cag.lcs.mit.edu/wss03/.

[6] M. Bedford, et al, “Evaluation of the Raw microprocessor:
An exposed-wire-delay architecture for ILP and streams,”
Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA’04), June 2004, pp. 2-14.

[7] S. Rixner, W.J. Dally, U. J. Kapasi, et. al., “A bandwidth-
efficient architecture for media processing,” Proceedings of
the 31st annual ACM/IEEE International Symposium on
Microarchitecture, November 1998, pp. 3-13.

[8] W.J. Dally, P. Hanrahan, M. Erez, et. al., "Merrimac:
Supercomputing with streams", Proceedings of the
SuperComputing SC’03 Conference, November 2003,
Phoenix, Arizona, pp. 35-43.

[9] S. Chiricescu, R. Essick, B. Lucas, et. al., "The
Reconfigurable Streaming Vector Processor (RSVP™),"
Proceedings of the 36th International Symposium on
Microarchitecture, December 2003, pp. 141-150.

[10] S. Chai, S. Chiricescu, R. Essick, et. al., “Streaming
Processors for Next Generation Mobile Imaging
Applications,” IEEE Communications Magazine, vol 43, no
12, Dec 2005, pp. 81-89.

[11] E. Caspi, M. Chu, R. Huang, et. al, “Stream Computations
Organized for Reconfigurable Execution (SCORE)”, Field
Programmable Logic (FPL), Villach, Austria, August 2000,
pp. 605-614.

[12] O. Mencer, D.J. Pearce, L.W. Howes, W.Luk, “Design Space
Exploration with a Stream Compiler”, IEEE International
Conference on Field Programmable Technology (FPT),
Tokyo, December 2003, pp.270-277.

[13] M. Gokhale, J. Sone, J. Arnold, M. Kalinowski, “Stream-
Oriented FPGA Computing in the Streams-C High Level
Language”, Field Programmable Custom Computing
Machines (FCCM), pp 49-56, 2000.

[14] D. Bursky, “Spring ‘board’ to FPGA design success,”
Electronic Design, vol 54, no 3, Feb 16, 2006, pp.53-62.

[15] M. Vidiu, G. Venkataramani, T. Chelcea, S.C. Goldstein.
Spatial Computation. Proceedings of the 11th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Boston, MA,
October 9-13, 2004, pp. 14- 26.

[16] N. Bellas, S. Chai, M. Dwyer, and D. Linzmeier, “Template-
Based Generation of Streaming Accelerators from a High
Level Representation,” Field Programmable Custom
Computing Machines (FCCM) poster, April 2006, 2 pages.

[17] V. Kathail, S. Aditya, R. Schreiber, B. Ramakrishna Rau,
D.C. Cronquist, M. Sivaraman, “PICO: automatically
designing custom computers”, Computer, vol 35, no 9,
Sept. 2002, pp. 39 – 47.

[18] S. Chai, N. Bellas, M. Dwyer, D. Linzmeier, “Stream
Memory Subsystem in Reconfigurable Platforms”,
Workshop on Architecture Research on FPGA Platforms,
Austin, TX, February 2005, 4 pages.

[19] N. Bellas, S. Chai, M. Dwyer, and D. Linzmeier, “FPGA
implementation of a license plate recognition SoC using
automatically generated streaming accelerators,”
Reconfigurable Architecture Workshop, Rhodes Island,
Greece, April 2006, 4 pages.

[20] M. Sen, I. Corretjer, F. Haim, et. al, “Computer Vision on
FPGAs: Design Methodology and its Application to Gesture
Recognition”, Computer Vision and Pattern Recognition
(CVPR), June 2005, pp. 133-140.

[21] S. Chai, A. López-Lagunas, “Streaming I/O for Imaging
Applications”, IEEE International Conference on Computer
Architecture for Machine Perception, Palermo, Italy, July
2005, pp. 178-183.

[22] A. López-Lagunas, S. Chai, “Memory Bandwidth
Optimization through Stream Descriptors”, Memory
Performance: Dealing with Applications, Systems and
Architecture (MEDEA) Workshop, St. Louis, September
2005, pp. 59-66.

[23] J. Marathe, F. Mueller, T. Mohan, et. al., “METRIC:
Tracking down inefficiencies in the memory hierarchy via
binary rewriting”, International Symposium on Code
Generation and Optimization, March 2003, pp. 289-300.

[24] P. Havlak, K. Kennedy, “An implementation of
interprocedural bounded regular section analysis”, IEEE
Transactions on Parallel and Distributed System, vol. 2, no.
3, July 1991, pp. 350-360.

[25] Xilinx Inc, “ML401/ML402/ML403 Evaluation Platform Users
Guide”, www.xilinx.com/bvdocs/userguides/ug080.pdf

[26] Micron Technology Inc, “1/3-Inch, Wide-VGA CMOS
Digital Image Sensor”, “640H x 480V, Ultra Low-Power,
CMOS Digital Image Sensor Camera System-on-a-Chip”,
“3-Megapixel CMOS Digital Image Sensor”,
http://micron.com/products/imaging/products

[27] S. Ohm, F. Kurdahi, N. Dutt, “A unified lower bound
estimation technique for high-level synthesis”, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol16, No. 5, May 1997, pp. 458-472.

[28] J. Jeon. D. Kim, D. Shin, K. Choi, “High level synthesis
under multi-cylcle interconnect delay”, Proceedings of the
2001 conference on Asia South Pacific design automation,
2001, pp. 662-667.

[29] S. Tarafdar and M. Leeser, “The DT-model: high-level
synthesis using data transfers”, Proceedings of the 35th
annual conference on design automation, 1998, pp. 114-121

