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Abstract 

 
Smart cameras using FPGAs require an automation method 
to simplify the design process and to ensure both 
computation and memory performance are met. 
Reconfigurable logic allows exploration of different 
hardware accelerators and memory-hierarchy 
configurations based on application needs. This paper 
presents a streaming architecture template that is generated 
from high level program descriptions. A smart camera 
development platform, the software architecture, and 
demonstration template are also described. 

1. Introduction 
Embedded smart cameras using computer vision methods 

for video analysis [1,2] can benefit from reconfigurable 
FPGA platforms to provide the necessary performance and 
flexibility [3]. The levels of integration of modern FPGAs 
have advanced to a point where all functions of a complex 
System on Chip (SoC) can be mapped onto a single die. 
FPGA manufacturers have embedded scalar processor 
cores, multipliers, and SRAM memories in order to speed-
up commonly used algorithms. They also offer peripherals, 
fixed IP functions, and even synthesizable processor cores 
for further customization. Architecture designs for smart 
camera applications can be configured on the FPGA 
platform to better optimize the memory subsystem and 
computation structures.  

This paper presents a streaming architecture template 
which consists of hardware accelerators and memory 
subsystem to support the computation and bandwidth 
requirements. The design process consists of a stream 
programming model with the familiarity of a high level 
programming language. The hardware accelerators are 
generated from user defined kernels while the streaming 
memory subsystem is capable of automatic prefetching and 
alignment. Following the design process allows a larger 
segment of engineers that may not have expertise in system 
architecture and hardware design to prototype on FPGAs. 
Since particular hardware structures are abstracted out with 
a software-only front end interface, application 
development becomes less complicated. 

Furthermore, applications related to video analysis are 
often limited by bandwidth because of the imbalance 
between processor and memory performance [4]. Even 

though FPGAs continue to provide larger numbers of 
configurable logic blocks that can be mapped to processing 
elements to speed up computation, the interconnect delays 
and slow memories can become bottlenecks. The 
streaming model decouples the descriptions of memory 
access sequences from the computation within a kernel, 
thus making the customization of each of these two 
components (computation and memory access) easier and 
more amenable to optimization. The system is then 
synthesized for an FPGA in a development kit with 
integrated image sensors and peripherals for video 
analysis.  

The structure of the paper is as follows: Section 2 
presents the related work relevant to this paper; Section 3 
gives a brief presentation of the system architecture, 
stream programming model, and architecture template; 
Section 4 describes a smart camera development platform 
and the associated software platform; Section 5 concludes 
the paper. 

2. Related Work 
Stream processing is a computational model that 

operates on sequences of ordered data (streams) using 
computation kernels (filters) [5]. While both industry and 
academia have studied the concurrency of computation and 
data movement, this streaming model provides a new and 
interesting framework that brings together both task and 
data level parallelism within the same context. The 
programmer explicitly defines the data accesses and 
computation separately, thereby exposing concurrency and 
locality for the compiler to schedule both in hardware. 

The computation and data movement characteristics of 
smart camera applications are a good match for the stream 
model of computation. Making data movement explicit and 
describing which portions of the application can be 
computed in parallel enable compilers to optimize data 
movement and match it to the available hardware 
accelerators.  

A number of streaming processor architectures have 
been developed over recent years. Examples of stream 
processors include RAW [6], Imagine [7], Merrimac [8], 
and the RSVP™ architecture [9,10]. Stream processors are 
similar to vector processors in their ability to hide latency, 
amortize instruction overhead, and expose data parallelism 
by operating on large sets of data. However, stream 
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Figure 1. (a) Generated streaming accelerators, (b) Integration of streaming accelerators in SoC design 

processors support a more complex access pattern by 
allowing the programmer to explicitly define the data 
movement. 

There are also other classes of streaming architectures 
with origins from reconfigurable FPGA platforms. These 
architectures rely on the flexibility of the platform to 
synthesize streaming accelerators based on programmer 
definition. In comparison to the above mentioned 
architectures, a set of compiler tools create optimized 
hardware configurations rather than map computation onto 
ASIC designs. These architectures are associated with the 
programming language or compiler tool that allows 
software developers to configure hardware for stream 
computation. Examples include SCORE [11], ASC [12], 
and Streams-C [13]. 

This paper describes a streaming architecture template 
comprised of hardware accelerators and a memory 
subsystem to perform the computational heavy lifting for a 
scalar processor. The accelerators are generated from 
program instructions while the memory subsystem is based 
on a description of data shape in memory. This 
programming model uses an extension on the format 
presented in [9, 10], and is described in Section 3. Using the 
stream computation model, which separates description of 
computation and communication, the accelerator and 
memory subsystem can be optimized separately on the 
FPGA for different applications. 

The FPGA platform allows different configurations of 
the accelerator and memory subsystem. While there are 
many FPGA development boards available from either 
FPGA or third party vendors, it is the understanding of 
these authors that none are made specifically for embedded 
computer vision. Readers are referred to [14] for a review 
of available FGPA development boards. FPGA board 
support packages with key components for image 
processing (hardware and software templates for image 
processing, integrated device drivers for one or more image 
sensors, and standard application example) are usually not 

available on a generic development kit. This paper presents 
these elements in an FPGA platform (Watson) to support 
the streaming accelerators. Once optimized for a particular 
class of computer vision applications, the design can be 
ported into standard or structured-ASIC design flows for 
fabrication and productization. 

3. System Architecture 
3.1.  Design flow 

The design process consists of the application 
programmer describing the application in a high level 
language such as C. For computationally intensive kernels, 
such as loops, hardware accelerators are generated to lift 
the heavy computation load from the scalar processors. 
Scalar processors are reserved for normal conditional code 
since that code is not easily parallelizable and generated 
hardware is not efficient [15]. Our streaming architecture 
template, shown in Figure 1, is dedicated for high 
throughput, parallelizable code, with support for all kinds 
of parallelism (instruction, data, and task). 

The overall design flow and automation tool is 
described in [16]. The design flow is not unlike [17] with 
the exception of the streaming architecture templates. This 
paper is focused on the streaming architecture template 
and its use in embedded smart cameras. In Section 4, an 
example application is accelerated in hardware using this 
flow. Currently, the kernels are described using a stream 
data flow graph (sDFG). A compiler can then create a 
parameterized hardware description of the hardware 
accelerator. This description is used to generate RTL 
(Verilog), and later synthesized onto the FPGA. 

3.2. Streaming Hardware Architecture Template 
There are two parts to the architecture template: the 

streaming data path and the stream unit (Figure 1a). 
Computations are mapped to the data path, while the 
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Figure 2. Kernel computation (sDFG) and memory 

access (stream descriptors) are extracted from 
program code 

stream unit forms the system’s memory hierarchy. Each 
data path and stream unit have their own generation 
process.  

The architecture uses stream units to prefetch data from 
memory and turn data streams into FIFO queues of stream 
elements for the data path. Each stream unit handles all 
issues regarding loading/storing of data including: address 
calculation, byte alignment, data ordering, and bus 
interfacing. The stream unit consists of one or more input 
and output stream modules, and is generated to match the 
characteristics of the programmer’s description of the 
stream data (stream descriptors), the characteristics of the 
bus-based system and the streaming data path. An address 
generation unit actively creates memory addresses for the 
system bus while bus line buffers temporarily store bus 
data. Stream buffers are used to reorder and align the data 
based on computational needs. Readers are referred to [18] 
for more details about the reconfigurable elements of the 
stream unit. 

A data path is generated to execute a given kernel 
defined in the program code. There is a network of 
functional units that produce and consume streaming data 
elements. A reconfigurable link is formed by a tree of 
multiplexers and line queues to direct proper data elements 
to each functional unit. The control logic is distributed and 
spatially near the corresponding functional unit, 
multiplexer, and line queues. This was done to avoid long 
interconnects in critical paths. The reconfigurable 
parameters of the data path include the following: type of 
functional units (ALUs, multipliers, shifters, etc), the 
custom operation performed within a type (e.g. only 
addition or subtraction for an ALU), the width of the 
functional unit, the size and number of storage elements, the 
interconnect between functional units, and the bandwidth to 
and from the stream unit. Readers are referred to [19] for 
more details about the reconfigurable data path and the 

sDFG mapping process. 
 Figure 1b illustrates an example SoC that can be placed 

into the FPGA along with the generated hardware 
accelerators. A set of peripherals is used to control external 
components of the embedded smart camera on the 
development board, described later in Section 4.  

3.3. Stream Programming Model 
Computation and data accesses for the streaming 

accelerator are defined separately in the program code, as 
shown in Figure 2. We are using a stream data flow graph 
(sDFG) language to express operations composing the 
streaming operations in a machine independent manner. A 
sDFG consists of nodes representing basic arithmetic, 
logic, and load/stores operations. The directed edges of the 
sDFG represent the dependency of one operation on the 
output of the previous operation [9,10]. The use of a 
graphing language is very useful in describing signal 
processing applications and has been used in computer 
vision applications [20]. 

Memory access patterns are expressed using a 
programming API, called a stream descriptor. A stream 
descriptor is represented by the tuple (Type, 
Start_Address, Stride, Span0, Skip0, Span1, Skip1, Size), 
where: 
• Type indicates the element size in bytes (Type is 0 for 
bytes, 1 for 16-bit half-words, etc.). 
• Start_Address represents the memory address of the first 
stream element. 
• Stride is the spacing, in number of elements, between 
two consecutive stream data elements. 
• Span0 is the number of elements that are gathered 
before applying the skip0 offset. 
• Skip0 is the offset applied between groups of span0 
elements, after the stride has been applied. 
• Span1 is the number of elements that are gathered 
before applying the skip1 offset. 
• Skip1 is the offset applied between groups of span1 
elements, after the stride and the Skip0 have been applied. 

The Stride, Span, Skip, and Type fields define the shape 
of the data stream in memory, while Start_Address defines 
the location of the first data element. The grouping and 
order in which data is accessed defines a Stream Record 
and corresponds to the desired alignment for the 
computation kernel. Multidimensional or even non-regular 
shapes can be created by extending the defined semantics 
of each stream descriptor. Figure 2 shows an example of a 
memory access pattern described by a stream descriptor, 
which is loaded into the stream unit (shown previously in 
Figure 1) to move data on the system bus.  

Stream descriptors have been used to optimize transfers 
from I/O devices [21] and from memory [22]. Similar 
techniques to describe the shape of memory accesses have 
also been used for trace generation [23,24]. Stream 
descriptors are a language extension to specify memory 
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access patterns, which is used by dedicated stream units to 
prefetch and assemble data. The stream descriptors and 
compiler manipulations are active research areas. Readers 
are referred to [9,10] for more details. 

4. Smart Camera Development Kit 
4.1. Hardware Platform 

The generated hardware accelerator and peripherals, 
described in Section 3, are synthesized onto an FPGA on a 
smart camera development board (Watson). This section 
presents the hardware aspects of the platform. The Watson 
platform offers a wide variety of peripherals, highlighted in 
Table 1. Many combinations of these peripherals may be 
used in a particular system, but the full description is 
beyond the scope of this paper. Figure 3 illustrates the main 
Watson board and four image sensor boards. 

This section will describe three unique attributes of the 
Watson platform: multiple image sensor support, separable 
memory banks, and FPGA system reconfiguration. As in 
many reference platforms such as [25], there are certain 
features that are standard. However, the authors believe that 
these three features are key enablers to deploy certain 
embedded smart camera applications. 
4.1.1 Multiple Image Sensor Interfaces 

The Watson platform implements two types of image 
sensor interfaces, a 10-bit parallel data bus plus 
control/clock signals, and a low voltage differential 
signaling (LVDS) serial bus interface known in the industry 
as BusLVDS. The LVDS interface greatly reduces the 
signal and pin count of the sensor interface and also allows 
the sensors to be placed remotely, up to five meters away, 
from the processing engine. Four ribbon-cable connectors 
are located on the bottom of the Watson board and on each 
of the sensor daughter cards to provide for the parallel 
interfaces to the image sensors. Although the Watson board 
originally implemented four RJ45 connectors (located on 
the top of the board) to provide for the LVDS interfaces, 
these connectors have since been replaced by 9-pin IEEE-
1394b beta (Firewire-B) connectors. Extensive testing has 
shown that the RJ-45 connectors and cabling are too lossy 

at the current LVDS bit rates of 320 and 486 Mbits/sec and 
that IEEE-1394b connectors and cables are much more 
suitable for use at these high bit rates. Several image 
sensor daughter boards with Micron image sensors were 
designed onto the Watson printed circuit board panel, 
ranging in resolution from VGA, MT9V022 & MT9V111, 
to three megapixels, MT9T001 [26]. Depending on each 
sensor’s available hardware interfaces, either the parallel 
or the LVDS interfaces may be used to collect the sensor 
data for processing inside the FPGA. The Watson board is 
capable of supporting up to eight Micron image sensors 
when each of four pairs of sensors are configured to 
operate in Micron’s proprietary dual-sensor (lockstep) 
LVDS mode. The daughter cards implement only one 
sensor per board so the overall system is limited to four 
image sensors at this time. It should be noted that the 
available bus bandwidth in the FPGA determines how 
many sensors can be used simultaneously so a tradeoff 
between the number of sensors in the system and the frame 
rates of each sensor interface constitute the necessary 
compromises. 

All of the logic required to implement both the parallel 

Table 1. Highlighted features of the FPGA-based smart camera board 
Attributes Description 

FPGA FPGA device (one of three different Virtex 4 FX devices, XC4VFX40, XC4VFX60, XC4VFX100) in 
FF1152, 35x35 mm size Ball Grid Array (BGA) package, with embedded Power PC (PPC) core. 

DDR Banks Double Data Rate (DDR) SDRAM, 128 Mbytes, 200 MHz, MT46V16M16FG chips 
Image Sensors Up to four pairs of image sensors: parallel or low voltage differential signaling (LVDS) connections 
UART Universal Asynchronous Receiver Transceiver (UART); 120kbps at RS-232 output levels. 
FLASH Memory 32 Mbytes, 120nsec, MT28F128J3BS chips 
Ethernet 10/100/1000 BaseT, Marvell 88E1111 PHY, RJ45 connector with integrated magnetics 
USB OTG Universal Serial Bus (USB) on-the-go (OTG) Revision 2 compliant, 480 Mbit/sec 
Display RGB Video Monitor Output. Analog Devices ADV7123, 15-pin D-shell connector 
GPIO General Purpose Input/Output (Eight inputs, eight outputs), DIP switch and LED indicators 
Compact Flash  Three mode operation:  Memory mode, Input/Output mode and True IDE mode 
Power Supply Wide voltage range from +5V to +30V. Designed to withstand harsh automotive environments 

Figure 3. FPGA-based smart camera development kit
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Table 2. Flash and RAM usage 
Description Flash RAM (runtime) 
Bootloader 129KB -- 
Bootloader 
settings 1KB -- 

Linux Kernel 670KB 
(compressed) 

1.5MB 
(uncompressed) 

Linux 
Filesystem 

4.7MB 
(compressed) 

16MB (13MB data, 
3MB unused) 

and LVDS serial interfaces is contained within the Micron 
sensor and the FPGA. Those Micron sensors that support 
LVDS mode contain an embedded serializer that generates 
the differential data and clock signals directly to the 
Firewire-B cable. The FPGA contains the LVDS receivers 
and a custom deserializer module that outputs parallel 
interface signals identical to those generated by the Micron 
sensor when it is operating in the parallel interface mode. 
This enables the use of a common sensor interface module 
(SIF) within the FPGA that is programmed by software to 
either accept data directly from the sensor (parallel mode) 
or from the deserializer module (LVDS mode). The SIF 
supports sensor resolutions up to 16 megapixels and 
interfaces to DDR memory via cache-line DMA transfers 
on the bus without software intervention. Software only 
needs to program setup information into the SIF registers to 
match that of the sensor being used. 
4.1.2 Separable memory banks 

Two banks of Double Data Rate (DDR) DRAM reside on 
the Watson platform, each consisting of 64 MB. The 
external databus width is 32 bits and has a maximum clock 
speed of 200 MHz. The memory banks may be configured 
as two 64 MB banks of 32 bit wide memory for a single 
Power PC (PPC) core, one 32 bit wide, 64 MB bank for 
each PPC core or one 64 bit wide bank of 128MB for a 
single PPC core. The configuration is application dependent 
so if a wider memory bandwidth is necessary for a 
particular design, a 64-bit wide interface may be used to 
maximize the throughput. 
4.1.3 FPGA system reconfiguration 

The Watson platform is designed for maximum 
flexibility for a variety of applications. One of the key 
components to Watson is to have the ability to remotely 
change both the software and hardware-configuration when 
updating algorithms or applications. Configuration circuitry 
has been incorporated into the Watson platform to allow 
this feature, i.e. remotely updating software and hardware. 
Platform flash devices are used to configure the FPGA at 
power up. Once these devices detect that power has been 
applied to the system, they proceed to configure the FPGA 
with the selected hardware configuration. When the system 
is up and running, a different hardware configuration may 
be programmed into the platform flash devices which 
effectively changes the makeup of the application hardware 
upon the next configuration cycle.  

4.2. System Software 
The computation kernels (sDFG) and stream 

descriptors, described in Section 3, can be integrated into 
the system software on the Watson platform. While there 
are many aspects of the software that could be described, 
this section describes only the Linux operating system 
(OS) and demonstration template since they are the key 
components for embedded computer vision applications. 
4.2.1 Linux OS 

The Linux OS (kernel version 2.4) is being ported to the 
Watson platform as part of the development kit to support 
application developers. The porting task involves porting a 
bootloader to the Watson platform, porting the Linux 
kernel and setting up a file-system suitable for a disk-less 
system. Software device drivers for the image sensor 
interfaces, described in Section 4.1.1, will be provided to 
capture images from external sensors. In addition, device 
drivers for I2C transfer protocol using the GPIO to control 
external Micron image sensors are also provided. Using 
the provided device driver API, application developers can 
control the image sensors to set exposure gain, region of 
interest, and other operating parameters. 

Table 2 shows a Flash and RAM usage-list to offer an 
insight to available memory for application developers. 
While there are many variations on how an application can 
be setup, the information in the table shows the base 
memory usage for the OS, bootloader, and filesystem. 
Additional memory would be necessary to set up frame 
buffers for the image sensor data and display. The frame 
buffers are dependent on image sensor size and the region 
of interest for video analysis. Optimization of Flash and 
RAM usage can be made to further reduce the size of the 
basic OS setup. 
4.2.2 Live View Template Software 

A base demonstration application can reduce the 
learning curve for users with examples on functional code.  
Two such templates will be available. Both consist of the 
basic image capture process from image sensor interface, 
storage and retrieval from memory, and transfer to an 
output device. 

One template runs directly on the PowerPC embedded 

Allocate a free input buffer
Start an image capture into input buffer
Wait for the image capture to complete
Allocate a new free input buffer
Start an image capture into input buffer
Allocate a free output buffer
Process the image, from input buffer to output buffer
Free input buffer
Set video controller to use newly-filled output buffer
Free previous output buffer used by video controller 
Repeat

Allocate a free input buffer
Start an image capture into input buffer
Wait for the image capture to complete
Allocate a new free input buffer
Start an image capture into input buffer
Allocate a free output buffer
Process the image, from input buffer to output buffer
Free input buffer
Set video controller to use newly-filled output buffer
Free previous output buffer used by video controller 
Repeat

Figure 4. Pseudocode for example Live-View software
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of kernels separated by decision logic 

Table 3. Peripherals and Bus Components 
Module 
Name 

FPGA 
Slices Module Name 

FPGA 
Slices 

DCR 1 WatchDog 89 
JTAG 1 BRAM wrapper 262 
PLB bus 264 DDR Controller 824 
OPB bus 72 LVDS module 155 
Bus bridge 677 Ethernet 2708 
GPIO 148 Image Sensor IF 314 
Flash 
Controller 190 LCD Controller 187 
Compact 
Flash 685 

Interrupt 
Controller 134 

Reset 39 Clock Generator 40 

Timer 269 UART 303 
Subtotal          7362 (29%) 

Table 4. Generated hardware accelerators 
Streaming 
Kernels 

FPGA 
Slices 

Throughput 
(Bytes/cycle) 

Frequency
(MHz) 

Binarization 189 1 218 
Open Filter 731 0.15 188 
Edge Detection 1677 0.07 174 
Quantization 236 2 219 
Column DCT 1148 1.23 171 
Row DCT 1129 0.94 149 
(LPF) Color  
Processing 2687 1.1 121 
(HPF) Color 
Processing 2529 1.33 177 

in the Virtex 4 FPGAs, without Linux or any other OS, and 
therefore does not use the Linux device driver.  This 
software displays the sensor image on a monitor via the 
video connector. Figure 4 shows this live-view process and 
the use of frame buffers in memory. The buffer sizes 
depend on the sensor (e.g. number of pixels multiplied by 
the bytes per pixel). For the video controller, the buffer size 
is VGA (640x480 pixels) at 4 bytes per pixel. Excluding the 
various image buffers, the live-view template runs under 
64KB, which includes stack space, string constants, and 
other compiled items. For more advanced video analysis, 
multiple frame buffers that are sized to a smaller region of 
interest may be used for different hardware accelerators. 
For example, separate frame buffers can be allocated for 
different hardware accelerators to perform DCT and low-
pass filters. 

The second template is a simple client-server application.  
This software runs on Linux and interacts (via TCP) with a 
separate Java program that executes on a PC or other 
remote computer.  The template software captures sensor 
frames via the Linux device driver and transmits the image 
data over a network.  The Java software receives this data 
and renders it on the PC’s display.  It also allows the user to 

interactively view and modify the values of all sensor 
configuration registers. 

4.3. Application Mapping 
This section presents results from mapping an SoC onto 

the Watson platform using the design flow as described in 
Section 3. The intent of this section is to show the 
utilization of the FPGA for a basic design, as shown 
previously in Figure 1b. There are many other 
configurations with different system performance that can 
be explored in the design using streaming hardware 
accelerators. Table 3 shows the FPGA slices obtained from 
synthesis results for different peripherals and bus 
components.  The list is shown for a single PowerPC 
(PPC) core design, subtotaling 29% of the total number of 
gates in the Xilinx Virtex XC4VFX60-11. For dual PPC 
core designs, additional peripherals and bus components 
would be needed, consuming approximately 42% of the 
total number of gates. Table 4 shows the synthesis results 
for various streaming kernels that can be mapped to 
hardware accelerators. The results are shown for a 
configuration consuming the minimum amount of area. 
Other configurations, derived from unrolling the loops and 
increasing the number of functional units, can be also be 
generated. 

 Several video analysis applications using computer 
vision methods can be accelerated in hardware with 
improved speedups in performance over a single scalar 
processor. For instance, in a lane departure warning 
application, hardware acceleration of the image warping 
and hough transforms can speed up the performance six-
fold. In a license plate recognition (LPR) application, 
morphological filters that are mapped to streaming 
hardware accelerators can improve its frame-rate by 
approximately 1.18 times over a single ARM946ES (16KB 
I/D cache, 100 MHz) processor. As shown in Figure 5, the 
morphological filters are only one of many in a series of 
computation kernels in the entire application. Additional 
speedups are anticipated when other portions of the 
application, currently allocated to the scalar core, are 
accelerated in hardware. The current design process allows 
the user to select the portion of the processing chain to 
accelerate by coding the kernels in stream data flow graphs 
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.DataPathBegin
// Functional Units
fu(adder0, adder, 1);
fu(logic0, logic, 1);
fu(sin1, InStream, 1);
... more ...

// Functional Unit Slices
sfu(adder0.0, {vsub, vabs, vnop}, {32,32,16}, 1, 1);
sfu(logic0.0, {vmin, vmax, vif, vnop}, {16,16,32,16}, 1, 1);
sfu(sin1.0, {vld, vnop}, {16}, 0, 1);
... more ...

// Line Queues
queue(Qadder0_0_0, adder0.0, [31..0], 1);
queue(Qlogic0_0_0, logic0.0, [15..0], 1);
queue(Qsin1_0_0, sin1.0, [15..0], 1);
... more ...

.DataPathEnd

.ControlPathBegin
cstep(3)
//
// Operations for each Functional Unit
ctl_ops(adder0, {{vsub.s32.u32.u16}, {vnop}, {vabs.u32.s32.u16}});
ctl_ops(logic0, {{vmax.u16.u16.u32.u16}, {vnop}, {vmin.u16.u16.u32.u16});
ctl_ops(sin1, {{vld.u16}, {vnop}, {vnop});
... more ...

// Operands for each Functional Unit Slice Input
ctl_opnds(adder0.0.A, {{Qlogic2_0_0.0}, {vnop}, {Qadder0_0_0.0});
ctl_opnds(adder0.0.B, {{Qlogic3_0_0.0}, {vnop}, {vnop});
ctl_opnds(logic0.0.A, {{Qsin1_0_0.0}, {vnop}, {Qlogic0_0_0.0});
ctl_opnds(logic0.0.B, {{Qsca_z15_0_0.0}, {vnop}, {Qsca_z0_0_0.0});
ctl_opnds(logic0.0.C, {{vnop}, {vnop}, {vnop});
... more ...

// Controls for each Queue
ctl_queue(Qadder0_0_0, {{1}, {0}, {1}});
ctl_queue(Qlogic0_0_0, {{1}, {0}, {1}});
... more ...

.ControlPathEnd

+vld

logic

+vld

logic

Figure 7. Data path template description 

FU Alloc

Functional Unit (FU)
instantiation+

Iteration Interval 
Determination

1

FU FU

vld

vadd vshl

vmulvsub

vst

Streaming DFG +
Stream Descriptors +
Resource Constraints +
System Constraints 

Build 
Stream IF

Build 
Data Path

3

Synthesis and
Place&Route

5

Modulo
Scheduling

2
vld, vadd

vmul

vsub, vshl

0
1
..
II-1

Generate 
Verilog.v

4
Streaming 

Architecture
Template

FPGA Verilog
Files

FU Alloc

Functional Unit (FU)
instantiation+

Iteration Interval 
Determination

1

FU FU

vld

vadd vshl

vmulvsub

vst

vld

vadd vshl

vmulvsub

vst

Streaming DFG +
Stream Descriptors +
Resource Constraints +
System Constraints 

Build 
Stream IF

Build 
Data Path

3

Synthesis and
Place&Route

5

Modulo
Scheduling

2
vld, vadd

vmul

vsub, vshl

0
1
..
II-1

Generate 
Verilog.v

4
Streaming 

Architecture
Template

FPGA Verilog
Files

 
Figure 6. Example design flow (as a sequence of steps) to generate streaming hardware accelerators 

(sDFG). Readers are referred to [18] for more details of the 
hardware acceleration of the LPR application. 

Figure 6 illustrates the example design flow as a 
sequence of five steps. The sDFG, stream descriptors, and 
other resource constraints (such as maximum gate count 
and maximum bandwidth) are used by a compiler to 
allocate a set of functional units (step 1). Then using 
modulo scheduling techniques similar to [27,28,29], a 
sequence of events are arranged so that the functional units 

can operate properly (step 2). The sequence of events is 
similar to a series of VLIW (very long instruction word) 
operations. The streaming hardware accelerator, consisting 
of a data path and stream unit, is then selected (step 3). An 
interim hardware description file is used to describe the 
components within the accelerator. As shown in Figure 7, 
sDFG nodes and arcs have been associated with hardware 
resources such as functional units and queues. A set of 
state machines is also listed to generate the proper control 
signals. The hardware is then generated (step 4) and 
synthesized (step 5) into the FPGA. 

The performance numbers provided in this paper are for 
a nominal design configuration within the system-design 
space. Given larger gate resources, the performance can 
improve by leveraging the inherent task and data 
parallelism of the applications. With the design flow and 
Watson platform described in this paper, an application 
designer can easily explore the different hardware 
accelerator configurations and prototype their computer 
vision methods quickly. Using the streaming hardware 
accelerators, the hardware platform and system software 
described in this paper form an integrated smart camera 
development kit. 

5. CONCLUSION  
This paper presents a streaming architecture template 

and development platform dedicated for embedded 
computer vision applications. The design process is a part 
of a design automation flow whereby hardware 
accelerators are used to execute computationally intensive 
kernels. In addition, the memory hierarchy is configured to 
support automatic data prefetching and alignment. The 
software architecture and live-view demonstration 
template are shown with reports on the memory usage and 
gate-count consumption on the FPGA. With this design 
process, application designers can now focus on 
application development rather than the complicated 
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design process.  
There are many future research activities to fully 

automate the design process. A set of compiler tools are 
being investigated to automatically select user kernels for 
acceleration. Additional parameters for the stream 
descriptors are considered to describe a moving region of 
interest within an image window.  
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