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1. INTRODUCTION 

The availability of a tool flow that abstracts out the FPGA 
hardware structures and presents a software-only front end 
interface to the application developer is a necessary step to 
precipitate the acceptance of FPGAs as SoC platforms. 
Such a tool can be used by a larger pool of engineers, and 
not necessarily experts in system architecture and hardware 
design. Furthermore, an architectural automation tool 
should combine interactive architectural exploration, 
automatic hardware-software partition and an efficient 
mapping of one or multiple kernels to the reconfigurable 
fabric. 
We have developed an automation process which maps 
streaming data flow graphs (sDFG) to accelerators of the 
main scalar core. The streaming programming model 
assumes that the kernels process streams of data with a 
relatively limited lifetime, and deterministic memory access 
pattern. The streaming model decouples the description of 
memory access sequences from the computation within a 
kernel, thus making the customization of each of these two 
components (computation and memory access) easier and 
more re-usable. 
Programs that follow the streaming paradigm are an 
interconnect of filters that communicate using streams [1]. 
The streaming programming model separates 
communication from computation, and favors data 
intensive applications with a regular memory access 
patterns. 

2. TEMPLATE-BASED HARDWARE GENERATION 

The problem we are addressing in this paper is the 
automatic generation of synthesizable accelerators from the 
streaming representation. shows the iterative design flow. 
The main points of the tool flow, which are shown in 
Figure 1, are the following: 
• a common template based on a regular architecture 

that accesses and processes streaming data, 
• an iteration engine that instantiates system parameters 

that meet system and user constraints to initiate the 
next iteration of space search, 

• a scheduler that performs sDFG scheduling and 
hardware allocation based on the parameters set by the 
iterator, 

• an RTL constructor engine that produces optimized 
Verilog code for the data path and the stream units, 

• and an evaluation phase that synthesizes and maps the 
designs in FPGA and produces quality metrics such as 
area, and clock speed 

Each data path and stream interface unit have their own 
acceleration generation process. The rest of the section 
details each one of these engines and their interfaces. For 
brevity, we will only outline the main points of the 
accelerator templates, without detailing the hardware 
generation algorithms (Figure 2). 
The data path template of  is an interconnect of 
reconfigurable functional units that produce and consume 
streaming data, and communicate via reconfigurable links. 
The stream unit transfers streams from a system memory 
or peripheral, through a system bus and present them in-
order to the accelerator. It also transfers processed output 
streams back to the memory. 
The scheduler receives as input the sDFG along with the 
user and system constraints and schedules the operation of 
the sDFG to optimize throughput. The constraints include 
resource constraints for the data path, bus bandwidth and 
latency, etc. The scheduler uses modulo scheduling to 
overlap multiple iterations in each cycle and exploits all the 
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Figure 1  Template-based accelerator generation 



available parallelism under the resource constraints and data 
dependencies. The output of this stage is a hardware 
representation of the data path of the accelerator at a higher 
specification level than an RTL specification. The next 
stage produces the synthesizable RTL code of the 
accelerator.  
 The RTL for the stream interface is being generated by 
instantiating a series of parameters that aim at optimizing 
the effective throughput in and out of the data path. 
 

3. RESULTS 

Figure 3 shows the synthesis results for a morphological 
filter benchmark that is used for an automatic license plate 
recognition application  under several configurations (ci,uj) 
[2]. The ci parameter refers to user constraints in terms of 
maximum number of computational resources that the tool 
is allowed to utilize to schedule the sDFG. For this 
experiment, cB corresponds to a very wide configuration 
with an unlimited number of functional units while cA 
corresponds to the intermediate configuration with fewer 
functional units, similar to the RSVP-2™ accelerator [3]. 
The ui parameter shows the degree of unrolling for the 
sDFG to achieve higher throughput.  

The generated hardware is synthesized and mapped onto 
a Xilinx Virtex-4 FPGA, and the quality metrics of the 
produced bitstream (area, clock frequency) are recorded to 
assess  the quality of the design.  

Figure 3 shows the total number of FPGA slices for each 
configuration of a morphological filter benchmark, and 
how the slices are distributed among the data path and the 
stream interface. The average I/O bandwidth in bytes per 
cycle between the data path and the stream interfaces, and 
the clock frequency  in MHz after synthesis are also 
indicated at the top of each bar. The I/O bandwidth shown 
is an upper limit on the achievable bandwidth between the 
accelerator and the external bus. 

In general, wider designs require more resources because 
the template design requires a larger number of functional 
units and queuing elements at the output of each functional 
unit to store live variables at each cycle.  

4. CONCLUSION 

A design methodology and prototype tool to automate the 
design and architectural exploration of hardware 
accelerators are described in this paper. In comparison to 
other approaches, we utilize a well-engineered template to 
enable fast convergence to an area and speed efficient 
design. We show how this methodology is used for an 
application set with various architectural configurations. 
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Figure 2  The accelerator template consists of the data path and 
the stream interface unit templates. 
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Figure 3 Number of slices for each configuration of the 
benchmark.  The maximum bandwidth in bytes/cycle and 
the clock frequency in MHz, and are shown on top of each 
bar. 


