
TEMPLATE-BASED GENERATION OF STREAMING ACCELERATORS FROM A HIGH
LEVEL REPRESENTATION

Nikolaos Bellas, Sek M. Chai, Malcolm Dwyer, Dan Linzmeier

Embedded Systems Research, Motorola Inc.,
email: bellas@labs.mot.com

1. INTRODUCTION

The availability of a tool flow that abstracts out the FPGA
hardware structures and presents a software-only front end
interface to the application developer is a necessary step to
precipitate the acceptance of FPGAs as SoC platforms.
Such a tool can be used by a larger pool of engineers, and
not necessarily experts in system architecture and hardware
design. Furthermore, an architectural automation tool
should combine interactive architectural exploration,
automatic hardware-software partition and an efficient
mapping of one or multiple kernels to the reconfigurable
fabric.
We have developed an automation process which maps
streaming data flow graphs (sDFG) to accelerators of the
main scalar core. The streaming programming model
assumes that the kernels process streams of data with a
relatively limited lifetime, and deterministic memory access
pattern. The streaming model decouples the description of
memory access sequences from the computation within a
kernel, thus making the customization of each of these two
components (computation and memory access) easier and
more re-usable.
Programs that follow the streaming paradigm are an
interconnect of filters that communicate using streams [1].
The streaming programming model separates
communication from computation, and favors data
intensive applications with a regular memory access
patterns.

2. TEMPLATE-BASED HARDWARE GENERATION

The problem we are addressing in this paper is the
automatic generation of synthesizable accelerators from the
streaming representation. shows the iterative design flow.
The main points of the tool flow, which are shown in
Figure 1, are the following:
• a common template based on a regular architecture

that accesses and processes streaming data,
• an iteration engine that instantiates system parameters

that meet system and user constraints to initiate the
next iteration of space search,

• a scheduler that performs sDFG scheduling and
hardware allocation based on the parameters set by the
iterator,

• an RTL constructor engine that produces optimized
Verilog code for the data path and the stream units,

• and an evaluation phase that synthesizes and maps the
designs in FPGA and produces quality metrics such as
area, and clock speed

Each data path and stream interface unit have their own
acceleration generation process. The rest of the section
details each one of these engines and their interfaces. For
brevity, we will only outline the main points of the
accelerator templates, without detailing the hardware
generation algorithms (Figure 2).
The data path template of is an interconnect of
reconfigurable functional units that produce and consume
streaming data, and communicate via reconfigurable links.
The stream unit transfers streams from a system memory
or peripheral, through a system bus and present them in-
order to the accelerator. It also transfers processed output
streams back to the memory.
The scheduler receives as input the sDFG along with the
user and system constraints and schedules the operation of
the sDFG to optimize throughput. The constraints include
resource constraints for the data path, bus bandwidth and
latency, etc. The scheduler uses modulo scheduling to
overlap multiple iterations in each cycle and exploits all the

Accelerator
Template

Accelerator
Template

System
Constraints

System
Constraints

User
Constraints

User
Constraints

Architectural
Iterator

Architectural
Iterator

Synthesizable
RTL

Synthesizable
RTL

High Level
Accelerator

Specification

High Level
Accelerator

Specification

Component
Library

Component
Library

Parameter
Instantiation
Parameter

Instantiation

Set of
sDFGs
Set of
sDFGs

Stream
Descriptors

Stream
Descriptors

Application
Specifications
(set of sDFG)

Application
Specifications
(set of sDFG)

Design
Evaluator

(Synthesis, P&R)

Design
Evaluator

(Synthesis, P&R)

RTL
Constructor

RTL
Constructor

Scheduling &
Implementation

specific generation

Scheduling &
Implementation

specific generation

sDFG
melding

(optional)

sDFG
melding

(optional)
System
Space

Program
codeAccelerator

Template
Accelerator
Template

System
Constraints

System
Constraints

User
Constraints

User
Constraints

Architectural
Iterator

Architectural
Iterator

Synthesizable
RTL

Synthesizable
RTL

High Level
Accelerator

Specification

High Level
Accelerator

Specification

Component
Library

Component
Library

Parameter
Instantiation
Parameter

Instantiation

Set of
sDFGs
Set of
sDFGs

Stream
Descriptors

Stream
Descriptors

Application
Specifications
(set of sDFG)

Application
Specifications
(set of sDFG)

Design
Evaluator

(Synthesis, P&R)

Design
Evaluator

(Synthesis, P&R)

RTL
Constructor

RTL
Constructor

Scheduling &
Implementation

specific generation

Scheduling &
Implementation

specific generation

sDFG
melding

(optional)

sDFG
melding

(optional)
System
Space

Program
code

Figure 1 Template-based accelerator generation

available parallelism under the resource constraints and data
dependencies. The output of this stage is a hardware
representation of the data path of the accelerator at a higher
specification level than an RTL specification. The next
stage produces the synthesizable RTL code of the
accelerator.
 The RTL for the stream interface is being generated by
instantiating a series of parameters that aim at optimizing
the effective throughput in and out of the data path.

3. RESULTS

Figure 3 shows the synthesis results for a morphological
filter benchmark that is used for an automatic license plate
recognition application under several configurations (ci,uj)
[2]. The ci parameter refers to user constraints in terms of
maximum number of computational resources that the tool
is allowed to utilize to schedule the sDFG. For this
experiment, cB corresponds to a very wide configuration
with an unlimited number of functional units while cA
corresponds to the intermediate configuration with fewer
functional units, similar to the RSVP-2™ accelerator [3].
The ui parameter shows the degree of unrolling for the
sDFG to achieve higher throughput.

The generated hardware is synthesized and mapped onto
a Xilinx Virtex-4 FPGA, and the quality metrics of the
produced bitstream (area, clock frequency) are recorded to
assess the quality of the design.

Figure 3 shows the total number of FPGA slices for each
configuration of a morphological filter benchmark, and
how the slices are distributed among the data path and the
stream interface. The average I/O bandwidth in bytes per
cycle between the data path and the stream interfaces, and
the clock frequency in MHz after synthesis are also
indicated at the top of each bar. The I/O bandwidth shown
is an upper limit on the achievable bandwidth between the
accelerator and the external bus.

In general, wider designs require more resources because
the template design requires a larger number of functional
units and queuing elements at the output of each functional
unit to store live variables at each cycle.

4. CONCLUSION

A design methodology and prototype tool to automate the
design and architectural exploration of hardware
accelerators are described in this paper. In comparison to
other approaches, we utilize a well-engineered template to
enable fast convergence to an area and speed efficient
design. We show how this methodology is used for an
application set with various architectural configurations.

5. REFERENCES

[1] Amarasinghe S., Thies B. Architectures, Languages and
Compilers for the Streaming Domain. Tutorial at the 12th
Annual International Conference on Parallel Architectures
and Compilation Techniques, New Orleans, LA

[2] N. Bellas, S. M. Chai, M. Dwyer, and D. Linzmeier, FPGA
implementation of a license plate recognition SoC using
automatically generated streaming accelerators.
Reconfigurable Architecture Workshop, April 25-26, 2006.

[3] S. M. Chai, S. Chiricescu, R. Essick, A. López-Lagunas, B.
Lucas, P. May, K. Moat, J. Norris, M. Schuette, “Streaming
Processors for Next Generation Mobile Imaging
Applications,” IEEE Communications Magazine, Dec 2005

Control
Registers

Multiplexer Tree

FU

co
nt

ro
l

FU

co
nt

ro
l Reg

Reg
Acc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

addr1v

addr2i

addr3v
addr4v

A
dd

re
ss

 B
uf

fe
r

A
dd

rM
er

ge

Bus Line Buffer

Stream Queue

To other
Input Stream

S
tre

am
 In

te
rfa

ce
 T

em
pl

at
e

D
at

a
P

at
h

Te
m

pl
at

e

Control
Registers

Multiplexer Tree

FU

co
nt

ro
l

FU

co
nt

ro
l

FU

co
nt

ro
l

FU

co
nt

ro
l Reg

Reg
Acc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

addr1v addr1v

addr2i addr2i

addr3v addr3v
addr4v addr4v

A
dd

re
ss

 B
uf

fe
r

A
dd

rM
er

ge

Bus Line Buffer

Stream Queue

To other
Input Stream

S
tre

am
 In

te
rfa

ce
 T

em
pl

at
e

D
at

a
P

at
h

Te
m

pl
at

e

Figure 2 The accelerator template consists of the data path and
the stream interface unit templates.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

cA
_u

1

cA
_u

2

cA
_u

4

cB
_u

1

cB
_u

2

cB
_u

4

Morphological Filter

Data
Path

Stream
Interface

Slices

(0
.2

9
/ 1

40
)

(0
.5

7
/ 1

40
)

(0
.6

7
/ 1

40
)

(2
 /

14
0) (4

 /
14

8)

(8
 /

13
4)

Figure 3 Number of slices for each configuration of the
benchmark. The maximum bandwidth in bytes/cycle and
the clock frequency in MHz, and are shown on top of each
bar.

