Implementation and Performance Comparison of the Motion Compensation Kernel
of the AVS Video Decoder on FPGA, GPU and Multicore Processors

M. Owaida*, N.Bellas*, C. D. Antonopoulos*, K. Daloukas*, Ch. Antoniadis*, K. Krommydas1L and G. Tsoumblekas?
*Dept. of Comp. & Comm. Engineering, University of Thessaly, Volos, Greece
{mowaida, nbellas, cda, kodalouk, haadonia}@inf.uth.gr
TDept. of Computer Science, Virginia Tech, VA, USA.
kokrommy@vt.edu
J:Dept. of Informatics, National and Kapodistrian University of Athens, Greece
gradll34@di.uoa.gr

Abstract—Next generation video standards have strict and
increasing performance demands due to real-time requirements
and the trend towards higher frame resolutions and bitrates.
Leveraging the advantages of reconfigurable logic and emerg-
ing multi-core processor architectures to exploit all levels of
parallelism of such workloads is necessary to achieve real time
functionality at a reasonable cost.

Keywords-Video Compression, AVS Motion Compensation,
FPGA, Reconfigurable Computing, Multi-cores, CellBE, GPU

I. INTRODUCTION

This paper is the first work to explore, map and optimize
the Motion Compensation module of the AVS decoder on
an FPGA. It is also the first work to combine a complete
repertoire of software optimizations in order to achieve real
time FullHD decoding on Intel’s Core i7 processor, the Cell
processor and an NVidia GTX480 GPU.

II. AVS MOTION COMPENTATION
A. Algorithm

Video decoding of each frame is performed at the gran-
ularity of a macroblock (MB), i.e. a 16x16 pixels area
of the frame. Only a subset of the MBs in the frame,
called inter-predicted MBs, are predicted using the Motion
Compensation algorithm. AVS supports four sizes of sub-
blocks (8x8, 8x16, 16x8 and 16x16) for inter prediction.

B. Performance and Parallelism Potential

The AVS Motion Compensation is characterized by high
data-level parallelism. All Luma and Chroma sub-pixel val-
ues for one MB can be computed in parallel. Moreover, there
is a high degree of data- and computational-reuse, which can
be exploited to eliminate redundant memory accesses and
computations.

III. FPGA IMPLEMENTATION

The AVS Motion Compensation module is depicted in
Figure 1.

INRAM | Datapath

Eiock finigh
“ET r.'hl nto

Front End

160 1 Bl oSy
i " Infa fnish l -'_-n:T

Figure 1. FPGA AVS Motion Compensation Module.

IV. MULTICORE AND GPU IMPLEMENTATIONS
A. Multicore Implementation

Optimization and mapping of the code to the target
multicore platforms is done in two steps: a) Exploitation
of thread-level parallelism, and b) Vectorization to exploit
the SIMD capabilities of the platforms.

B. GPU Implementation

Parallelism in the GPU is exploitable at a different gran-
ularity than in the other three platforms. GPUs perform
better when each thread processes a single pixel (fine-grain
parallelism), whereas the remaining platforms need coarser-
grain parallelism (at the MB level) to minimize parallelism
management overheads.

V. CONCLUSION

During the mapping and optimization steps, we observed
that thread-level parallelism is the prevalent source of perfor-
mance improvement for MC processing and video decoding
in general, as technology moves towards platforms with
hundreds of cores. This is due to the plentiful MB-level
parallelism within and even across video frames. However
the exploitation of fine-grained parallelism is also an integral
part of the optimization of video applications, especially in
hardware implementations.

ACKNOWLEDGMENT

This work is partially supported by the EC Marie Curie
International Reintegration Grant (IRG) 223819.



