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Abstract—Hardware designers and engineers typically need
to explore a multi-parametric design space in order to find the
best configuration for their designs using simulations thatcan
take weeks to months to complete. For example, designers of

the tight product deadlines, forcing hardware designers to
accept pragmatic, but potentially highly suboptimal solu-
tions that do not provide optimal performance, cost or

special purpose chips need to explore parameters such as the
optimal bitwidth and data representation. This is the case dr
the development of complex algorithms such as Low-Density
Parity-Check (LDPC) decoders used in modern communication
systems. Currently, high-performance computing offers a e
set of acceleration options, that range from multicore CPUs
to graphics processing units (GPUs) and FPGAs. Depending

energy-efficiency. Therefore, there is a strong need for an
exploration toolset that can accelerate the simulation and
exploration time to enable a better design space explaoratio
for such systems.

Over the last years various simulation platforms (CPUs,
FPGAs and GPUs) have been used to approach this ob-

jective [1], [2]. Each of these platforms have different
capabilities: they either provide a relatively simple mang-
ming model to enable rapid design space exploration [1],
but with limited speedup or they accelerate the simulation
time significantly with often considerable effort required
for rapid-prototyping and mapping [2]. To bridge this gap,
there is a need for a unified programming model that allows
exploring the capabilities of the various platforms. It glib
help designers to take optimal decisions with rapid turn-
around time early in the design flow to be confirmed and
refined by more in-depth, but also more time consuming
evaluations later in the design process [3].

Toward this goal, this paper studies the use of different
simulation environments. In our exploration we use the
example of the Forward Error Correction (FEC) subsystem
which is one of the most computationally intensive and
widely researched system components. By using the decoder
for Low-Density Parity-Check (LDPC) codes [4] as case
study, we exploit different parallel computing platforms
(CPUs, FPGAs and GPUs) for simulating different combina-
tions of parameters such as bitwidth, number of iterations,

Modern communication systems rely on a concatenatiomlata structures and algorithmic variations that are alfitic
of many complex signal processing tasks and blocks thah the design space exploration and performance analysis
must be optimized carefully to balance the complexity-of this subsystem. Similar principles can be applied in the
performance tradeoff that governs the system design andesign of other hardware systems that naturally are not
implementation process. Hence, wireless system design tréimited to telecommunications.
ditionally relies heavily on thousands of Monte Carlo sim- Unfortunately, each one of these platforms is naturally
ulations to properly capture the performance under vagiablsupported by distinct programming models which requires
channel and working conditions. Extensive design spacdifferent skills from system-designers only for the pumpos
exploration typically requires repeating such simulagidor ~ of setting up simulations. In this context, this paper e
various algorithms, design variables and hardware archi©penCL [5], that has emerged as an open computing lan-
tectures for each block of the system. Consequently, thguage supported by some of the most important computer
design time increases rapidly which is incompatible withmanufacturers. OpenCL allows developing parallel kernels

on the simulation requirements, the ideal architecture to e
can vary. In this paper we propose a new design flow based
on OpenCL, a unified multiplatform programming model,
which accelerates LDPC decoding simulations, thereby sig-
nificantly reducing architectural exploration and design time.
OpenCL-based parallel kernels are used without modificatias
or code tuning on multicore CPUs, GPUs and FPGAs. We
use SOpenCL (Silicon to OpenCL), a tool that automatically
converts OpenCL kernels to RTL for mapping the simulations
into FPGAs. To the best of our knowledge, this is the first
time that a single, unmodified OpenCL code is used to target
those three different platforms. We show that, depending on
the design parameters to be explored in the simulation, on
dimension and phase of the design, the GPU or the FPGA may
suit different purposes more conveniently, providing different
acceleration factors. For example, although simulations an
typically execute more than 3x faster on FPGAs than on GPUs,
the overhead of circuit synthesis often outweighs the benédi
of FPGA-accelerated execution.

Keywords-design space exploration; simulation tools; parallel
computing; FPGAs; GPUs; LDPC decoding;
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Figure 1: Proposed flow to shorten VLSI design time througHPart of an application at a fine granularity level of paral-

multiplatform simulation with a portable OpenCL golden- |€lism and is executed on the compute devices. The work
model. corresponding to a single invocation of a kernel is called a

work-item (i.e., the equivalent of a thread). Multiple werk
items are organized in work-groups.

that are portable across several multicore platforms and A distinct feature of OpenCL is that it facilitates exposing

that permit achieving good cross-platform performance levParallelism at a fine level of granularity, making it sui@bl
els [5]. Recent extensions to OpenCL also allow to trans]‘or hardware generation at different levels of granularity

parently mapping algorithms to FPGAs [6]. This motivatesAnOther favorable feature of OpenCL is the explicit yet not
the choice made in the paper to adopt such common angverly detailed expression of data movement in the form of
generic programming model to support simulation setups foPUffer transfers between host and compute devices.
a variety of parallel computing platforms. [1l. LDPC DECODING: CASE STUDY ON INTENSIVE

The main contributions of the paper can be summarized SIMULATION
as follows: We proposg a multiplatform framework for ac-

lerati I o 's simulafi id h LDPC codes are used in communication systems such as
celerating telecommunication system's simulations arig he optical (ITU-T G.709) and satellite communications (DVB-

the hardware designer making decisions earlier in the desngsz) or metropolitan area networks (WiMAX). They are
cycle. We show thail) OpenCL can be used as a commonine s pgek codeg N, K) that allow achieving excellent

programming model for developing parallel kermnels and W83t Error Rates (BER) [4] under different channel working

originally propose to execute a single kernel on mUIticoreconditions. LDPC codes can be described by a birtdry
CPUs, GPUs and FPGAs without code readjustment or hangl _..i. \vith dimension(N — K) x N. Also, they can be

tuning across different parallel platforms. In the papeiiiiye

represented by a Tanner graph defined by edges connectin
assess compilation/synthesis and execution performamce P y drap y 809 g

) C S two distinct types of nodes, viz. Bit Nodes (BN), with a
state-of-the-art parallel computer architectures a@jiven gy tor each one of the N variables of the linear system of
the capability to easily retarget simulation code, we compa equations, and Check Nodes (CN), with a CN for each one
and quantify the different platforms (in terms of speed ups) ¢ 1o (N — K) homogeneous independent linear system
providing guidelines for the most adequate choices reggrdi of equations [7] represented by matiik as illustrated in

the different stages of the process design as depicted iI'E'igure 2. In the design of such systems the objective is that

Figure 1. performance meets specific BER and throughput for various

Il. BACKGROUND AND MOTIVATION channel conditions as specified by the target standard.

Computationally intensive Monte Carlo simulations re-A. Belief propagation, message-passing and the MSA
quire methods for acceleration that can be generic and The Min-sum algorithm (MSA) consists of a simplifi-
easy to incorporate. Using application-specific accatamat cation of the Sum-Product algorithm (SPA) [7] and it is
such as designing custom circuits (ASICs) or application-depicted in Algorithm 1.Lp,, designates tha priori LLR
specific instruction set processors (ASIPs) is not feasiblef BN,, received from the channel and it initializdsy,,,,
in this domain because of the efforts involved and thebefore proceeding to the iterative body of the algorithm.
time necessary for design and verification. In a simulationThe MSA is mainly described by two intensive processing
environment, various configuration schemes and parametebdocks, respectively defined by (1) and (2). The former
of the algorithm necessitate modifying the input sourceecod calculates CN processing by producihg,,,, messages that
interactively. Mapping such an application on a convergtion indicate the likelihood of BN, being 0 or 1. The latter
processor or a GPU is considerably faster than on an FPGAlefines BN processing and compufeg,,,, messages.
where development still requires using Hardware Descrip- Hard decoding decision is performed as shown in (3) and
tion Languages (HDLs). In such a scenario, it becomeg4) and the iterative procedure is stopped if the decoded wor



form depicted in Figure 2. It is of vital importance that
the designer can test all the LDPC codes required by the
application. LDPC codes can be regular or irregular and this
metric is defined by the number of ones per row and column,
which can be constant or variable.

2) Algorithmic variation: As mentioned earlier there can
be different variations of the algorithm to test and imple-
ment. In the case of LDPC decoding they consist (among
others) of the SPA or MSA. Different algorithms may suit
more appropriately different system needs.

3) Number of iterations: Another metric commonly
tested in this kind of applications is the number of itenasio

Figure 2: Tanner graph performed. Here simulation time increases linearly witis th
parameter. This metric has direct application in the simu-
lation of BER curves, which are fundamental to prove that

¢ verifies all parity check equations of the cod&e” = 0), the. desig_n is compliant with the LDPC code requirements
or a predefined maximum number of iteratiahis reached. ~defined either by a standard or the client.

4) Bitwidth: Bitwidth definitions are among the most im-
B. Defining fundamental simulation metrics portant parameters to decide on the design of a chip because

In order to decide the optimal configuration parameterghey impact the width of the datapath and the dimension
that lead to best area, performance and energy trade off@f memory blocks and usually have a correspondence with
several Monte Carlo simulations are typically used (thekwor @réa and power consumption. On the other hand they should
herein proposed only analyzes the LDPC decoder). Th&lso provide enough BER performance. When performing
configuration metrics to manipuate are briefly mentionecsimulations, normally designers dedicate great impoganc
below: to this fixed-point optimization phase. In the present case,

1) LDPC code — H matrixThe data structures that define Pitwidth usually ranges from- to 8-bit.
the LDPC code are imported from ad matrix in the

co+tq+e=0
CptG+e=0
Co+tg+e=0

C1+g+g=0

IV. UNIFIED HIGH-PERFORMANCE ACCELERATORS

Algorithm 1 Min-sum algorithm For a case study, we developed a single OpenCL repre-
1: {Initialization} Lq(%) = Lpn: sentation that can be executed, unmodified, on three distinc
2: while (He&T # 0Ai < I) {c — decoded word; | - max. # of iteratiohs. ~ platforms: CPUs, GPUs and FPGAs. In other words, an

OpenCL software developer or domain expert is able to

3 do{,:or all node paird BN, C'Nyy), whereHpmn = 1 do:} quickly develop, map, evaluate and optimize an application
4:  {Compute theL LR of messages sent frof Ny, to BN} without specific knowledge of the underlying architecture.
(CN Processing)
; i i A. Multicore CPUs and GPUs
Lrg,?n = H sign (Lqi:,jnl)) , %in Lqi:,jnl)
n/ €N (m)\n wEN AR Once the computational resources are known, the LDPC

1) , . - . )
(Where A’ (1m)\n represents connect. G, excluding BNy} decoder kernel's workload is partitioned into work-groups

5. {Compute thel. LR of messages sent frolN,, to C'Ny,:} each one of them launching a certain number of work-items
(BN Processing) in parallel. Both are determined at runtime and are a func-

tion of the platform context query supported by OpenCL.

Lqlp = Lpn + Z L) (@ The kernel is compiled according to this information and

m/n

m’€M(n)\m launched for execution in the OpenCL device. Regarding
{where M(n)\m represents connect. #8N,, excluding CNy,.} the granularity—levellof parallelism adopted for the LDPC
3. Finally, we compute tha posteriori LLRs: decoder, each work-item processes the complete update of a
. ; single node of the Tanner graph. Finer- or coarser-graitylar
1) =1put Y Lol @) 9 . grap er-graiy
m’n levels can penalize throughput performance. Finer-grain a

m/eM(n) tivity performs redundant memory accesses, while coarser-

6:  {Perform hard decoding:vn, grain levels of parallelism do not allow to fully exploit the
resources of multicore systems that have a high number of
compute units (e.g., GPUSs) for processing small to medium
7- end while sized data sets.

e =weW >0 72 0 : 1 @)




B. FPGAs scheduling in subsequent steps. LDPC decoder kernels in-

1) SOpenCL backgroundie used the SOpenCL tool [6] clude numerous, yet short conditional statements thaterea
to automatically generate hardware accelerators startingundreds of 1-bit predicate variables.

from an OpenCL LDPC decoder code. SOpenCL allows to Swing Modulo Scheduling (SMEY] is used to generate a
schedule for the kernel. The scheduler identifies an iterati

\ Arbitzr § | pattern of instructions and their assignment to functional

W A units (FUs), so that each iteration can be initiated before

— Arbiter ) ¢ : .
‘ ey ‘ the previous ones terminates. SMS creates software pgselin
hae TA »L = TAddress Data_ou(T TAddress

:jRGU_“:’e“ :jneu_l\ unc_ier _the criterion of _minimizing the Initiation Intervall), _

H T : R I R Wh|ch_ is the constant interval b_e_twgen launches of sucaessi
o work-items. Lower values of Initiation Interval correspitio

&ﬂ ~n  higher throughput since more work-items are initiated and,

Data_line

CE_0

ISin_align_0| ISin_align_1

Sout_align ‘

FUs

CIE therefore, more results are produced per cycle. That makes
Initiation Interval the main factor affecting computatain
L }c bandwidth in modulo scheduled loop code.

7 The inputs to the SMS scheduler are the instructions
corresponding to each kernel, as well as an XML-based

Figure 3: Automatically generated hardware accelerator fohardware model description of the target FPGA, denoting
the CN Kernel. The datapath at the bottom of the blockFPGA device characteristics.

diagram is used to execute kernel computations and generate4) Accelerator architectureGiven the modulo-scheduled
addresses for Request Generation Units (RGUs). RGUs at@op kernels, the compiler backend generates modular Ver-
used to coalesce incoming address requests and to interfaéed for the steady state body of the kernels as depicted in
to the memory system of the FPGA. Figure 3 for the CN kernel.

The input stream Alignment UnitSin Align, retrieves
quickly explore different architectural scenarios andeae ~ INcoming data, and presents them in-order to the data path.
the quality of the design in terms of computational band-The output stream Alignment Unit aligns the output data
width, clock frequency and size. tokens coming from the data path in a FIFO of data-lines of

2) SOpenCL Front EndThe SOpenCL front end adjusts Pus-widthbytes. As soon as the FIFQ is full or the incoming
parallelism granularity of the OpenCL kernel to better rhatc data token is out of lines, the Alignment Unit issues theavrit
the hardware capabilities of the FPGA. OpenCL kernel codéequest to the Arbiter.
specifies computation at a work-item granularity. A straigh ~ Besides generating memory addresses for I/O, the data
forward approach would map a work-item to an invocationPath executes the computational path of the algorithm. The
of the hardware accelerator. This approach is suboptimal foreconfigurable parameters of the data path are the type and
FPGAs which incur heavy overhead to initiate thousands oPitwidth of functional units (ALUs for arithmetic and logit
work-items of fine granularity. instructions, shifters, etc.), the custom operation penés

Therefore, SOpenCL applies a series of source-to-sourd&ithin a generic functional unit (e.g., only addition or
transformations that collectively aim at coarsening thengr ~ Subtraction for an ALU), the number and size of registers
u|arity of a kernel function at a Work-group level. in the qgueues between functional units, and the bandwidth

3) SOpenCL Back EndAfter the front-end OpenCL to o and from the streaming unit.

C transformation, the back-end flow generates the synthesiz Finally, Control Elements (CEs) are used to control and
able HDL of LDPC decoder accelerators. The functionalityexecute code of outer loops in a multilevel loop nest. CEs
of the LLVM compiler infrastructure [8] supportsitwidth ~ have a simpler, less optimized architecture, since outgy lo
optimization[9], predicationandmodulo schedulin§l0] as  code does not execute as frequently as inner loop code.
separate compilation passes. Then, the compiler back-end5) Memory Systemitt is crucial that the memory subsys-
generates the final hardware modules of the LDPC decoddem provides the accelerator with the necessary bandwidth
application-specific architecture. to keep the data path from stalling. Fdd = 1, the

Bitwidth optimizationis used to minimize the number of CN accelerator requires 120 bytes for input, and produces
bits required to represent each operand [9]. Experiment&®6 output bytes every clock cycle. Therefore, the memory
evaluation on LDPC decoding kernels shows significant areaystem should be able to sustain 216 bytes/cycle to avoid
and performance improvement due to bitwidth optimizationsstalling the accelerator. In this case, instructions frobé 1
(see section V-B). contiguous loop iterations are executed concurrently é th

Predication converts control dependencies to data de-data path, requiring 392 adders, 210 shifters, 369 logitsuni
pendences in the loop, transforming its body to a singleand 434 comparators, as well as 994 1-bit logic units for
basic block. This is a prerequisite in order to apply modulopredicate manipulation.

art




ency 2Ly

Ligacoesx

Y
< RGUO

A. Methodology

RGUO
Data ZAT o) J The OpenCL LDPC decoder kernel was executed on an
| e path L Ly AMD Phenom X4 945 QuadCore CPU system running at 3
<= sout 'L'q’ Rf‘f,ﬁ, GHz, with 4 GB of DDR3. The CPU executable has been
@ + sout generated with g++ 4.4.

Y 2 sour We have also executed the OpenCL LDPC decoding
Data 24 o) Datd 1 I:GLl/JCIY application on an ATl Radeon HD 5870 GPU running at
[ PaEh ot 2Ly 1.2 GHz, with 3 GB DDRS5. This GPU, which follows

<—>SO(L:;I’ <—>RGU0() the Evergreen GPU architecture and is equipped with a

conventional L1-L2 cache memory hierarchy, has a peak
Figure 4: System level block diagram of LDPC acceleratorgoerformance of 2720 Single Precision GFLOPS and 1600
generated by SOpenCL; with a) CN (or BN) kernel com-usable stream cores [11].
municating through a single port to BRAM b) through three  Finally, to evaluate the efficiency of the SOpenCL
ports to the BRAMs one for each 1/0 stream; and (c) bothmethodology we used different resource scenarios of hard-
kernels are instantiated and interconnected. ware availability to guide modulo scheduling of the com-
putational and I/O streaming kernels. The first scenario
assumes that a new work-item is scheduled in every clock
SOpenCL allowed to investigate the use of two differentCycle, i.e. initiation intervall/ = 1. In this case, each
memory systems in Figure 4, where a PCle interface is usedlVM instruction is mapped to its own dedicated functional
for data transfers between the host and on-chip SRAMs. Thenit. Larger initiation intervals trade off throughput tvit
memory bank is built from FPGA BRAMs, concatenated toresource availability and may correspond to platforms in
provide the total memory space required to store all strearihich the memory system cannot sustain peak bandwidth
I/O data. In Figure 4a) the memory bank is configuredto the accelerators.
as a unified single port memory system, while Figure 4b) Custom hardware synthesis benefits from aggressive
shows the memory bank configured as a distributed memorgitwidth analysis. We experimentally tested three dififetre
system. Figure 4c) depicts the two CN and BN kernelscode versions, assuming input data (codeword elements)
instantiated under the latter memory model with an arbitefepresented witts-, 6- and 8-bit, and a fourth version in
on each port to orchestrate requests from the two kernels.which the size of input data is specified as a runtime input
Figure 4 shows the throughput required by the data patiparameter to the OpenCL kerndbgnericrow in Tables |
for IT = 1, and throughput provided by the memory system.and 1l). Note that since OpenCL does not support bit-
The data path will generate in parallel: 6 Addresses/Cycldevel specification of variables, any data size less tBan
(A/Cy) for ligacoes f stream24A/Cy for L, and24A/Cy bit is emulated in the source code by explicit masking off
for L,. The RGU and Sout Align modules coalesce theseextraneous bits.
addresses into 2 Lines/Cycl& (Cy), 6L/Cy, and6L/Cy For the evaluation of the FPGA design we used Xilinx
respectively, for a 128-bit data bus. The unified memoryVirtex-6 LX760 and Xilinx ISE 12.4 toolset for synthesis,
bank will provide a throughput of one line per cycle (single placement and routing. LX760 contain$8560 slices and
128-bit data bus), which leads to stalling the data path 14ach slice includes four LUTs and eight flip-flops.
cycles for each computation/address generation cycle. In Two different LDPC code$1024, 512) and (8000, 6000)
the distributed memory system, each RGU and Sout Aligrare profiled, each running fa, 20 and30 iterations. Each
module is allocated a dedicated data bus (128-bit) to théeration calls the CN kernel followed by a call to the BN
memory bank with throughputZ /C'y. In this configuration kernel. Each CN kernel invocation spawns— K work-
the stall time is shortened from 14 to 6 cycles. To achievdtems, and each BN kernel invocation spawssvork-items.
zero stall cycles, the memory bank should provide a wider
data bus, 96 bytes td, and L, streams and 64 bytes to B- FPGA Results
ligacoe f stream. Tables | and Il detail performance and area results of
the two LDPC kernels implemented on a Virtex-6 LX760
FPGA. Area costs are minimized whéh = 1, which seems
In this section, we evaluate the performance of LDPCcounter-intuitive since this configuration requires moee r
decoders on the three platforms described in section IVsources for each functional unit. The LDPC decoder kernel
It should be emphasized that a single OpenCL code wasode consists mainly of simple operations (add, shift,dpgi
used. No platform-specific source-level optimizationseaver between a variable and a constant. Assigning dedicated
performed to the OpenCL code, such as manual vectorizdunctional units for each operation, as is the case when
tion, or explicit data prefetching, which provides a morie fa 17 = 1, forces one of the FU inputs to a constant value,
comparison for the various platforms. thus providing ample opportunities for the synthesis tool t

V. EXPERIMENTAL EVALUATION



Table I: Comparing CN kernels area for differehf =

. . . . . L. 8000x4000 Benchmark
{1, 2,8} architecture configurations using variable bitwidth 50 25
precision with5-, 6- and8-bits and a generic on-the-fly bit - ° "
precision selection approach. -3 *\‘ 3z
g 30 159
CS Slices | Flip-Flops | LUTs Freq. Latency o 25 ) " h ;2;
(MHz) | (cycles) = fg . T 108
8 (no BWopt) | 12061 | 42718 [ 39594 [ 100 102 @ 40 B 58
8 11600 | 41892 | 38759 | 101 102 5 L2 | £
=1 6 11647 35948 33914 103 106 0 0
5 10369 33639 32861 107 106 10 20
Generic 24108 101960 80115 91 106 # Iterations
8 (no BW opt.) | 25453 | 64311 | 92096 | 88 103 s CPU (ms) GPU (ms) FPGA (ms)
8 21424 | 54872 | 81526 | 97 103 mCPU(Mbps) @ GPU(Mbps) & FPGA (Mbps)
=2 6 23632 61035 78884 95 110
5 19374 | 61052 | 65192 88 110 Figure 5: Execution and throughput benchmark results de-
Generic 28432 | 67307 | 73212 | 63 110 LT
8 (o BW opl) | 33213 | 54749 | 78266 | 50 510 coding in simultaneoud6 codewords of an (8000, 4000)
27556 | 5/582 | 58788 | 53 210 LDPC code show that the GPU outperforms the FPGA for
=8 6 27008 | 56745 | 64104 | 50 231 ; ;
5 26894 54868 64083 51 231 30 or less iterations.
Generic 36954 58121 79682 51 231
Table Il: Comparing BN kernels area for differeif = (data >> 24) & 255 For 8 bits
{1,2,8} architecture configurations using variable bitwidth (data >> 24) & 63 For 6 bits
precision with5-, 6- and8-bits and a generic on-the-fly bit (data >> 24) & 31 For 5 bits

precision selection approach. The LLVM compiler front-end was smart enough to elim-

cs Slices | Flip-Flops | LUTs | Freq. | Latency inate masking operation f&-bit because it is not necessary,
(MHz) | (oydles)  put those operations remained forand5-bits kernels. This
8 (no BW opt.) | 7681 28026 25823 152 53 P H : H :
- si66 | Tossr— Teas3 153 = led to an _add|t|0na96 mg§klng_operat|_ons in kerne!g with
=1 3 5891 | 17746 | 17001 | 175 57 6- and 5-bits. These additional instructions are significantly
< 5 555,1752 éﬁégé égggg 12421 21 more costly with largetd I values; they increase the density
eneric . . .
S (o BWop) | 7134 | 24332 | 3482 | 153 = of the m_put mgltlplexer Free and may require more FUs
8 6201 | 18246 | 17957 | 176 54 with additional input multiplexer trees. In fact, it was reor
=2 g ggzg i;ggg i;gg? igé gg problematic to place and route configurations with smaller
Generic 5596 | 27190 | 27891 164 & bitwidths than8-bit configurations, Wherﬂ was Iarge_. _
8 (no BW opt) | 8631 | 20592 | 22633 | 151 109 For II > 2, SOpenCL automatically inserts pipeline
I8 2 %g; i%gi i;gg? igg igg registers between the multiplexer tree and the FU inputs to
= 3L T oo T issea T i 150 reduc_e the critical path delay and improv_e routability_. srhi
Generic 9963 | 23946 | 26683 | 132 127 explains why the schedule latency fbf = 8 is almost twice

as large as the latency for smalléf values. In any case,

clock frequency was mainly dictated by routing delays in
reduce area. Whehl > 1 this opportunity no longer exists, most configurations, especially for the CN kernel.
since each FU input is driven by a multiplexer tree. In fact, _ _ _
configurations with largef 7 seem to be quite problematic C- Crossplatform comparison and discussion
when it comes to routing the design. Larger multiplexersree GPUs and FPGAs clearly outperform CPU execution in
cause routing congestion, which is not the case when the IS&erms of throughput, as shown in Figure 5 and Figure 6.
placement tool can spread out FUs and make better use @fPUs remain as the last resource to use in simulations
routing channels. for application-specific designs, when all the others some-

Another interesting observation féf > 1 is that shorter how fail to become accessible. Figure 6 shows that for a

bitwidths (- and 6-bit data representations) require more (1024,512) code the FPGA is always faster than CPUs and
resources than a bitwidth of. Our analysis shows that GPUs, but the same does not happen for the larger design,
with larger values, the fewer FUs allocated will nearlyi.e., for code(8000,4000) shown in Figure 5. In this case,
have similar sizes to serve a population of instruction®iwit memory accesses cannot sustain peak bandwidth, introduc-
various bitwidths (from5 to 32-bit). This will reduce the ing 5 stall cycles. GPUs are better suited for an early design
gain from custom bitwidths, because the tool necessarilgtage where algorithmic development constantly requires
moves towards a larger, more generic FU size with largerecompilation/resynthesis of the kernel. Figure 7 showas th
I1. Finally, the following set of operations are widely used at this level FPGAs always require much higher synthesis
in the code: time compared to compilation time on GPUs. However, at a
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coding in simultaneoud6 codewords of an (1024, 512)

LDPC code show that the FPGA outperforms the GPU. Figure 7: Monte Carlo simulation time as function of a

desired error floor for one BER estimate. FPGAs can take
14 hours to synthesize an LDPC decoder design. For this
reason, they are better suited for a later stage of the design

where the algorithm is stabilized and simulations can run
later phase of the design, when the algorithm is well-definedipto 3 times faster than on GPUs.

and stabilized, parameterized FPGA kernels (represented i
the Genericrows of Tables | and Il) can perform better
upto a certain dimension of the design. Although they allow

o L . +<6-hit (Q4.2)
more flexibility and may eliminate unnecessary resynthesis 107t —e—8-bit (06.2)
iterations, programming Monte Carlo simulations becomes
. -4
more complex as we add more input parameters to the 00r

kernel. Also, parameterized kernels occupy more FPGA
resources than fix mode parameters, which in this case were §

developed fors-, 6- and8-bit data representations. o]

Afew quick GPU simfilations at SNR=-0548
allow to defect the cofrect bitwidth precision
(the GPU allows fastqr recompilation times)

TARGET ERROR FLOOR

To overcome such penalties imposed by BRAM band- 7
width limitations (the FPGA-based approach is bandwidth S A
limited), a possible solution would consist of using boards
that supply more than one FPGA or even to adopt FPGA
clusters. Naturally, it would also be possible and desirabl

to use GPU clusters as a solution to improve this type ofjgure 8: BER curves simulation fa#- and 8-bit variable
simulations. The scope of this paper seeks the comparisagidth precision for a given target error floor.
of both approaches and for making a fair comparison we

have decided to compare only one element of each.

-12 -11 -1 -09 -08 -0.7 -06 -05 -04 -03
SNR (dB)

Other optimizations can be exploited together with the V1. RELATED WORK

right choice of platforms and parameters for different glsas  Simulation programs are typically in the software domain.
of the design. For example, if a BER 1070 target For targeting FPGAs, hardware accelerators need to be
error floor is given as an input parameter specification, thextracted from this domain. Methods following this directi
inspection of Figure 8 shows that a quick simulation athave exploited high-level language to hardware, or C-to-
SNR = —0.5dB performed on the GPU (where algorithmic HDL translations. The PICO-NPA system translates C func-
changes are recompiled fast) would allow to conclude thations written as perfectly nested loops into a systolicyarra
6-bit are not enough to represent data and that at I@ast of accelerators [12]. The LegUp synthesis tool generates
bit should be considered. After we have a match on thex hybrid architecture comprising a MIPS processor and
target error floor, we could consider FPGAs to perform thehardware accelerators to speed up performance critical C
complete BER plots. This approach makes even more sens®de [13]. The hardware accelerator generation utilizes co
as extremely time consuming error floors in the order ofventional HLS techniques for resources allocation, schedu
10~1° are now being adopted by new standards, as it isng, and binding. The OpenRCL platform utilizes OpenCL
the case of LDPC codes from the ITU-G.709 [2] standardto schedule fine-grain parallel threads to a large number
for optical communications depicted in Figure 7 where eaclof MIPS-like cores [14]. OpenRCL does not generate cus-
BER plot estimate can take months to compute. tomized hardware accelerators, although each MIPS core



can be configured to match application characteristics. The[3] M. Rupp, A. Burg, and E. Beck, “Rapid prototyping for

AutoPilot Compiler [15] generates RTL descriptions forleac
function in a C program. Each function is translated into an
FPGA core. AutoPilot provides code directives to faciétat
hardware generation. However, the specification techsique
proposed are not universally applicable to CPUs, GPUs and
FPGAs. In the GPU domain, FCUDA [16] is an initiative
that retargets CUDA kernels to synthesizable hardware [16]
in FPGAs. FCUDA transforms a CUDA kernel into a C
function annotated with AutoPilot directives, and then use [6]

AutoPilot to generate synthesizable HDL.

Also, recent publications propose using GPUs to perform
LDPC decoding [1] or functional programming to target
LDPC codes in FPGAs [17], but still none of these ap- [7]
proaches provide a unique solution that is suitable to targe
at the same time CPU, GPU and FPGA architectures. In[g]
this paper, our objective is to simplify the exploration &f a
three target architectures using a single unified programgmi
model that allows extracting the most interesting propsrti
of each. In fact, a single application description proves to [9]

be efficient for code modifications, retargetability acdogd
to performance, and universal applicability.

VII. CONCLUSION

In this paper we show that the development of single
OpenCL golden-models can generically address different

multicore architectures, which is substantially more affit

than the individual programming of CPUs, GPUs and FP{11]
GAs. If coordinated appropriately, different phases of the
design can exploit more conveniently the particular fesgur

of distinct multicore platforms in order to accelerate the[12]
global processing of computationally intensive Monte Garl

simulations for application-specific algorithmic desijyie

show that depending on the complexity of the algorithm,
the nature of parameters to simulate and phase of the3
design, GPUs and FPGAs suit different purposes more con-
veniently, while at the same time they significantly accaier
simulation times compared to traditional methods that use
CPUs. In this context OpenCL allows code portability acrosgy)
different multicore platforms at no extra programming efffo

or particular need of code hand tuning intervention.

This strategy can be extended to other areas of VLSI
system design. Although we analyze the particular case
of LDPC decoders used in communication systems, simf15]
ilar concerns related with performance, area and energy-
efficiency usually hold the attention of hardware designers

every time they start a new project.
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