

ABSTRACT
The problem of automatically generating hardware

modules from a high level representation of an application
has been at the forefront of EDA research in the last few
years. Such an EDA methodology would potentially enable
the large pool of software engineers and algorithm IP
experts without architectural and hardware expertise to
design and implement platform systems, thus dramatically
reducing time to market.

This paper makes the argument that such a methodology
requires a programming model beyond the sequential
semantics of languages like C/C++. We argue in favor of
the streaming programming model in which computation
and data communication are explicitly separated and
optimized. Our architectural synthesis tool, Proteus,
processes stream programs that partition the application
into a series of streaming kernels that operate on streams of
data elements. Proteus produces efficient hardware
accelerators that provide orders of magnitude higher
throughput than a software implementation, at an area cost
very close to manual HDL implementation.

1. INTRODUCTION

Programming models based on von Neumann
architectures would naturally map to a centralized
processor and memory subsystem. These traditional
architectures with centralized compute structures and large
caches do not map well on an FPGA where the underlying
logic and memories are small and distributed throughout
the chip. To properly capture the programmer’s intent, the
programming model must express the data access and
communication explicitly for the compiler to generate the
appropriate memory structures such as buffers and bus
networks that implement the memory subsystem.

Therefore, a new programming paradigm is required that
exposes data communication to the programmer and
enables the structuring of bandwidth-efficient software and

hardware systems. Stream programming is an example of
such programming model and is ideal for architectures
synthesized onto FPGAs because the model explicitly
defines the communication patterns and the nature of the
computation, enabling the synthesis of unique memory
subsystems and computation units.

This paper presents Proteus, an architectural synthesis
CAD tool, which produces synthesizable HDL code for a
network of hardware accelerators given a high level
streaming representation. First, in Section 2, we detail the
advantages of the streaming programming model to
express low level and high level parallelism and its
suitability to express computation that will be implemented
into hardware, and we explain how we use streaming as the
underlying technology of Proteus.

In our work, we use a well-crafted architectural template
that can be instantiated to match the performance
requirements, and available FPGA resources for a
particular application [1]. Section 3 provides details of the
optimizing compiler and hardware generator that translates
the streaming kernels into synthesizable Verilog.

There has been a substantial amount of research on
hardware generation starting from a high level language
[2],[3],[4],[5],[6]. Most prior research focuses on the
computational aspect of the application. The streaming
architectures generated by the tools presented in this paper
are different because we focus not only on the computation
but also on the memory subsystem. We developed a
benchmark suite of streaming DFGs to further evaluate our
approach and to show the trade-offs involved between
performance and area. These results are shown in Section
4.

2. STREAMING PROGRAMMING MODEL

This section presents the details of the streaming
programming paradigm. In the stream programming
model, a kernel of computation is formed as a set of

PROTEUS: AN ARCHITECTURAL SYNTHESIS TOOL BASED ON THE STREAM
PROGRAMMING PARADIGM

Nikolaos Bellas1 Sek M. Chai2 Malcolm Dwyer2 Dan Linzmeier2

Abelardo Lopez-Lagunas3

Computer Engineering and
Communications Department1
University of Thessaly, Volos,

Greece
nbellas@uth.gr

Motorola, Inc.2
Schaumburg, IL

USA
sek.chai@motorola.com

Departamento de
Mecatrónica3
ITESM-Toluca, Mexico

localized processor operations that are independent and
self contained. The processing in each computation kernel
is regular and repetitive, which often comes in the form of
a loop structure. These computation kernels can be mapped
onto a separate hardware accelerator without frequent
interaction with the processor.

Traditional compiler optimizations for instruction and
data level parallelism such as loop unrolling and modulo
scheduling [7] can be applied not only inside a
computation kernel but also across kernels.

Computation kernels consume and produce a uniform
sequence of data elements (stream records) since the kernel
operations are regular. Stream data appear to be sequential
to the computation kernels even though they may be
scattered throughout memory. Global variables are usually
not referenced in a kernel. Instead, the stream and other
scalar values, which hold persistent state, are identified
explicitly as variables in a data stream or as signals
between kernels.

The design process starts with the application
programmer describing the application in a high level
language such as C, or a combination of C and Data Flow
Graphs (Fig. 1). The computation kernels and their
associated memory accesses are then used to generate
hardware accelerators to lift the heavy computation load
from the main processor. Scalar processors are reserved for
normal conditional code which is not easily parallelizable.

A task or computation kernel is expressed using a
streaming data flow graph (sDFG) language, shown in Fig.
1(b)-(c). A sDFG consists of nodes, representing basic
arithmetic and logical operations, and directed edges
representing the dependency of one operation on the output

of a previous operation.
In this DFG language, all dependencies are explicitly

stated. This simplifies the scheduler’s task of identifying
dependencies and determining which operations can be
scheduled in parallel, resulting in schedules that are often
close to optimal, given the functional unit and interconnect
limits.

Fig. 1 shows a sequence of representations of a
quantization function which may be part of a video
compression algorithm like MPEG-4. As shown in Fig.
1(b), the input and output streams are loaded in the kernel
and stored to the memory with the vld and vst operations,
respectively. Internal operation nodes represent
computation such as extracting the sign of a number,
subtraction, multiplication, and arithmetic shift. Note that
the kernel simply operates on incoming streams and
produces outgoing streams, and that there is no dynamic
address calculation of memory accesses in the kernel.

In this simple example, if we assume that the final
implementation includes only one ALU, one multiplier,
and one shifter, the organization of these resources could
be depicted as shown in Fig. 1(d). Each functional unit is
supported with output queues of depth 1 used to
temporarily store the produced data. The shared resources
have multiplexers at their input ports. The implementation
of Fig. 1(d) follows the template architecture shown in Fig.
2. The template consists of two parts: data path and stream
unit. The data path is generated based on a computation
kernel (such as the one of Fig. 1(b)), while the stream unit
is derived from stream access patterns.

A data path consists of a network of functional units
that produce and consume streaming data elements. A
reconfigurable link is formed by a tree of multiplexers and
buffers to direct proper data elements from the output of a
producing functional unit to the input of the next
consuming functional units. The control logic is distributed
and spatially near the corresponding functional unit,
multiplexer, and buffers. Unlike a centralized VLIW
codeword which tends to increase the signal critical path,
distributed control logic avoids long interconnects in
critical paths. The reconfigurable parameters of the data
path include the following: type of functional units (ALUs,
multipliers, shifters, etc), the custom operation performed
within a type (e.g. only addition or subtraction for an
ALU), the width of the functional unit, the size and number
of storage elements, the interconnect between functional
units, and the bandwidth to and from the stream unit [8].

The stream programming model allows a programmer to
explicitly define the characteristics of the data streams
between computation kernels and the memory. Dedicated
hardware, called stream unit, is used for data movement
such that communication is decoupled from computation.
The stream units assemble the stream records and present

Void quant (short *out, short *in, int n, short qp) {
long rq, b,c;

rq = ((1<<16) + qp) / (qp << 1);
b = qp - ! (qp & 1);
while (- -n <= 0) {

c = *in++;
if (c <0) c +=b;
else if (c>0) c -=b;
*out++ = (c * rq) / (1<<16);

}
}

• vsign produces -1, 0, 1 for <0, ==0, >0
• Scalar s1 is rq
• Scalar s2 is b
• Vasr0 is arithmetic shift right and truncate towards zero

i.e. integer divide by power of 2

vsign vmul vsub vmul vasr0

vld v1

vst v0

vscalar s2 vscalar s1 vimm 16(b) (rq) (16)

(in)

(out)

(sign of c)
+/-b

c -/+b (c -/+b)*rq [(c -/+b)*rq]>>16

vqnt: vbegin Q11-Q1,0 // while (-- n >= 0) {
Q1: vld.s16 (v1) // c = *in++;
Q2: vsign.s16 Q1
Q3: vscalar s2 // s2 is b
Q4: vscalar s1 // s1 is rq
Q5: vimm 16
Q6: vmul.s16 Q2,Q3 // if (c<0) c += b;
Q7: vsub.s16 Q1,Q6 // else if (c>0) c -=b;
Q8: vmul.s32 Q7,Q4 // c *= rq;
Q9: vasr0.s16 Q8,Q5 // *out++ = c / (1 << 16);
Q10: vst.s16 Q9,(v0)
Q11: vend

Fig. 1. The C quant function is transformed to a sDFG and
finally to a streaming accelerator. Note that only the code
within the while loop is mapped into hardware.

them to the computation kernels as ordered packets. Much
like vector processing, stream programs hide latency,
amortize instruction overhead and expose data parallelism
by operating on large sets of data.

The programmer describes the memory access patterns
using stream descriptors, which define the shape and
location of data in memory. This decoupling allows the
stream interface units to take advantage of available
bandwidth to prefetch data before it is needed. Data is
transferred though the stream units, which are programmed
using stream descriptors.

A stream descriptor is represented by the tuple (Type,
Start_Address, Stride, Span, Skip, Size) where:
• Type indicates how many bytes are in each element

(Type is 0 for bytes, 1 for 16-bit half-words, etc.)
• Start_Address represents the memory address of the

first stream element.
• Stride is the spacing in number of elements between

two consecutive stream elements.
• Span is the number of elements that are gathered before

applying the skip offset
• Skip is the offset applied between groups of span

elements, after the stride has been applied
• Size is the number of elements in the stream

The stream unit handles all issues regarding
loading/storing of data including: address calculation,
alignment, data ordering, and bus interfacing. The stream
unit consists of one or more input and output stream
modules, and is generated to match the characteristics of
the programmer’s description of the stream data through
stream descriptors, the characteristics of the bus-based
system, and the streaming datapath (Fig. 2).

3. PROTEUS TOOLSET

The sDFG kernels and their stream descriptors, and

other resource constraints, such as maximum gate count
and maximum bandwidth in and out the kernel, are used by
our compiler to allocate a set of functional units (step 1).
Then using modulo scheduling compilation a sequence of
events are arranged so that the functional units can operate
properly (step 2). The sequence of events is similar to a
series of VLIW (very long instruction word) operations.
The streaming hardware accelerator, consisting of a data
path and stream unit, is then selected (step 3). An interim
hardware description file is used to list the components
within the accelerator. The sDFG nodes and arcs have been
associated with hardware resources such as functional units
and queues. A set of state machines is also listed to
generate the proper control signals. The hardware is then
generated (step 4) and synthesized (step 5) into the FPGA.
This process is repeated for each streaming kernel. The
following paragraphs focus on the VLIW scheduling
process.

The scheduler receives as input the sDFG along with
the user and system constraints and schedules the operation
of the sDFG to optimize throughput. The scheduler uses
modulo scheduling to overlap multiple iterations in each
cycle and exploits all the available parallelism under the
resource constraints and data dependencies.

A strict lower bound of the initiation interval, called
Minimum Initiation Interval (MII), is obtained by the
number of available resources and the loop cross-iteration
data dependencies. The schedule is generated within the
MII window by first scheduling the nodes from top to
bottom (forward scheduling) using a greedy approach. In
this step, the nodes are scheduled immediately when all
their parents have been scheduled and there exists an
available resource to execute them.

The scheduler only generates the code for the steady
state body of the schedule and not for the prologue and
epilogue, as is often the case in modulo scheduling. To be
able to perform correct execution of the prologue and
epilogue parts of the scheduled code, the generated
hardware utilizes valid bits. Each data token that populates
the functional unit inputs, outputs and line queues in every
clock cycle is tagged with a valid bit. An operation
produces valid output data only if both input data are valid.
A source operation (like a stream load) produces data with
valid bits when the data are available, and a sink operation
(like a stream store) accepts data only when they are valid.
This hardware enhancement ensures correct execution of
the code, since a functional unit produces valid data in a
given clock cycle, only when it performs an operation in
that cycle and its inputs are all valid.

Next, the tool flow binds the operation nodes to the
functional unit slices, and generates the register queues at
the output of each slice to store the streaming outputs as
they are produced by the FUs.

The stream unit design is generated based on user and
system constraints. The size and number of buffer elements

Control
Registers

Multiplexer Tree

FU

c
o

n
tr

o
l

FU

c
o

n
tr

o
l

RegisterAcc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

Bus Line Buffer

Stream Buffer

To other
Input Stream

S
tr

e
a

m
U

n
it

D
a

ta
P

a
t h

Addr
Queue

Register

Control
Registers

Multiplexer Tree

FU

c
o

n
tr

o
l

FU

c
o

n
tr

o
l

RegisterAcc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

Bus Line Buffer

Stream Buffer

To other
Input Stream

S
tr

e
a

m
U

n
it

D
a

ta
P

a
t h

Addr
Queue

Register

Control
Registers

Multiplexer Tree

FU

c
o

n
tr

o
l

FU

c
o

n
tr

o
l

RegisterAcc

Line
buffers

Data alignmentAGU

Arbiter & Bridge

System Bus

Input Stream

To Output
Stream

Constants

Streaming Data

Bus Line Buffer

Stream Buffer

To other
Input Stream

S
tr

e
a

m
U

n
it

D
a

ta
P

a
t h

Addr
Queue

Register

Fig. 2. Streaming accelerator template including the Stream
Unit and the Data Path.

are chosen to meet the performance of the bus as well as
the target performance of the generated data path. For
example, the number of bus address queue elements, used
to store pending addresses, is set to at least the bus pipeline
factor so that bus transfers are sustained without stalling
the data path. The number of line buffer elements, used to
store data, should be at least the bus size to enable bus
transfers.

In addition, the number of stream line buffer (used to
store pending stream elements in a FIFO) is set to match
the maximum bandwidth of the data path so that the stream
unit can buffer the proper number of stream elements that
can be consumed by the data path in a single cycle.

Finally, the HDL constructor reads the HLM
representation and emits structural Verilog for the data
path and the stream unit.

4. EXPERIMENTAL EVALUATION

The selected benchmarks are part of applications such
as video codecs, image processing and computer vision.
Some benchmarks are “kernels”, representing portions of
applications selected for implementation and manually
mapped to sDFGs and stream descriptors.

Benchmarks such as lpr, hpf, lpf, and lens are
complete applications and consist of smaller component
kernels. The lpr application concerns the automatic
recognition of license plates and is implemented into three
stages.

The lens benchmark, which consists of a single sDFG,
is a complex image warping application that performs
correction of images from the wide angle lens space to the
2D rectilinear space. The two benchmarks, lpf and hpf,
perform a sequence of image processing steps used in a
digital camera.

Fig. 3 shows the number of FPGA slices for the data
path part of these benchmarks. Higher slice count
represents sDFGs that require more complex computation.
For example, the lens occupies almost 30% of the Virtex
4LX80 device. The intent of Fig. 3 is to show the
capability of Proteus to handle both simple and complex
sDFGs producing very high quality accelerators in a
fraction of the manual design time.

Using Proteus has resulted into large productivity
gains. For example, an input representation of 800 lines of
the sDFG lens code generated more than 100,000 lines of
Verilog, significantly cutting the engineering development
time. To further illustrate the efficiency of the tool, we
implemented the software version of the lens code in C and
we compared its performance when executed in the Core 2
Quad processor against the hardware accelerators
generated by Proteus. In order to make a fair comparison,
we optimized the code to exploit the quad-threaded, SIMD
architecture of Core 2 Quad by using the Intel pthread
library and by manually rewriting the inner loops of the
benchmark using the x86 SSE ISA extensions. The FPGA
version provided a speed up of around 1.4x, or 56x per Hz,

enabling real time lens distortion correction of VGA output
frames at 22 frames/sec. Moreover, the clock frequency,
throughput, and area overhead of the generated hardware
were very close to the theoretical bounds of a manual HDL
implementation.

5. REFERENCES

[1] Nikolaos Bellas, Sek Chai, Malcolm Dwyer, Dan Linzmeier
An Architectural Framework for Automated Streaming
Kernel Selection. 14th Reconfigurable Architectures
Workshop (RAW), March 2007, Long Beach, CA

[2] M. Gokhale. et. al. Stream-Oriented FPGA Computing in the
Streams-C High Level Language, Proceedings of
International Conference on Field Programmable Custom
Computing Machines (FCCM), 2000, 49-56.

[3] D. Lau, O. Pritchard, P. Molson. Automated Generation of
Hardware Accelerators with Direct Memory Access from
ANSI/ISO Standard C Functions. International Symposium
on Field-Programmable Custom Computing Machines, April
2006, Napa Valley, CA, 45-56

[4] F. Plavec, Z. Vranesic, S. Brown. Towards Compilation of
Streaming Programs into FPGA hardware. Forum on
Specification, Verification and Design Languages,
September 2008, Sophia Antipolis, France

[5] O. Mencer. et. al. Design Space Exploration with a Stream
Compiler. Proceedings of International Conference on Field
Programmable Technology (FPT), Tokyo, December 2003,
270-27

[6] Banerjee P. et. al. A MATLAB compiler for distributed,
heterogeneous, reconfigurable computing
systems. Proceedings of the IEEE Symposium on Field
Custom Computing Machines (FCCM), April 17-19, 2000,
pp. 39-48, Napa Valley, CA

[7] B.R. Rau. Iterative Modulo Scheduling. International
Journal of Parallel Processing, 1996, 24:3-64

[8] N. Bellas, S.M. Chai, M. Dwyer, D. Linzmeier. Template-
based generation of streaming accelerators from a high level
representation. International Symposium on Field-
Programmable Custom Computing Machines (FCCM), April
24-26, 2006, Napa Valley, CA

S
lic

es

Data Flow Graphs

10279

0

500

1000

1500

2000

2500

3000

3500

4000

4500

dct-c dct-r quant hpf lpf lpr color close conv open lens

S
lic

es

Data Flow Graphs

10279

0

500

1000

1500

2000

2500

3000

3500

4000

4500

dct-c dct-r quant hpf lpf lpr color close conv open lens

Fig. 3. Area comparison between different application
benchmarks

