
GLOpenCL: OpenCL Support on Hardware- and
Software-Managed Cache Multicores

Konstantis Daloukas
Department of Computer and
Communications Engineering

University of Thessaly
Volos, Greece

kodalouk@inf.uth.gr

Christos D. Antonopoulos
Department of Computer and
Communications Engineering

University of Thessaly
Volos, Greece

cda@inf.uth.gr

Nikolaos Bellas
Department of Computer and
Communications Engineering

University of Thessaly
Volos, Greece

nbellas@inf.uth.gr

ABSTRACT
OpenCL is an industry supported standard for writing pro-
grams that execute on multicore platforms as well as on
accelerators, such as GPUs or the SPEs of the Cell B.E.
In this paper we introduce GLOpenCL, a unified develop-
ment framework which supports OpenCL on both homo-
geneous, shared memory, as well as on heterogeneous, dis-
tributed memory multicores. The framework consists of a
compiler, based on the LLVM compiler infrastructure, and a
run-time library, sharing the same basic architecture across
all target platforms. The compiler recognizes OpenCL con-
structs, performs source-to-source code transformations tar-
geting both efficiency and semantic correctness, and adds
calls to the run-time library. The latter offers functional-
ity for work creation, management and execution, as well
as for data transfers. We evaluate our framework using
benchmarks from the distributions of OpenCL implementa-
tions by hardware vendors. We find that our generic system
performs comparably or better than customized, platform-
specific vendor distributions. OpenCL is designed and mar-
keted as a write-once run-anywhere software development
framework. However, the standard leaves enough room for
target platform specific optimizations. Our experimenta-
tion with different, customized implementations of kernels
reveals that optimized, hardware mapped implementations
are both possible and necessary in the context of OpenCL –
especially on non-conventional multicores – if performance
is considered a higher priority than programmability.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel Programming ; D.3.4 [PROGRAMMING
LANGUAGES]: Processors—Code generation, Compilers,
Optimization, Run-time environments

General Terms
Design, Experimentation, Languages, Measurement, Perfor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HiPEAC 2011 Heraklion, Crete, Greece
Copyright 2011 ACM 978-1-4503-0241-8/11/01 ...$10.00.

mance

Keywords
OpenCL, Compilers, Runtime, Hardware-managed cache mul-
ticores, Software-managed cache multicores

1. INTRODUCTION
During the last few years, we have witnessed a paradigm

shift towards parallel computing. Technology advances have
enabled the integration of multiple cores in a single die, thus
enabling the development of a plethora of computation sub-
strates for parallel, high performance, computing. Architec-
tures such as homogeneous or heterogeneous multicores and
manycores, and, more recently, GPUs have allowed the time-
and power-efficient execution of computationally intensive
applications at a minimum expense. However, applications
need to be rewritten in order to expose their inherent paral-
lelism and exploit capabilities of multicore and accelerator-
based architectures. Developing parallel programs is a far
more complex undertaking than sequential programming, as
the programmer is responsible for coping with hurdles such
as race conditions, synchronization issues, communication,
work management and scheduling, as well as with the pecu-
liarities of each parallel architecture.

In order to enable the efficient development of applica-
tions, a multitude of programming models have been pro-
posed, with the purpose of relieving the programmer from
the duty of handling – at least some of – these issues thus
allowing her to focus on algorithmic issues rather than tech-
nicalities. These models include PThreads [15], OpenMP
[20], UPC [24] or Cilk [4] for homogeneous and heteroge-
neous multicores, the Cell SDK [10] and CellSs [21] for the
Cell B.E., as well as CUDA [18] and the AMD/ATI Stream
SDK [2] that target GPUs.

None of the aforementioned models targets both homoge-
neous and heterogeneous multicores, as well as accelerator-
based systems at the same time, mainly due to their vast
architectural differences. For example, applications that tar-
get the Cell B.E. are mainly developed using the IBM SDK,
thus making their porting to other architectures a tedious
task. There is, thus, strong demand for a programming
model that enables application development without prior
knowledge of the computing substrate where the applica-
tion will be executed. Such a programming model would en-
hance portability, provided that it would allow applications
to be transferred and efficiently executed on different archi-
tectures without requiring rewriting or widespread modifica-

tions. OpenCL [12] is an industry backed effort to develop a
unified programming standard and infrastructure for hetero-
geneous multicore platforms integrating CPUs and, possibly,
accelerators.
This paper discusses the design and presents the imple-

mentation of GLOpenCL (GLobal OpenCL), a unified com-
piler and run-time infrastructure. GLOpenCL is, to the
best of our knowledge, one of the first OpenCL implemen-
tations that enables native execution on architecturally dif-
ferent systems, with both hardware- and software-controlled
memory hierarchies. We discuss in detail the compiler trans-
formations and run-time support that enable this function-
ality, as well as design decisions. Similar infrastructures in-
clude the OpenCL SDK [11] from IBM and the unified CUD-
A/OpenCL environment [17] by Nvidia that are customized
to support OpenCL applications on the Cell B.E. and Nvidia
GPUs respectively. The AMD/ATI Stream SDK [2] from
AMD and ATI supports OpenCL on both x86 CPUs and
ATI GPUs, however, as we show in Section 5 GLOpenCL
significantly outperforms it on CPUs. MCUDA [23] and
Ocelot [7] are two frameworks for efficiently supporting the
CUDA programming model on x86 CPUs and the Parallel
Thread Execution ISA (PTX) [19] on the Cell B.E. respec-
tively. They differ from GLOpenCL as they target only a
single hardware platform and are solely focused on compile-
time transformations. Moreover they target CUDA and
PTX instead of OpenCL codes.
Through the execution of a series of benchmark appli-

cations on two representative architectures, namely Intel’s
Core i7 (Nehalem) processor and the Cell B.E., we find that
GLOpenCL performs comparably and often better than ven-
dor implementations customized for the specific systems.
Our system achieves an average speed up of 1.84x (max-
imum 2.67x) over the infrastructure from AMD/ATI for
x86 systems, while resulting in low overhead compared to
the IBM OpenCL implementation (for the Cell), especially
for compute-bound applications. Based on experimental re-
sults, we can infer that the main bottleneck for the Cell
implementation is the external software cache module that
we utilized. OpenCL aims at being a reference, portable pro-
gramming model for heterogeneous architectures. Our ex-
perimental evaluation indicates, however, that performance-
conscious development, combined with a good insight on the
underlying architecture, can result in significant benefits, es-
pecially on non-conventional multicores.
We briefly outline the OpenCL programming model in

Section 2. Section 3 discusses the compiler support that
is needed to enable efficient execution of OpenCL applica-
tions, while in Section 4 we introduce the run-time system’s
architecture. Next, in Section 5 we discuss the evaluation
of our infrastructure on two multicore systems, one homoge-
neous with hardware- and one heterogeneous with software-
controlled caches. Finally, Section 6 concludes the paper.

2. THE OPENCL PROGRAMMING MODEL
The OpenCL (Open Computing Language) [12] program-

ming model tackles the problems of programmability and
portability by providing a parallel programming framework
suitable for conventional multicore architectures as well as
for accelerators, such as the GPUs and the Cell proces-
sor. Applications developed with the OpenCL programming
model can be ported, ideally unmodified, to any platform
that supports this framework.

OpenCL models the underlying parallel architecture as a
host and a number of OpenCL compute devices. A device
integrates a number of compute units, each one divided into
processing elements. The processing elements execute a sin-
gle stream of instructions and can operate either as SIMD
or as SPMD units.

An OpenCL application consists of two parts: the main
program that executes on the host and a number of kernels
that execute on the compute devices. The main constructs
in the OpenCL execution model are command queues, ker-
nels and memory buffers. OpenCL kernels express the com-
putational parts of the application. Command queues are
utilized for coordinating the execution of kernels. The main
program enqueues commands to the queues. Commands are
subsequently scheduled for execution. A command queue
can store either commands that trigger a kernel’s execution
or commands for manipulation of memory buffers. Mem-
ory buffers provide the means of data exchange between
the host and the compute devices. The corresponding com-
mands are either read or write operations for a particular
memory buffer.

OpenCL programmers typically use kernels for expressing
parallelism at its finest granularity. The “geometry” of the
execution is described by a 2-level, 3D index space, which
is defined upon execution of a kernel command. Each point
in the index space is called a work-item and corresponds to
the execution of a particular instance of the kernel. Each
work-item is described by a unique tuple of ids. Work-items
are organized into work-groups, each having up to three di-
mensions (3D thread index within the work-group geome-
try). The overall computation can, in turn, be partitioned in
work-groups, also organized in a 3D space (3D work-group
index within the global computation geometry). OpenCL
provides functionality for synchronization among work-items
that belong to the same work-group. On the other hand,
work-groups are completely independent on each other and
can execute in parallel. Therefore, the model does not pro-
vide primitives for synchronization among work-groups. Only
work-items that belong to the same work-group can commu-
nicate directly, through memory which is visible only inside
the work-group.

3. COMPILATION INFRASTRUCTURE
Typically, a kernel function in the OpenCL programming

model describes the computation to be executed by a log-
ical thread and expresses the application’s parallelism at
its finest granularity. However, the efficient exploitation
of parallelism and its mapping to the execution contexts
of the underlying architecture is not trivial. A straight-
forward approach would map each kernel invocation to a
user- or kernel-level thread. This approach is acceptable on
systems which provide explicit hardware support for fine-
grained threading, such as GPUs. However, other architec-
tures, such as conventional multicores or the Cell B.E., re-
quire coarser-grained parallelism, in order to limit the over-
head of work chunk creation, management and execution.
Moreover, the naive, fine-grained execution does not neces-
sarily benefit from the potential spatial and temporal local-
ity inside a work-group.

To enable efficient execution of OpenCL kernel functions,
we apply a series of source-code transformations. These
transformations collectively aim at coarsening the granular-
ity of the kernel function from a per-logical-thread to a per-

(a) (b)

Figure 1: Serialization of logical threads inside a kernel function. The kernel function before (a) and after
(b) the transformation.

work-group basis, thus reducing overheads. This approach
has the additional benefit of reducing the memory footprint
of the application as it allows different logical threads to
share the memory used for common variables. After the
transformations, the modified kernel function represents the
work that must be executed by each work-group in the index
space of the application. OpenCL work-groups can execute
in parallel. Therefore, it is possible to map each invoca-
tion of the modified kernel to an execution context of the
architecture, as described in more detail in Section 4.
The transformation process consists of three main steps:

serialization of logical threads, elimination of synchroniza-
tion functions within the kernel, and identification of vari-
ables that cannot be shared among logical threads. We have
modified the Clang [6] front-end of the LLVM compiler in-
frastructure [13] to support parsing of OpenCL kernel func-
tions and perform transformations on the program’s abstract
syntax tree (AST).
Additional compiler transformations, necessary to inte-

grate our framework with an external software cache mod-
ule, and to support the execution of kernel functions with
varying numbers and types of arguments are described in
Sections 4.2 and 4.3 respectively.

3.1 Serialization of Logical Threads
The first step in the series of transformations aims at in-

creasing the amount of computation in a kernel function by
serializing the execution of logical threads. Figure 1 depicts
a kernel function before (1(a)) and after (1(b)) the trans-
formation. In the absence of synchronization operations,
work-items (i.e. logical threads) inside a work-group can be
executed in any sequence. We enclose the instructions in the
body of a kernel function within a triple-nested loop – given
that the maximum number of allowable work-group dimen-
sions is currently three – thus executing the logical threads
in sequence. Each loop-nest enumerates the logical threads
in the corresponding work-group index dimension.
The selection of a work-group as the preferred degree of

granularity for logical threads serialization may seem arbi-

trary. However, in the next section it will become evident
that other options may present hard to overcome complica-
tions in the presence of synchronization operations or mul-
tiple exit points within the kernel. At the same time, work-
group granularity is usually explicitly set by OpenCL pro-
grammers, often considering data reuse, or matching the
work-group data footprint to the capacity of specific lev-
els of the memory hierarchy. Therefore, introducing differ-
ent degrees of work granularity at the run-time, despite be-
ing semantically correct, might introduce performance side-
effects.

The reader can observe that the serialization transforma-
tion typically decreases the cumulative memory footprint of
the kernel function invocations, since just one logical thread
is active at any time, thus the memory allocated to local
variables can be reused.

3.2 Elimination of Synchronization Operations
The next transformation addresses the problems intro-

duced by synchronization operations or multiple exit points
within a kernel. The OpenCL programming model provides
the barrier() function to allow barrier-type synchronization
of work-items inside a work-group. In the presence of a
barrier, all work-items in the work-group must execute the
barrier instruction before any of them is allowed to continue
execution beyond the barrier. Similarly, a barrier command
inside a loop implicitly enforces all work-items to execute
the barrier before the next iteration of the loop. Finally, if
a barrier is present in the block of a conditional statement,
the programmer must ensure that there is no control flow di-
vergence within the work-group at the particular condition,
otherwise a deadlock is possible.

A kernel function coarsened at a work-group granularity
implicitly enforces synchronization of the code correspond-
ing to logical threads before its first and after its last itera-
tion. By analogy, a barrier instruction requires that logical
threads synchronize before traversing it.

To ensure correct execution of the coarsened kernel func-
tions, we apply loop fission around each synchronization

(a) (b)

Figure 2: Loop distribution (loop fission) around a synchronization statement. The Matrix Transpose kernel
function before (a) and after (b) the transformation. triple_nested_loop stands – for brevity – for the triple
nested loop introduced by the logical threads serialization pass.

statement. We partition the statements into blocks so that
each block contains no synchronization operations. Figure 2
depicts this transformation for a kernel function that con-
tains a barrier instruction. Since there is one synchroniza-
tion statement, two loop constructs are required and suffi-
cient to ensure correct execution of the kernel function for
work-items inside a work-group.
A similar problem occurs in statement blocks with multi-

ple exit points, i.e. when statements that change the control
flow are present, such as continue, break, or return. If such
a statement block is enclosed within the triple-loop nest, ex-
ecution will be inconsistent with the program’s semantics,
since only the first logical thread will have the opportunity
to execute the instructions before the statement. In order
to overcome this issue, we treat such statements similarly to
synchronization points and enclose the instructions before
and after them in additional loop constructs.
Loop fission is applied as an iterative procedure, requiring

several traversals of the AST. A transformation necessitated
by a synchronization or a control flow statement may reveal
other points in the code that have to be treated as synchro-
nization points, thus requiring another traversal.

3.3 Variable Privatization
After applying loop fission around synchronization or con-

trol flow statements, the compiler needs to cope with vari-
ables whose life crosses loop fission points.
Each logical thread in the initial kernel function had its

own private storage for its local variables. However, once se-
rialization is applied, logical threads that belong to a work-
group share the memory corresponding to local variables.
This is normally both possible and legal, as each logical
thread has finished its execution – and therefore no longer
needs the value of the variable – before the iteration corre-
sponding to the next logical thread starts executing. How-
ever, there is a complication for variables whose life extends
beyond a synchronization or a control flow statement, i.e.
variables defined and having values assigned before such a
statement and reused after it. Values assigned by logical-
threads at the first loop construct introduced by loop fission
cannot be used during the execution of the second loop con-

struct, as their content has been polluted by the execution
of subsequent logical threads, thus violating semantics.

Our compilation infrastructure conducts a live variable
analysis to identify the variables that are live beyond the
boundaries of the loops introduced by loop fission. Follow-
ing, we apply variable privatization [1] for these variables,
namely we allocate them to a separate memory area for each
logical thread. Each logical thread is therefore provided with
a private copy of such variables. As a final step, references
to those scalar variables are rewritten to references to the
appropriate, thread-local position for each logical thread.

4. RUN-TIME SUPPORT
Figure 3(a) depicts the architecture of the GLOpenCL

run-time system for a system with hardware-controlled mem-
ory hierarchy (Intel x86), while Figure 3(b) depicts the ar-
chitecture for a software-controlled memory hierarchy mul-
ticore (Cell B.E.).

The run-time spawns a number of kernel-level threads,
which are used either as execution vehicles, or as helper
threads. The main thread is the one that executes the host
side of the OpenCL application. Worker threads are cre-
ated upon initialization and are responsible for executing the
main computational tasks of the application. GLOpenCL
run-time system spawns a number of worker threads equal
to the number of execution contexts available on the un-
derlying architecture. Finally, management and monitoring
tasks are undertaken by a helper thread. The exact respon-
sibilities and implementation of the helper thread are archi-
tecture specific.

4.1 Work Management
For each instruction of the host-side code that enqueues

a command, the main thread creates an appropriate com-
mand descriptor and enqueues it in the command queue.
The latter typically is a very lightly contended data struc-
ture. Mutually exclusive access to the queue is implemented
using futexes [8]. Once the main thread has executed the last
instruction of the host-side of the application, it blocks until
all enqueued commands have been executed.

(a) (b)

Figure 3: The run-time system’s architecture for the Intel (a) and the Cell B.E. (b) architectures. Dotted lines
identify architecture-specific modules or operations. The numbering denotes a typical sequence of operations.

Commands are transferred from the command queue to
the ready command queue when they are ready to be exe-
cuted. A command queue can be configured by the program-
mer to support either in-order or out-of-order execution. If
in-order execution is enabled, a command is transferred to
the ready queue if it is at the top of the command queue, and
provided that all previously issued commands have finished
their execution.
When the command queue has been configured for out-of-

order execution, a dependence-driven self-scheduling scheme
is applied. Each command can be marked as dependent
on one or more prior commands. Each executed command
updates the dependencies of its dependents. As soon as
a dependent command is identified to have no unsatisfied
dependencies, it is enqueued to the ready queue.
Work-tasks are created when a command related to a ker-

nel execution is processed from the ready queue. Each work-
task represents the computation that must be executed for
a single work-group in the index space of the application. A
work-task corresponds to an invocation of the correspond-
ing modified kernel function. The number of work-tasks
depends on the partitioning of the global index space. An
OpenCL programmer can explicitly partition the global in-
dex space, by defining the dimension of work-groups. If this
is not the case, the run-time performs an implicit, static par-
titioning of the index space, taking into account the number
of worker threads. In order to avoid work-task starvation,
execution of work-tasks has higher priority over the execu-
tion of ready commands. This means that a ready command
is processed only when work queues are empty of work-tasks.
In the x86 implementation commands are transferred from
the command queue to the ready queue and processed by
worker threads. As soon as a ready command is executed,
the corresponding work-tasks are created and distributed to
the work queues. This series of operations is carried out by
the helper thread in the Cell implementation.
Worker threads continuously execute a scheduling loop.

In each iteration, they retrieve the next available work-task
from the top of the work queue and execute the correspond-
ing wrapper kernel function. In the x86 implementation, a
worker thread has direct access to the work queues. This

is not the case for the Cell, where each worker thread is
executed on an SPE, thus having no direct access to work
queues residing in the address space of the PPE. When a
worker has finished executing its task, it communicates with
the helper thread through the mailbox mechanism to request
the next available task. If there is one, the helper thread
informs the worker thread, which subsequently transfers,
through the DMA mechanism, the work-task descriptor and
continues its execution. Otherwise, the helper thread marks
the worker as idling until there is a new work-task.

We have opted for a per-thread work queue scheme, where
each work queue is local to the corresponding worker thread.
Multiple work queues reduce the synchronization overhead,
enhance locality and improve the scalability of the run-time
system. Locality benefits are particularly evident in systems
with software-controlled cache hierarchies, such as the Cell
B.E. Work tasks are statically partitioned to the available
worker threads. Static partitioning tends to enhance local-
ity, as neighboring work-groups often access data in close
proximity.

To ensure proper load balancing among worker threads,
we allow work-stealing on the work queues. Each worker
that finds itself idling may attempt to steal work from the
bottom of a work queue of another worker. In the x86
implementation workers perform work-stealing directly. A
lock-free queue implementation enforces synchronization be-
tween threads that attempt to access the same queue simul-
taneously. In the Cell implementation, idle workers are as-
sisted in work-stealing by the helper thread. Only the helper
thread accesses the queues, therefore no synchronization is
required.

4.2 Manipulation of Memory Buffers
In OpenCL, memory buffers provide the communication

medium between the host and compute devices, as well as
between work-items. They can be either global or local.
Global memory buffers can be accessed by any work-item in
the global index space while local buffers are only accessible
by work-items inside a work-group. Global buffers present a
great challenge in the run-time system’s implementation for
software-controlled cache architectures, such as the Cell B.E.

The capacity of the higher levels of the memory hierarchy
(the Local Store in the SPEs) is limited and often insuffi-
cient to accommodate the working set of a work-group. The
problem is further complicated when there is no hardware
support for coherence between caches on different compute
devices (Local Stores of different SPEs). At the same time,
as we will discuss in Section 5, global buffers fit better to
the notion of shared memory most programmers are familiar
with. Therefore, they tend to be preferred over local buffers,
even when this would not be technically necessary.
Both problems can be addressed by using a software cache

module. The design and implementation of a new software
cache mechanism is out of the scope of this work. There-
fore, we have utilized the COMIC shared memory system,
one of the few software caches available for the Cell B.E.
[14]. COMIC is an unified software cache and threading
system. We have modified it to operate solely as a software
cache and integrated it with GLOpenCL. Each reference to
a global buffer in the kernel function is rewritten by the
compiler and gets redirected to the software cache mecha-
nism. The software cache, in turn, performs all necessary
operations on the Local Stores of different SPEs to guar-
antee the coherence of accesses to the corresponding global
buffer. A client side of the software cache is executed at each
worker thread (on SPEs) while the server side is executed in
the context of a helper thread on the host (PPE). Requests
from a software cache client are directed to the server, which
returns the appropriate data to the corresponding client and
updates other clients on potential coherence complications.
Such a mechanism is obviously redundant in the x86 im-
plementation as the caches are hardware-controlled and a
coherence protocol is already in place.
The last component of the run-time system for the x86

architecture is the async. copy thread and the correspond-
ing queue. OpenCL provides functions for asynchronously
copying data from global buffers to local ones and vice versa
inside a work-group. Any asynchronous function found in-
side a kernel must be executed by every work-item in the
work-group. An asynchronous copy operation returns an
event descriptor which can be used later to poll whether
the operation has completed its execution. We enable asyn-
chronous copy operations by utilizing a helper thread, the
async. copy thread, to handle the corresponding requests.
When a worker thread encounters such an asynchronous call,
it enqueues a request in the async. copy queue. The async.
copy thread is responsible for dequeuing the next available
request, copying the appropriate data, and updating the cor-
responding event.
The implementation of asynchronous memory copies in

architectures with software-controlled memory hierarchies is
usually more straightforward. Such architectures tend to
programmatically expose the DMA interface, as it is the
preferred mechanism for transferring data between different
levels of the memory hierarchy. On the Cell for example, an
async. copy operation is implemented as one or more DMA
transfers, which are inherently asynchronous.

4.3 Dynamic Kernel Invocation
Once a worker thread is assigned a work-task, it must in-

voke the corresponding modified kernel function with the
appropriate number of arguments. The optimal approach
to support the dynamic invocation of a kernel function is
through a function pointer. This approach requires that

both the address of the function and the number of its argu-
ments are known. An OpenCL application can invoke mul-
tiple kernel functions during its execution life, identifying
them by their name, namely a string. Moreover, different
kernel functions can have different numbers and types of ar-
guments. The complications are thus two-fold: a) The run-
time system must have prior knowledge of the number and
type of each kernel function’s arguments, and b) It should
be able to obtain the address of the function based on its
name.

In order to support kernel functions with varying num-
bers and types of arguments, we provide a uniform interface
for the invocation of a kernel function. Therefore, the com-
piler creates a wrapper for each modified kernel function in
the application. A wrapper function has only one argument
(an array of void pointers) and is responsible for dispatch-
ing the kernel’s arguments as the corresponding function
parameters, as well as for invoking the function. Therefore,
work-task descriptors only need to contain the address of
the corresponding wrapper function and a pointer to its ar-
gument.

Overcoming the second complication is trivial on systems
that support dynamic linking, as is the case in the x86 im-
plementation. At link-time, all symbols are added to the
symbol table of the executable. Then, we exploit the func-
tionality of the run-time dynamic linker to obtain the stub
function’s address, based on its name.

An alternative approach needs to be followed on statically
linked binaries, or when different executables are produced
for the host and the compute devices. This is, for example,
the case for the Cell implementation, as the executable for
the SPEs, which contains the kernel functions, is statically
linked with the executable of the PPE to produce a single
binary. Therefore, no dynamic lookup is possible. The pro-
posed approach is based on the observation that both PPE
and the SPEs have access to the regions of the ELF binary
that is produced. We allocate a separate region in the binary
and make its address known to the SPEs upon initialization.
For each wrapper function in the program, this section stores
a tuple that consists of its name and its address. When a
pointer to a function is needed, the PPE accesses the com-
mon section, locates the position of the wrapper function,
and stores the offset in the work-task descriptors that are
produced. This offset is subsequently used by the SPEs in
order to index the section and obtain the pointer to the ap-
propriate function.

The two aforementioned approaches are complementary.
The latter has the additional positive effect of allowing us to
overcome the limited capacity of the Cell B.E. Local Store
with respect to application code size. The Local Store in the
SPEs is unified and stores both the data and the instructions
of the program. As a consequence, this space may not suffice
for applications that execute multiple kernels throughout
their life, as the Local Store may be unable to concurrently
accommodate the source code for every function. Invoking
a function through a pointer can be used along with the
SPU code overlay mechanism to enable dynamic loading of a
function’s code in the Local Store of the SPE, thus virtually
extending its capacity.

5. EXPERIMENTAL EVALUATION
In this section we present the experimental evaluation of

GLOpenCL on two different platforms: an homogeneous

Figure 4: Performance comparison between GLOpenCL and the ATI/AMD OpenCL SDK on the x86. Ex-
periments have been executed for varying data sets (lower x-axis labels) and work-group sizes (upper x-axis
labels).

multicore with hardware-controlled memory hierarchy, and
an heterogeneous multicore with software-controlled caches.
Our homogeneous multicore is an Intel-based workstation,
using an Intel E5520 i7 processor clocked at 2.27 GHz and 4
GB of RAM. The processor integrates four identical cores.
Each core has a 32 KB instruction + 32 KB data private
L1 and a unified 256 KB L2 cache. All four cores share
an 8 MB L3 cache. Cell B.E. is a typical representative of
heterogeneous multicores with software controlled memory
hierarchy. We experimented with a IBM QS20 Blade with
two Cell processors clocked at 3.2 GHz. Only one of them
was used throughout the evaluation. The processor inte-
grates a 2-way SMT PowerPC core (PPE) and 8 synergistic
processing element cores (SPEs). Each SPE accesses a pri-
vate, software-controlled, 256 KB local storage (LS). The
blade is also equipped with 1 GB of RAM.
We compare the performance of GLOpenCL with that

of vendor provided, platform-customized implementations,
namely the AMD/ATI Stream SDK (v2.1) on x86 and the
IBM OpenCL SDK (v0.1.1) on the QS20 Cell blade. We
used the following set of representative applications, with
diverse characteristics, from the two SDK distributions:

• Vector Add: Addition of 2 vectors. No temporal lo-
cality, some spatial locality, communication intensive.

• 2D DCT: Discrete Cosine Transform on an image.
Blocked, temporal and spatial locality, compute bound.

• Sobel: Sobel filter [22] on an image. Blocked, similar
characteristics with 2D DCT.

• 2D AES: AES encryption [16] of an image. Similar char-
acteristics with 2D DCT and Sobel, the most compute
intensive application in the set, as it was reported both
by Intel VTune [9] for the x86 and the Cell Perfor-
mance Counter tool (CPC) [5] for the Cell B.E.

• BlackSholes: Solution of Black-Scholes PDEs [3] for
a number of options. Some spatial locality, no tem-
poral locality, compute intensive, complex math op-
erations. The async. version uses double buffering
and explicit, asynchronous blocked transfers for data
buffers, instead of implicitly outsourcing communica-
tion to the hardware or software cache mechanism.

All codes are precompiled, i.e. the just-in-time compila-
tion capabilities of OpenCL have not been used. GLOpenCL
application binaries have been created with the Intel C Com-
piler v11.1 on x86 and with xlc on Cell. In all cases, we ap-
plied the set of optimization flags that resulted in the highest
performing binaries.
We have executed each application with varying data sets

and work-group sizes. To ensure a fair comparison between
the different implementations, we measure only the kernel
execution time in each application. For each configuration,
we have executed a series of ten experiments and we report
the mean execution time. In each case, the variance of the
execution time was insignificant, which means that all re-
sults are reliable.
Figure 4 depicts the performance evaluation results on

the x86 platform. GLOpenCL consistently outperforms the
AMD/ATI OpenCL SDK. The average performance improve-
ment is 1.84x whereas the maximum speedup is 2.67. We
cannot know the exact reason for this performance difference

as internal details of the AMD/ATI OpenCL SDK are not
publicly available. Execution time in all applications scales
linearly to the amount of work. Moreover, larger work-group
sizes consistently tend to be beneficial for performance, as
less work-tasks need to be created, thus reducing work-chunk
creation, management and execution overhead. At the same
time, larger work-groups implicitly favor temporal locality,
especially in blocked codes.

Another interesting observation is that the substitution of
hardware assisted buffer transfers with asynchronous, double-
buffered copies in the case of BlackScholes does not seem to
offer any measurable performance benefits. Modern, hard-
ware-controlled memory hierarchies have the potential of ef-
fectively hiding memory access latencies, at least for memory
transfers that do not require multi-hop interconnection net-
work transactions and for regular loops in which traditional
optimizations – such as unrolling – or more aggressive tech-
niques – such as compiler assisted prefetching – can be ap-
plied. This is particularly true for multicore chips with large,
shared outer-level caches. Therefore, such architectures are,
by nature, more forgiving to suboptimal implementations.

Finally GLOpenCL proved able to work with both larger
work-groups and tackle larger data sets / problem sizes.
The largest problem size reported in the charts, with the
exception of AES and Sobel, is the limit beyond which the
AMD/ATI OpenCL SDK did not manage to allocate buffers.
Moreover, in certain cases the AMD/ATI OpenCL SDK
failed to exploit larger work-groups for a certain problem
size. Such behavior can be observed for Vector Add, DCT
and both versions of BlackScholes.

Figure 5 summarizes the evaluation on the Cell blade.
The IBM OpenCL SDK is performing on average 27.5%
better than GLOpenCL. This can be mainly attributed to
the difference in the efficiency of the software cache imple-
mentations used by each system. IBM uses a custom soft-
ware cache, which significantly outperforms the one publi-
cally available within the IBM Cell SDK. Moreover, the soft-
ware cache is tightly integrated with the OpenCL-enabled
xlc compiler, thus allowing detailed compile-time data ac-
cess pattern analysis and optimizations. It is characteristic
that for the communication-intensive Vector Add applica-
tion IBM OpenCL outperforms the GLOpenCL and COMIC
combination by 52.6%. Excluding Vector Add, the perfor-
mance gap between the GLOpenCL and IBM infrastruc-
ture drops to 19.1%, or 13.2% if the best performing work-
group geometry is used for each problem size. Moreover, for
compute-intensive applications, such as AES and Sobel, the
performance of the two systems is practically indistinguish-
able, especially for larger problem sizes.

IBMOpenCL outperforms GLOpenCL even in the BlackSc-
holes implementation using asynchronous copy, thus reduc-
ing the effect of the software cache. As discussed in Sec-
tion 4.2, COMIC integrates the software cache with a thread-
ing system. Although we have deactivated the threading
system and combined COMIC with the GLOpenCL run-
time, some helper threads primarily used for monitoring
COMIC threading are tightly integrated with the software
cache module and cannot be deactivated. They, thus, inter-
fere with GLOpenCL main and helper threads even when
the cache is not heavily used. An interesting observation is
the more than 10-fold performance improvement for both in-
frastructures when the asynchronous copy / double-buffering
optimization is used for data buffers. Despite the fact that

Figure 5: Performance comparison between GLOpenCL and the IBM OpenCL SDK on the Cell. Experiments
have been executed for varying data sets (lower x-axis labels) and work-group sizes (upper x-axis labels).
The largest data size in each chart is the limit beyond which IBM OpenCL SDK is unable to allocate memory
buffers.

OpenCL has been designed as a write-once run-everywhere
framework, this result is indicative of the vast performance
benefits that can often be attained by carefully mapping the
computation to the specific characteristics of the underlying
architecture.
Finally, similarly to the case of x86, GLOpenCL was able

to work with both larger work-groups and be usable with
larger problem sizes than the IBM OpenCL SDK on the
Cell blade.

6. CONCLUSIONS
We presented the design, implementation and evaluation

of GLOpenCL, a unified compiler and run-time framework
for supporting OpenCL applications on a set of parallel sys-
tems with diverse architectural characteristics. Our generic
framework performed comparably, or often significantly bet-
ter than customized, architecture specific, vendor OpenCL
implementations. Moreover, the experimental evaluation in-
dicated that, even when developers use programming mod-
els – such as OpenCL – targeted at efficiently supporting
fundamentally different and often heterogeneous computing
substrates, careful mapping of applications to the under-
lying architecture may yield hard to overlook performance
benefits.
In future work, we plan to investigate the possibility of

reducing the functionality or even removing the software
cache in systems with software-controlled memory hierar-
chies, since the specific module proved to be the main per-
formance bottleneck on the Cell implementation. Although
programmers tend to use shared data structures even when
they could avoided, automatic code slicing and precomputa-
tion of memory accesses – either at the host- or the compute
devices-side – may prove a valuable tool in reducing com-
munication overhead.

7. ACKNOWLEDGEMENTS
We would like to thank Barcelona Supercomputing Center

for providing us with access to their IBM QS20 Cell blade
servers and the anonymous reviewers for their constructive
comments. The first author is supported by a grant from
‘Bodossaki’ public benefit foundation.

8. REFERENCES
[1] R. Allen and K. Kennedy. Optimizing Compilers for

Modern Architectures: A Dependence-Based Approach.
Morgan Kaufmann, 2002.

[2] ATI-AMD. ATI Stream Software Development Kit
(SDK) v2.1. http://developer.amd.com/gpu/
ATIStreamSDK/Pages/default.aspx.

[3] F. Black and M. Scholes. The Pricing of Options and
Corporate Liabilities. The Journal of Political
Economy, 81(3):637–654, 1973.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An
Efficient Multithreaded Runtime System. Journal of
Parallel and Distributed Computing, 37(1):55–69, 1996.

[5] Cell B.E. Performance Counter Tool.
http://www.ibm.com/developerworks/power/

tutorials/pa-sdk3tool/.

[6] Clang: A C Language Family Frontend for LLVM.
http://clang.llvm.org/.

[7] G. Diamos, A. Kerr, and M. Kesavan. Translating
GPU Binaries to Tiered SIMD Architectures with
Ocelot. Technical report, Georgia Institute of
Technology, 2009.

[8] H. Franke and R. Russel. Fuss, Futexes and Furlocks:
Fast User-Space Locking in Linux. In Proceedings of
the Otawa Linux Symposium, pages 85–97, 2002.

[9] Intel Corporation. Intel VTune Performance Analyzer.
Document Number 310866-001.

[10] International Business Machines Corporation (IBM).
IBM SDK for Multicore Acceleration Version 3.1.
http://www.ibm.com/developerworks/power/cell/.

[11] International Business Machines Corporation (IBM).
OpenCL Development Kit for Linux on Power.
http://www.alphaworks.ibm.com/tech/opencl.

[12] Khronos OpenCL Working Group and A. Munshi.
The OpenCL Specification Version: 1.0 Document
Revision: 48, 2009.

[13] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In CGO ’04: Proceedings of the
International Symposium on Code Generation and
Optimization, pages 75–86, 2004.

[14] J. Lee, S. Seo, C. Kim, J. Kim, P. Chun, Z. Sura,
J. Kim, and S. Han. COMIC: A Coherent Shared
Memory Interface for Cell BE. In PACT ’08:
Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques,
pages 303–314, 2008.

[15] F. Mueller. A Library Implementation of POSIX
Threads under Unix. In Proceedings of the USENIX
Conference, pages 29–41, 1993.

[16] National Institute of Standards and Technology
(NIST). Announcing the ADVANCED ENCRYPTION
STANDARD (AES). Federal Information Processing
Standards Publication 197, November 2001.

[17] NVIDIA. CUDA Technology. http:
//www.nvidia.com/object/cuda_home_new.html.

[18] NVIDIA. CUDA Programming Guide, Version 3.0,
2010.

[19] NVIDIA. NVIDIA Compute PTX: Parallel Thread
Execution ISA Version 2.0, 2010.

[20] OpenMP. The OpenMP API.
http://openmp.org/wp/.

[21] J. P. Perez, P. Bellens, R. M. Badia, and J. Labarta.
CellSs: Making it Easier to Program the Cell
Broadband Engine Processor. IBM Journal of
Research and Development, 51(5):593–604, 2007.

[22] I. Sobel and G. Feldman. A 3x3 Isotropic Gradient
Operator for Image Processing. Talk presented at the
Stanford Artificial Project, 1968.

[23] J. A. Stratton, S. S. Stone, and W.-M. W. Hwu.
MCUDA: An Efficient Implementation of CUDA
Kernels for Multi-core CPUs. In Languages and
Compilers for Parallel Computing: 21th International
Workshop, LCPC 2008, Revised Selected Papers,
pages 16–30, 2008.

[24] UPC Consortium. UPC Language Specifications, v1.2.
Technical Report LBNL-59208, Lawrence Berkeley
National Lab, 2005.

