
A PROGRAMMABLE, HIGH PERFORMANCE VECTOR ARRAY UNIT USED FOR   
REAL-TIME MOTION ESTIMATION 

 
Nikos Bellas                                 Malcolm Dwyer 

 
Multimedia Architectures Lab, Motorola Inc., Schaumburg, IL 

 
ABSTRACT 

 
The MPEG-4 and H.263 video standards are enabling 
technologies for the proliferation of wireless multimedia 
applications in 3G systems. For video encoding, the Motion 
Estimation (ME) stage is typically the most demanding in terms 
of performance and bandwidth requirements, and is usually 
implemented through dedicated hardware, especially in systems 
with stringent power requirements. This approach, however, 
cannot exploit any algorithm advances on Motion Estimation 
algorithms, and requires major hardware re-design in case of 
modified specifications or standards. This paper describes the 
architecture of a programmable Motion Estimation unit that is 
used as part of a larger wireless video encoding system. An 
Instruction Set Architecture (ISA) allows the development of 
various ME algorithms in software without the need to re-
design portion of the chip.  
 

1. INTRODUCTION 
 

There are a large number of different techniques to perform 
ME in a video encoding system, since this process is not part of 
the MPEG standard.  Search window size and shape, 
comparison computation, convergence criteria, pixel accuracy, 
and block size are some of the parameters that vary between 
different motion estimation algorithms, and make a 
programmable solution desirable.  

The search window is the rectangular area of the previous 
frame within which the search for the best matching block takes 
place.  All the ME algorithms constrain their search for the best 
match in a rectangular area around the current macroblock. For 
videoconferencing applications, this constraint does not create 
compression inefficiencies because the amount of motion 
between two successive frames is usually very small.  The value 
p defines the search window size, where the search window 
extends p pixels to the top, bottom, left, and right of the current 
macroblock’s location (Figure 1).  For a displacement vector 
(i,j), the distortion between the two 16x16 macroblocks is 
defined by the following equation: 

( )

[ ]ppji

jnimnmji
m n

,,

),(Prev),(Curr,SoAD
15

0

15

0

−∈

++−= � �
= =

 

The proliferation of video capturing wireless devices like video 
cameras, PDAs, cell-phones, and digital cameras and the 
shrinking time to market present two conflicting goals to the 
designers of such systems. The demand for high MIPS/W has to 

be traded-off with the high cost of developing new ASICs every 
time the performance requirements go up, or the algorithms 
change. A design that is optimized for ME, yet it is 
programmable is a good compromise between the two worlds.  

The ME module consists of a vector array optimized to 
perform fast SoAD computations, and half-pixel interpolations 
which are the building blocks of most ME algorithms. It is also 
equipped with a scalar pipeline to perform scalar arithmetic, and 
control operations as well as to control the functionality of the 
vector unit. The architecture follows a VLIW mechanism and 
up to three instructions can be issued per cycle.  

The rest of the paper is organized as follows: Section 2 
outlines previous work on the subject of ME algorithms and 
hardware implementations. Section 3 presents the architectural 
details of the proposed vector unit and Section 4 gives details 
on the ISA that is implemented by the vector array and explains 
how it can be used to perform various ME algorithms. Section 5 
gives some technology implementation and performance results, 
and Section 6 summarizes the paper.  

 
2. RELATED WORK 

 
A large number of papers have focused on algorithms that make 
trade-offs between computational complexity and compression 
quality ([1], [2], [3]). There has also been a considerable 
amount of work on the hardware implementation of ME 
modules. In [4][5],  two data paths to perform sum of absolute 
differences and pixel interpolation for half and quarter pixel 
interpolation are described. No general-purpose control code 
can be executed, and the modules are not programmable. The 
paper in [6] uses a formal methodology for mapping the full-
search ME algorithm into systolic arrays, and the paper in [7] 
derives systolic architectures for the three-step hierarchical 
search algorithm. Extensive research has focused on low-power 
implementations of ME modules [8]. New multimedia-oriented 
instructions have been added to processors to speed up 
applications that require fast processing of large data sets. The 
Intel’s MMX and Motorola’s Altivec technologies are among 
the most well known for the desktop processing [9][10][11]. 
The same trend has pushed for SIMD extensions on embedded 
processors like ARM [12]. Finally, the push towards data-
intensive multimedia workloads have pushed designers towards 
high performance media processors such as Equator’s MAP-
CA, BOPS’s Manta, Philips’s Trimedia, etc.  

 
 



 
 

These approaches do not address the issue of programmable 
ME. They focus either on implementing a particular algorithm, 
or on just providing extensions to instructions that can be used 
for ME software development. Our approach can be termed as a 
programmable ME accelerator unit.  

 
3. MOTION ESTIMATION ARCHITECTURE 

 
Figure 2 shows the top-level diagram of the vector unit. The 

data path of the ME unit is composed of a systolic/vector array 
which is primarily used for the computation of the Sum of 
Absolute differences (SoAD) and a scalar part which is 
equipped with register files and scalar functional units. This part 
is mainly used for simpler scalar computations and program 
flow. The systolic array consists of 16 Processing Elements 
(PEs). The programmer controls the functionality of the 
memory and the systolic array through bitmasks that can be 
manipulated using the instructions of the ME module.  

The machine is organized as a three-stage pipeline with 
Instruction Fetch (IF), Instructions Decode (ID), and Execution 
and Write Back (EX). The EX stage is where the vector array 
and the ALUs are used to compute results and write them back 
to the register file or to the PEs. Since there are only three 
stages, an instruction that reads a register operand can be issued 
immediately before the instruction that produced the operand. 
The only exception to that is the conditional branch instruction 
which can be issued only two clock cycles after the conditional 
flags have been set (via the Cmp instruction). The vector array 
is also part of the EX stage, but it cannot function 
simultaneously with the ALUs of the scalar part. Two separate 
16-bit register files are used as scratchpad memory, while some 
registers have a dedicated functionality. This functionality is 
mainly used to control the vector array by the instructions 
vec_Soad, vec_SoadHP, etc. described in the next section. 

The memory subsystem has three input/output channels from 
which it can provide data to the vector array, and can receive up 
to three independent addresses to read data from. The memory 
system is working on two modes: the “pixel” mode in which the 
incoming addresses are the (x, y) coordinates of the desired 
pixel, and the “linear” mode in which the incoming addresses  

 

are absolute. The memory can be set to the appropriate mode 
via control registers in the register files. A crossbar switch 
mechanism provides different paths to link the memory to the 
PEs. 

A DMA unit is used to automatically generate the addresses 
of the incoming pixels so that the programmer of the module 
does not do that explicitly. The DMA is programmable, and can 
generate addresses in different patterns, such as a linear scan of 
the memory, or a two-dimensional scan, etc. The functionality 
of the DMA is controlled through variables such as the initial 
memory address, the size of the stride, the size of the skip, etc. 
The result is that the DMA can generate a variety of useful 
access patterns, and offload the programmer from the tedious 
task of providing a new memory address every clock cycle.  

A layer of logic between the actual SRAM modules and the 
crossbar switches called Virtual Memory Translation Unit 
(VMTU), implements the conversion between the 2-D (x, y) 
addresses from the DMA and the absolute addresses that the 
SRAMs can use. In case of a memory access outside the search 
window, the VMTU intercepts the access and replaces it with an 
access at the edge of the search window. This is useful when the 
target MB is close to the edge of the search window and some 
of the accesses will be outside.  

The core of the PE is the |a-b| block, and the accumulator.  
The computation that is done in one clock cycle by the PE is 
given by the following equation: 

barr −+=  

The PEs are used to compute the sum of absolute differences 
between a series of current pixels, and a series of search window 
pixels.  They are connected in a pipeline chain to allow for pixel 
re-use once the pixels have been read out of the memory. This 
lowers the memory bandwidth requirements and allows up to 16 
SoAD computations/cycle once the pipeline fills up. At the end 
of a number of cycles, the accumulator will contain the sum of 
absolute differences between a current macroblock, and a search 
window macroblock 
Each PE can also perform bilinear interpolation before the 
SoAD to facilitate half-pixel interpolated searches. Figure 3 
shows the interpolated pixel for every case. The A,B,C, and D 
pixels are fed into the PEs and the interpolated pixels are  
 
computed before its SoAD with a pixel in the current MB is 
evaluated. 
 

Frame Width

Fr
am

e 
H

ei
gh

t

Search Window

2p + n

2p
 +

 n

16

16

Current Macroblock

Previous Frame Current Frame
 

Figure 1 Motion Estimation Search Window 



 
4.   INSTRUCTION SET ARCHITECTURE 

 
The ME unit interprets and executes a well-defined ISA 
optimized for the computations typical in a ME algorithm. The 
following set of operations are supported : 

• Computational instructions 
These instructions perform the vector operations in the systolic 
array of the ME unit, as well as scalar operations. Typical 
computational instructions are: 

• Vec_Soad, Vec_SoadHP, Vec_Acc 
    They are used to trigger a SoAD or SoAD with HP 
interpolation, or just pixel value accumulation on the vector 
array. They selectively enable/disable individual processing 
elements, and direct the output of the memory subsystem to 
particular PEs. They use specific registers (not part of the 

opcode because they are always the same) to set-up the crossbar 
switch before the ME execution loop is entered. 

• Add/AddC/Inc/Shift/Abs/AbsC/Min/MinC/Max/ 
MaxC/Cmp/CmpC 

These are standard scalar arithmetic operations. They support 
operations on bytes or words (16-bits). The Cmp/CmpC 
instructions are the only ones that can modify the conditional 
flags. The Add instruction is using a triadic addressing mode, 
and the AddC instruction is adding a 16-bit constant to a 
register $r and deposits the sum to $r. Similarly for all the other 
operations. 

• CondAdd $r1, const1, const2, const3 
It executes: 
  If ($r1 == const1) 
        $r1 += const2; 
 else 
        $r1 += const3; 

 

PE-0
PE-0

PE-1
PE-1

PE-2
PE-2

PE-3
PE-3

PE-4
PE-4

PE-5
PE-5

PE-6
PE-6

PE-7
PE-7

PE-8
PE-8

PE-9
PE-9

PE-10
PE-10

PE-11
PE-11

PE-12
PE-12

PE-13
PE-13

PE-14
PE-14

PE-15
PE-15

System interface
System interface

S
ca

la
r 

R
eg

is
te

r 
Fi

le
S

ca
la

r 
R

eg
is

te
r 

Fi
le

A
LU

P
or

t 1
,2

,3
 D

M
A

C
ro

ss
ba

r
C

on
tr

ol
 L

o
gi

S
ca

la
r 

R
eg

is
te

r 
Fi

le
S

ca
la

r 
R

eg
is

te
r 

Fi
le

A
LU

A
LU

s 
an

d 
C

om
pa

re
an

d 
S

et
 U

ni
ts

Conditional
Flags

Crossbar Switch

Crossbar switch

Memory Subsystem

A
LU

Data Bus

Adress Bus

Control signals
Data bus

D
ec

od
er

m
ic

ro
in

st
ru

ct
io

n
bu

ff
ermicroinstruction

SRAM

N
ex

t A
dd

re
ss

 L
og

ic

C
on

di
tio

na
l F

la
gs

D
ec

od
er

D
ec

od
er

C
on

tr
ol

 s
ig

na
ls

to
 r

eg
is

te
r 

fil
es

 a
nd

A
LU

s.

PC

Branch address

 

Figure 2 Block diagram of the programmable ME unit 



 
 
 It used to accelerate setting of pointers in the 2-D space of the 
search window.  
 

• Data transfer instructions 
They are used to transfer data between the register files, the 
memory and the accumulators of the PEs of the vector array.  

• Control flow instructions 
This set includes jump and return from function instructions as 
well as a BrMask conditional branch, which allows the PC of 
the microcontroller to jump to a new location depending on a 
number of different combinations of the conditional flags.  
 

5.  IMPLEMENTATION AND RESULTS 
 
The ME unit was implemented as part of a larger MPEG-4 

and JPEG compression chip. It is implemented at 0.18um 
CMOS technology, and is clocked at 100 MHz. Its area is 4.21 
mm2. For this implementation, there is enough memory to store 
a 48x48 search window, which is enough to support a +-16 
Motion Vector range, and also memory to store the 16x16 
current MB.  

The ME unit is able to support 30 fps CIF encoding at 100 
MHz. The algorithm used is less computationally expensive 
than full search. Instead of computing the best match using all 
the 256 pixels of a macroblock, only 64 pixels are used by a 
vertical and horizontal sub-sampling of two. The steps of the 
algorithm are the following in summary: 

1. A sub-sampled full-search algorithm in a range of +-16 
full pixels is performed around the location (0,0) of the 
current MB. The pixels of the current MB and the 
target MB are partitioned in four classes: A, B, C, and 
D. For a particular target MB, only pixels from the 
same class are used to perform SoAD computations 
with the pixels of the same class in the current MB. The 
output of this stage are the four optimal motion vectors 
(MVs) and the SoADs for the four pixel classes (A, B, 
C, D), and the (0,0) location. 

2. A full search algorithm is performed on the five 
locations from step 1, and the optimal integer MV is 
found. 

3. Half pixel interpolation is performed around the 
optimal integer MV to compute the optimal half-pixel 
MV.  

4. An extra step is taken to compute the average pixel 
value P of the current MB (using the vec_Acc 
instruction), and, then, the variation (SoAD) of every 
pixel in the current MB with respect to P. If the 

variation is smaller than a threshold, the current MB 
can be coded intra.  

    All these steps are carried out in the ME unit without any 
Host intervention other than to send the pixel data and receive 
the resulting MVs at the end. The performance of the ME unit is 
approximately 600 MSADs / sec 

 
5. CONCLUSION 

 
This paper describes a programmable architecture for fast 

ME execution. Various ME algorithms can be developed using 
an assembly programming interface. The vector array can be 
used for the computational intensive part of the code, while the 
scalar part is used for control and non-critical computations. 
This module eliminates unnecessary communication with the 
Host unit since all the steps of a potentially complex ME 
algorithm can be performed in place without the Host 
intervention.  
 

11. REFERENCES 
 

 [1] K.Xie, L.V Eycken, and A. Oosterlinck. A new block-based 
motion estimation algorithm. Signal Processing: Image 
Communication, 4:507-517, May 1992. 
[2] J.R Jain and A.K. Jain. Displacement measurement and its 
application in interframe coding. IEEE Transactions on 
Communications, 29(12):1799-1808, Dec. 1981. 
[3]  B. Liu and A. Zaccarin. New fast algorithms for the 
estimation of block motion vectors. IEEE Transactions on 
Circuits and Systems, 3(2):148-157, Apr. 1993 
[4]  J. Fandrianto, et al. Programmable architecture and methods 
for motion estimation. US Patent 5,594,813, February 1992  
[5]  S.C. Purcell, et al.  Structure and method for motion 
estimation of a digital image by matching derived scores,. US 
Patent 6,122,442, August 1995  
[6] T. Komarek and P. Pirsch. Array architectures for block 
matching algorithms. IEEE Transactions on Circuits and 
Systems, 36(10):1301-1308, October 1989 
[7]  Y-S. Jehng, L-G Chen, and T-D. Chiueh. A motion 
estimator for low bit-rate codec. IEEE Transactions on 
Consumer Electronics, 38(2):60-69, May 1992. 
[8]  Z. L. He, C.Y Chui, K. K. Chan, and M.L. Liu. Low-power 
VLSI design for motion estimation using adaptive pixel 
truncation. IEEE Transactions on Circuits and Systems for 
Video Technology, 10(5): 669-678, August 2000.  
[9]  Alex Pegel and Uri Weiser. MMX technology extension to 
the Intel architecture. IEEE Micro, 16(4): 42-50, August 1996 
 [10] Keith Diefendorf, et. al. Altivec extension to PowerPC 
accelerates multimedia processing. IEEE Micro, 20(2): 85-95, 
March 2000 
[11] F. Moschetti and E. Debes. A fast block matching for 
SIMD processors using subsampling. Proceedings of ISCAS, 
vol. 4:  321-324, 2000  
[12]  S. Segars, et. al. First members of the ARM11 product 
family. Microprocessor Forum, October 2002.   

v vv
A

B

v v

v v

v

A B

C D

v

v

v

A

B

 

Figure 3 Half-pixel interpolation cases 


