
 
ABSTRACT 

 
As digital imaging becomes more prevalent in consumer 
products, the industry strives to reduce the cost and the 
complexity of imaging solutions and, at the same time, to 
improve the color quality and resolution of the images. The 
proliferation of imaging in mobile phones, digital cameras, 
webcams, toys, etc. creates the need for a low cost, small 
footprint image sensor. Nowadays, sensor optics account for 
approximately half the cost of an image sensor system for a 
camera phone, and their cost does not scale down as fast as 
the cost of semiconductors.  
In this paper, we describe the algorithms and the hardware 
implementation of a novel color processing chain that uses 
image processing techniques to compensate for the spatial 
variations in image attributes and quality due to low cost 
optics. If left uncorrected, these variations produce 
undesirable visual effects and lead to unacceptable image 
quality. Besides the correction of artifacts due to lenses, the 
image processing chain performs a sequence of corrections 
for real time dead pixel replacement, color correction, 
filtering, color space transformations for subsequent 
compression, etc. 
 

1. INTRODUCTION 
 
Image sensors are widely used in high volume, space 
constrained applications such as mobile imaging, toys, 
barcode scanners, automotive applications, etc. There is a 
growing interest for CMOS based image sensors because of 
customer demand for miniaturized, low power, and high 
integration imaging systems. Moore’s law on scaling of 
CMOS semiconductor technology ensures that the cost of 
the pixel array and accompanying image processors and 
DSPs will continue to drop. This leaves the optical lenses 
and packages the dominant cost contributor of an image 
sensor system.  
The advances in semiconductor integration has prompted 
image sensor designers to transfer additional functionalities 
to the image processors in order to improve the quality and 
to amend inefficiencies at the front end of the system. As an 
example, the packaging of sensors in mobile devices 
requires a small z-height optical system in which the 
distance between the main lens and the active pixel array 
creates blurring effects and chromatic aberrations near the  

edges of the sensor (Figure 1). We will focus on this 
imaging error later in the paper. 
Another example is the incomplete manufacturing testing of 
the pixel array that may leave behind pixels that are stuck at  
a particular value independent of the light intensity of the 
scene (called dark and hot pixels). Again, image processing 
can be used to detect and correct dead pixels in the active 
pixel array in real time. By making it unnecessary to discard 
sensor chips that contain limited numbers of scattered 
defects, the method would increase effective production 
yields and thereby lower the costs of individual image 
sensors. 
In this paper, a complete image processing algorithm and its 
hardware implementation is described. Moreover, the paper 
explains how the correction stages are combined with a 
traditional pipelined image processing chain used to 
enhance the quality of the picture. This chain can be used in 
a mobile telephony device, for example. We present an 
important and realistic paradigm on how back-end image 
processing can substitute manufacturing inefficiencies, thus 
driving the effects of Moore’s law into the whole system 
.  
The paper makes the following contributions: 

• It presents novel algorithms to solve the problems 
of roll off corrections due to low cost optics and of 
real time dead pixel detection and replacement, and 

• it describes how these algorithms can be mapped 
into a modular ASIC design for a high-speed, low 
power hardware implementation.  

The rest of the paper is organized as follows: section 2 
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Figure 1 Each pixel is enclosed in microlenses to focus 
the incident light on photo sensitive portions of the 
pixel and improve the effective fill factor of the image 
sensor. If the z-height is small, the image appears 
blurred at the edges. 
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details the complete image processing chain. Section 3 
presents the pipelined image processor that interfaces to a 
VGA sensor and implements the algorithms, and section 4 
outlines previous work in the area and concludes the paper. 
 

2. IMAGE PROCESSING ALGORITHMS 
 

The color processing pipeline of Figure 2 receives a stream 
of sensor pixels in Bayer format, and produces a stream of 
pixels in the YCbCr color space. In some cases, certain 
values of the sensor integration time cause the appearance of 
rolling horizontal flickering bars in the image. The 
processing chain has a flickering detection and correction 
mechanism which is based on the Fourier transformation of 
image rows of successive frames. A flickering detection 
triggers a gradual modification of the sensor integration time 
to eliminate the flickering effect.  
The algorithm computes statistical information on the pixel 
values including the average R, G, and B values in each 
frame and the distribution of these values using histogram 
analysis. The statistical information is used for dynamic 
updates of the integration time and white balance values in 
the sensor.  
Before most of the image processing can be conducted, dead 
pixel values must be removed. Traditionally, dead pixel 
detection and correction is achieved by storing the locations 
of the dead pixels during sensor manufacturing test. During 
sensor initialization, these locations are stored in the image 
processor and the dead pixels are replaced by neighboring, 
non-dead pixels while the frame is read out. One of the 
novel algorithmic aspects of our imaging chain is the 
detection of pixels that are substantially different from 
surrounding pixels without losing sharpness and spatial 
details. The algorithm eliminates the need to store the 
location of the dead pixels a-priori since it does not aim to 
detect every dead pixel in the image, but to detect the dead 
pixels that cause obvious visual errors for a particular scene.  
 While it is easy to devise heuristics to detect suspicious 
pixels with a high contrast to their surrounding pixels, 
problems may arise when a mathematical formula is applied 
to replace them, especially in sites with high spatial 
frequency. For brevity, we will only detail the detection and 
replacement of pixels in a red location in Figure 3.  
The large separation of red pixels (compared to green 
pixels) forces us to use surrounding green pixels as well to 
detect the brightness of the site. If the red pixel is much 
brighter than its neighbours, it is being substituted by the  
maximum value of nearby red and green pixels, and not by 
their average or median value. This is necessary in order to 
retain highlights in locales with rich spatial detail. 
Moderately bright red pixels use a smaller threshold to 
compare against neighboring pixels, but they are only 
substituted in case of a flat or dark field. It is permissible to 
detect dark pixels by testing against only surrounding red 
pixels, since fine details are not adversely affected by 

brightening dark red pixels. Note that unlike the bright red 
pixels, the substitution is the mean of the surrounding red 
and green ones.  
The dead pixel detection and replacement for green pixels is 
simpler, and utilizes only green surrounding pixels. The 
process for the blue pixels is similar to the process for the 
red pixels, with extra precautions for areas in which dark 
objects are immersed in very bright backgrounds. 
Dead pixels have to be replaced before the subsequent 
filtering and roll off correction stages to avoid errors to be 
magnified.  
Pixels near the corners and the edges receive light at a larger 
incident angle, which is also more diffused and causes loss 
of acuity (Figure 4). Moreover, the large incidence angle 
causes color variations near the edge of the sensor.  
The algorithm corrects for roll off in image data by 
determining for each pixel a roll off contour in which the 
pixel resides which in turn, depends upon the pixel 
coordinates on the image plane. The (x,y) coordinates of the 
location of each pixel are converted to a radial distance from 
the center of the image, which is used to map the location to 
the roll-off contour (Figure 5) and to access look-up tables 
that contain gain parameters.  
The non-linear roll off correction is used in three different 
circumstances: to correct unwanted variability in luminance 
(Figure 4), loss of image sharpness, and color distortion 
because the color components RGB do not focus at exactly 
the same point at the edges of the image. 
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Figure 2 The image processing chain, including flicker 
control, dead pixel detection and replacement and roll-
off corrections 



The non-linear luminance shading correction is applied in 
the same Y input stream as the edge enhancement/MTF 
correction. The shading correction is multiplicative and can 
increase the luminance value by a factor of 3-4x near the 
image edge: 
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The luminance stream Y passes through a baseline 3x3 high 
pass filter to perform edge enhancement, and, 
simultaneously to restore loss of sharpness through the 
location dependent MTF correction filter. The equations are 
the following: 
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 where m is the convolution matrix:   
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and Base and RollOff are user defined normalization factors.  
The f1 and f2 are non-linear, monotonically non-decreasing 
functions of the radial distance R of the pixel from the 
optical center and are implemented in hardware using 
lookup tables (LUTs). The chroma pixels do not pass 
through edge enhancement, but only through roll off 
correction. The chroma correction is additive to the baseline 
chroma magnitude, so that total corrective effect is much 
smaller than in the luminance roll off case, although the 
image errors can be more objectionable than in the Y pixels. 
A final color correction and optional filtering effects stage 
conclude the image processing pipeline.  
 

3. HARDWARE IMPLEMENTATION 
 

The imaging pipeline is implemented as a synthesizable 
image sensor companion chip. Therefore, it has to meet 
stringent real-time performance requirements and operate 
within a low power budget. The design can process Bayer 
data from a VGA (640x480) image sensor at 30 frames/sec 
using a max clock frequency of 33 MHz for low power 
operation. In Figure 6, each of the three multi-cycle pipe 
stages execute parts of the processing chain. The low clock  

Is Green
plane locally
flat or dark?

Is Green
plane locally
flat or dark?

Is R9 a bit
brighter than nearby

Red and Green?

Is R9 a bit
brighter than nearby

Red and Green?

Is R9 a lot
brighter than nearby

Red and Green?

Is R9 a lot
brighter than nearby

Red and Green?

Replace R9 with
Max of nearby Red and Green

yes

no

R9 unchanged

Is R9 a bit
darker than nearby

Red pixels?

Is R9 a bit
darker than nearby

Red pixels?

Is Green
plane locally

flat?

Is Green
plane locally

flat?

Is R9 a lot
darker than nearby

Red and Green?

Is R9 a lot
darker than nearby

Red and Green?

Replace R9 with
Average of nearby Red and Green

G1  B2  G3  B4  G5  B6
R7  G8  R9  G0  Ra  Gb
Gc Bd   Ge  Bf  Gg  Bh
Ri   Gj   Rk  Gm Rn  Gp

no

yes

yes

no

no no

yes

yes

yes

For Hot red
pixels, use both
red and green

info to preserve
fine yellow

lines

Algorithm
looks ‘forward’
to help prevent
false positives

while detecting
98% of DPs

For ‘warm’ red
pixels, check

range of green
plane

neighborhood

Figure 3 The algorithm for dead pixel detection and replacement of red pixels 

 

 
Figure 4 Roll-off luminance correction is needed to 
compensate the shaded areas at the edges due to small z-
height 

 

 

 
Figure 5 An oval contour made of linear segments 
simplify the real time conversion of Cartesian 
coordinates to radial distance and covers a large set of 
commercially available lenses. The luminance gain 
increases as the radial distance from the center 
increases.  



frequency restriction requires a large number of functional 
units operating in parallel in each stage to achieve the real 
time performance by exploiting the high instruction and data 
level parallelism of the algorithms. The design is modular 
and can be easily extended to different algorithms, different 
performance requirements and sensor sizes.  
The control signals are used to trigger a data transmit 
transaction from the sensor to the processor or, more 
generally from pipeline stage I to pipeline stage I+1. An 
ACK signal from stage I+1 back to stage I notifies the data 
sender that stage I+1 has read the data sent by stage I. A 
double buffer between the stages ensures that successive 
stages can write and read data simultaneously (although to 
different buffers). 
 The data path consists of ALUs, Multiply Accumulate 
(MAC) units, and dedicated hardware to speed up certain 
filtering operations. Separate control units are used to 
control the operations and communicate with neighboring 
stages. Four line buffers are needed to store Bayer pixels for 
the 2D filters. The buffers are dual ported to facilitate 
simultaneous access from different pipeline stages.  
The latency in each stage is determined by the ratio of the 
core clock frequency to the sensor clock frequency. In this 
design, this ratio is set to three, and this makes the stage 
latency equal to six cycles in the worst case. The worst case 
happens when there is an 1:1 or 2:1 interpolation, such as 
transforming a VGA Bayer frame to a VGA or QVGA 
YCbCr output. The flicker correction and statistics gathering 
phases are executed by a small microcontroller before the 
pixels make it into the pipeline. The microcontroller and 
accompanying hardware to speed up the flicker correction 
and histogram analysis are in the same die with the 
pipelined architecture of Figure 6. 
The chip has about 250K gates, and consumes 35 mW 
power when processing a VGA input frame. Multiple clock 
domains are used to provide clock gating in fine granularity. 
For example, when the imaging system operates in single 
capture mode, the chip and the sensor can be placed into a 
low power state by clock gating the flip flops.  

 
4. CONCLUSIONS & RELATED WORK 

 
Programmable or ASIC-based image processors have been 
used successfully to trade-off cost and image quality with 
processing complexity. In this paper, we described an image 
acquisition system which captures Bayer RGB data and 
produces formatted YCbCr data for compression. The 
proposed algorithm and image processor utilizes correction 
techniques to minimize adverse visual side-effects such as 
flickering, dead pixels, and roll-off, owing to the low cost 
acquisition system. 
Previous such systems focused mostly on the color 
processing and color space conversion without consideration 
of the optics [1] [2]. Both software and hardware techniques 
for dead pixel correction have been proposed in [3]. 
Commercial products that use some form of dead pixel 
correction and lens shading correction as part of their color 
processing pipeline have been announced by Freescale and 
Micron [4]. 
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Figure 6 The pipelined architecture of the image processing chain 


