

ABSTRACT

As digital imaging becomes more prevalent in consumer
products, the industry strives to reduce the cost and the
complexity of imaging solutions and, at the same time, to
improve the color quality and resolution of the images. The
proliferation of imaging in mobile phones, digital cameras,
webcams, toys, etc. creates the need for a low cost, small
footprint image sensor. Nowadays, sensor optics account for
approximately half the cost of an image sensor system for a
camera phone, and their cost does not scale down as fast as
the cost of semiconductors.
In this paper, we describe the algorithms and the hardware
implementation of a novel color processing chain that uses
image processing techniques to compensate for the spatial
variations in image attributes and quality due to low cost
optics. If left uncorrected, these variations produce
undesirable visual effects and lead to unacceptable image
quality. Besides the correction of artifacts due to lenses, the
image processing chain performs a sequence of corrections
for real time dead pixel replacement, color correction,
filtering, color space transformations for subsequent
compression, etc.

1. INTRODUCTION

Image sensors are widely used in high volume, space
constrained applications such as mobile imaging, toys,
barcode scanners, automotive applications, etc. There is a
growing interest for CMOS based image sensors because of
customer demand for miniaturized, low power, and high
integration imaging systems. Moore’s law on scaling of
CMOS semiconductor technology ensures that the cost of
the pixel array and accompanying image processors and
DSPs will continue to drop. This leaves the optical lenses
and packages the dominant cost contributor of an image
sensor system.
The advances in semiconductor integration has prompted
image sensor designers to transfer additional functionalities
to the image processors in order to improve the quality and
to amend inefficiencies at the front end of the system. As an
example, the packaging of sensors in mobile devices
requires a small z-height optical system in which the
distance between the main lens and the active pixel array
creates blurring effects and chromatic aberrations near the

edges of the sensor (Figure 1). We will focus on this
imaging error later in the paper.
Another example is the incomplete manufacturing testing of
the pixel array that may leave behind pixels that are stuck at
a particular value independent of the light intensity of the
scene (called dark and hot pixels). Again, image processing
can be used to detect and correct dead pixels in the active
pixel array in real time. By making it unnecessary to discard
sensor chips that contain limited numbers of scattered
defects, the method would increase effective production
yields and thereby lower the costs of individual image
sensors.
In this paper, a complete image processing algorithm and its
hardware implementation is described. Moreover, the paper
explains how the correction stages are combined with a
traditional pipelined image processing chain used to
enhance the quality of the picture. This chain can be used in
a mobile telephony device, for example. We present an
important and realistic paradigm on how back-end image
processing can substitute manufacturing inefficiencies, thus
driving the effects of Moore’s law into the whole system
.
The paper makes the following contributions:

• It presents novel algorithms to solve the problems
of roll off corrections due to low cost optics and of
real time dead pixel detection and replacement, and

• it describes how these algorithms can be mapped
into a modular ASIC design for a high-speed, low
power hardware implementation.

The rest of the paper is organized as follows: section 2

Main Lens

Microlenses

Figure 1 Each pixel is enclosed in microlenses to focus
the incident light on photo sensitive portions of the
pixel and improve the effective fill factor of the image
sensor. If the z-height is small, the image appears
blurred at the edges.

AN IMAGE PROCESSING PIPELINE WITH DIGITAL COMPENSATION OF LOW
COST OPTICS FOR MOBILE TELEPHONY

Nikolaos Bellas Arnold Yanof

Embedded System Research Freescale, Inc.
Motorola, Inc. Phoenix, AZ
Schaumburg, IL

details the complete image processing chain. Section 3
presents the pipelined image processor that interfaces to a
VGA sensor and implements the algorithms, and section 4
outlines previous work in the area and concludes the paper.

2. IMAGE PROCESSING ALGORITHMS

The color processing pipeline of Figure 2 receives a stream
of sensor pixels in Bayer format, and produces a stream of
pixels in the YCbCr color space. In some cases, certain
values of the sensor integration time cause the appearance of
rolling horizontal flickering bars in the image. The
processing chain has a flickering detection and correction
mechanism which is based on the Fourier transformation of
image rows of successive frames. A flickering detection
triggers a gradual modification of the sensor integration time
to eliminate the flickering effect.
The algorithm computes statistical information on the pixel
values including the average R, G, and B values in each
frame and the distribution of these values using histogram
analysis. The statistical information is used for dynamic
updates of the integration time and white balance values in
the sensor.
Before most of the image processing can be conducted, dead
pixel values must be removed. Traditionally, dead pixel
detection and correction is achieved by storing the locations
of the dead pixels during sensor manufacturing test. During
sensor initialization, these locations are stored in the image
processor and the dead pixels are replaced by neighboring,
non-dead pixels while the frame is read out. One of the
novel algorithmic aspects of our imaging chain is the
detection of pixels that are substantially different from
surrounding pixels without losing sharpness and spatial
details. The algorithm eliminates the need to store the
location of the dead pixels a-priori since it does not aim to
detect every dead pixel in the image, but to detect the dead
pixels that cause obvious visual errors for a particular scene.
 While it is easy to devise heuristics to detect suspicious
pixels with a high contrast to their surrounding pixels,
problems may arise when a mathematical formula is applied
to replace them, especially in sites with high spatial
frequency. For brevity, we will only detail the detection and
replacement of pixels in a red location in Figure 3.
The large separation of red pixels (compared to green
pixels) forces us to use surrounding green pixels as well to
detect the brightness of the site. If the red pixel is much
brighter than its neighbours, it is being substituted by the
maximum value of nearby red and green pixels, and not by
their average or median value. This is necessary in order to
retain highlights in locales with rich spatial detail.
Moderately bright red pixels use a smaller threshold to
compare against neighboring pixels, but they are only
substituted in case of a flat or dark field. It is permissible to
detect dark pixels by testing against only surrounding red
pixels, since fine details are not adversely affected by

brightening dark red pixels. Note that unlike the bright red
pixels, the substitution is the mean of the surrounding red
and green ones.
The dead pixel detection and replacement for green pixels is
simpler, and utilizes only green surrounding pixels. The
process for the blue pixels is similar to the process for the
red pixels, with extra precautions for areas in which dark
objects are immersed in very bright backgrounds.
Dead pixels have to be replaced before the subsequent
filtering and roll off correction stages to avoid errors to be
magnified.
Pixels near the corners and the edges receive light at a larger
incident angle, which is also more diffused and causes loss
of acuity (Figure 4). Moreover, the large incidence angle
causes color variations near the edge of the sensor.
The algorithm corrects for roll off in image data by
determining for each pixel a roll off contour in which the
pixel resides which in turn, depends upon the pixel
coordinates on the image plane. The (x,y) coordinates of the
location of each pixel are converted to a radial distance from
the center of the image, which is used to map the location to
the roll-off contour (Figure 5) and to access look-up tables
that contain gain parameters.
The non-linear roll off correction is used in three different
circumstances: to correct unwanted variability in luminance
(Figure 4), loss of image sharpness, and color distortion
because the color components RGB do not focus at exactly
the same point at the edges of the image.

Bad Pixel
Correction

Gamma
Correction

RGB YCC
Conversion

Vertex
Interpolation

Stats / WB
Flicker
Control

Bayer Input

Color
Correction

Filtering
Effects

Color Roll-
off Correct

Luminance
Shading Corr

Row/Col Coordinates

Luminance
Oval Contour

MTF Oval
Contours

Color Oval
Contours

Chrominance
Channel Cr, Cb

Luminance
Channel, Y

MTF Roll off
Correct

Y sharpness
Convolution

Row/Col Coordinates
Row/Col Coordinates

+

+

Figure 2 The image processing chain, including flicker
control, dead pixel detection and replacement and roll-
off corrections

The non-linear luminance shading correction is applied in
the same Y input stream as the edge enhancement/MTF
correction. The shading correction is multiplicative and can
increase the luminance value by a factor of 3-4x near the
image edge:

/*gain luminance thestore toused is * /*_
/* f1(R)function linear -non a * /);(1_

1 incYLUTRollY
RfLUTRoll

=
=

The luminance stream Y passes through a baseline 3x3 high
pass filter to perform edge enhancement, and,
simultaneously to restore loss of sharpness through the
location dependent MTF correction filter. The equations are
the following:

21
128

2/)*_(*
8

*
2

)(2_
),(

YYYout

RollOffLUTMTFEBaseE
eTermRollOffEdggeTermBaseLineEdY

RfLUTMTF
mYconvE in

+=

+

=+=
=

=

 where m is the convolution matrix:

16
121
2122
121

















−−−
−+−
−−−

=m

and Base and RollOff are user defined normalization factors.
The f1 and f2 are non-linear, monotonically non-decreasing
functions of the radial distance R of the pixel from the
optical center and are implemented in hardware using
lookup tables (LUTs). The chroma pixels do not pass
through edge enhancement, but only through roll off
correction. The chroma correction is additive to the baseline
chroma magnitude, so that total corrective effect is much
smaller than in the luminance roll off case, although the
image errors can be more objectionable than in the Y pixels.
A final color correction and optional filtering effects stage
conclude the image processing pipeline.

3. HARDWARE IMPLEMENTATION

The imaging pipeline is implemented as a synthesizable
image sensor companion chip. Therefore, it has to meet
stringent real-time performance requirements and operate
within a low power budget. The design can process Bayer
data from a VGA (640x480) image sensor at 30 frames/sec
using a max clock frequency of 33 MHz for low power
operation. In Figure 6, each of the three multi-cycle pipe
stages execute parts of the processing chain. The low clock

Is Green
plane locally
flat or dark?

Is Green
plane locally
flat or dark?

Is R9 a bit
brighter than nearby

Red and Green?

Is R9 a bit
brighter than nearby

Red and Green?

Is R9 a lot
brighter than nearby

Red and Green?

Is R9 a lot
brighter than nearby

Red and Green?

Replace R9 with
Max of nearby Red and Green

yes

no

R9 unchanged

Is R9 a bit
darker than nearby

Red pixels?

Is R9 a bit
darker than nearby

Red pixels?

Is Green
plane locally

flat?

Is Green
plane locally

flat?

Is R9 a lot
darker than nearby

Red and Green?

Is R9 a lot
darker than nearby

Red and Green?

Replace R9 with
Average of nearby Red and Green

G1 B2 G3 B4 G5 B6
R7 G8 R9 G0 Ra Gb
Gc Bd Ge Bf Gg Bh
Ri Gj Rk Gm Rn Gp

no

yes

yes

no

no no

yes

yes

yes

For Hot red
pixels, use both
red and green

info to preserve
fine yellow

lines

Algorithm
looks ‘forward’
to help prevent
false positives

while detecting
98% of DPs

For ‘warm’ red
pixels, check

range of green
plane

neighborhood

Figure 3 The algorithm for dead pixel detection and replacement of red pixels

Figure 4 Roll-off luminance correction is needed to
compensate the shaded areas at the edges due to small z-
height

Figure 5 An oval contour made of linear segments
simplify the real time conversion of Cartesian
coordinates to radial distance and covers a large set of
commercially available lenses. The luminance gain
increases as the radial distance from the center
increases.

frequency restriction requires a large number of functional
units operating in parallel in each stage to achieve the real
time performance by exploiting the high instruction and data
level parallelism of the algorithms. The design is modular
and can be easily extended to different algorithms, different
performance requirements and sensor sizes.
The control signals are used to trigger a data transmit
transaction from the sensor to the processor or, more
generally from pipeline stage I to pipeline stage I+1. An
ACK signal from stage I+1 back to stage I notifies the data
sender that stage I+1 has read the data sent by stage I. A
double buffer between the stages ensures that successive
stages can write and read data simultaneously (although to
different buffers).
 The data path consists of ALUs, Multiply Accumulate
(MAC) units, and dedicated hardware to speed up certain
filtering operations. Separate control units are used to
control the operations and communicate with neighboring
stages. Four line buffers are needed to store Bayer pixels for
the 2D filters. The buffers are dual ported to facilitate
simultaneous access from different pipeline stages.
The latency in each stage is determined by the ratio of the
core clock frequency to the sensor clock frequency. In this
design, this ratio is set to three, and this makes the stage
latency equal to six cycles in the worst case. The worst case
happens when there is an 1:1 or 2:1 interpolation, such as
transforming a VGA Bayer frame to a VGA or QVGA
YCbCr output. The flicker correction and statistics gathering
phases are executed by a small microcontroller before the
pixels make it into the pipeline. The microcontroller and
accompanying hardware to speed up the flicker correction
and histogram analysis are in the same die with the
pipelined architecture of Figure 6.
The chip has about 250K gates, and consumes 35 mW
power when processing a VGA input frame. Multiple clock
domains are used to provide clock gating in fine granularity.
For example, when the imaging system operates in single
capture mode, the chip and the sensor can be placed into a
low power state by clock gating the flip flops.

4. CONCLUSIONS & RELATED WORK

Programmable or ASIC-based image processors have been
used successfully to trade-off cost and image quality with
processing complexity. In this paper, we described an image
acquisition system which captures Bayer RGB data and
produces formatted YCbCr data for compression. The
proposed algorithm and image processor utilizes correction
techniques to minimize adverse visual side-effects such as
flickering, dead pixels, and roll-off, owing to the low cost
acquisition system.
Previous such systems focused mostly on the color
processing and color space conversion without consideration
of the optics [1] [2]. Both software and hardware techniques
for dead pixel correction have been proposed in [3].
Commercial products that use some form of dead pixel
correction and lens shading correction as part of their color
processing pipeline have been announced by Freescale and
Micron [4].

5. REFERENCES

[1] B.Tang, K.Lee, “An Efficient Color Image Acquisition System
for Wireless Handheld Devices,” Proceedings of Acoustics,
Speech, and Signal Processing, 2004 (ICASSP '04). Vol.3, page
105-108, May, 2004.
[2] T. Sakamoto et. al. “Software píxel interpolation for digital
cameras suitable for a 32-bit MCU,” IEEE Transactions on
Consumer Electronics, vol. 44, no. 4, pp.1342-1352, 1998
[3] Chapman, G.H., Djaja, S., Cheung, D.Y.H., Audet, Y., Koren,
I., Koren, Z. “A self-correcting active pixel sensor using hardware
and software correction,” IEEE Design & Test of Computers, Vol.
21, Issue 6, Nov-Dec 2004, pp: 544 – 551
[4] “MT9D111: 2-Megapixel CMOS Camera System-on-a-Chip,”
www.micron.com

GC and DP
FSM

G1 line
buffer

G2 line
buffer

R line
buffer

B line
buffer

Re
gi

ste
r

Fi
le

ALU1

ALU2

ALU3

ALU4

ALU5

MUL1

MUL2

MUL3

Second
Pipe Stage
FSM

Re
gi

ste
r

Fi
le

ALU1

ALU2

ALU3

Rad

MAC1

MAC2

Edge
Enhanc

Filtering
Effects
ALU

Y pixel
Line SRAMs

For Edge
Enhanc

Cb/Cr
Pixel

Line SRAMs

-

-

Y LR
LUT

Cb LR
LUT

Cr LR
LUT

Bayer
pixels Y pixels

Cb pixels

Cr pixels

• Dead Pixel Correction
• Gamma correction

• Vertex-based interpolation
• RGB to YCC conversion

• Edge enhancement
• Roll Off corrections
• Color correction
• Filtering effects

Gamma
Corr
LUT

Dead
Pixel
Corr

Figure 6 The pipelined architecture of the image processing chain

