
DISTRIBUTED TASK-QUEUE IMPLEMENTATION FOR THE AVS VIDEO DECODER &

OTHER OPTIMIZATION CONCERNS ON MULTICORE PROCESSORS

Anonymous ICME submission

ABSTRACT

Newer video compression standards provide high video

quality and greater compression efficiency, compared to

their predecessors. Their increased complexity can be

outbalanced, by leveraging all the levels of available

parallelism, task- and data-level, using available off-the-

shelf hardware, such as the current generation‟s chip

multiprocessors. As we move to more cores, though,

scalability issues arise and need to be tackled in order to

take advantage of the abundant computational power.

In this paper we evaluate a previously implemented

parallel version of the AVS video decoder on the

experimental 32-core Intel Manycore Testing Lab. We

examine this previous version‟s performance bottlenecks

and scalability issues and introduce a distributed queue

implementation as the proposed solution. Finally, we

provide insight on separate optimizations regarding inter

macroblocks, and investigate performance variations and

tradeoffs, when combined with a distributed queue scheme.

Index Terms— AVS codec, task queue, video decoding

1. INTRODUCTION

Advances in video compression techniques and display

technology have facilitated high definition video (resolutions

up to 1920x1080 pixels) and the first generation of three-

dimensional television. Meanwhile, Quad Full High

Definition is making its first steps, and motion picture and

television engineers are paving the way for Ultra High

Definition TV, which will offer unprecedented picture

clarity of 7680x4320 pixels.

The prevalent video standard nowadays, namely

H.264/AVC, is extensively used for high-definition video

coding. One video codec less known in the west world is the

Chinese Audio Video Standard (AVS), drafted by the AVS

Workgroup [1, 4]. AVS workgroup was established by the

Chinese Ministry of National Information Industry and AVS

has become a national standard. AVS can deliver coding

efficiency similar to H264/AVC, and more than two times

the coding efficiency of MPEG 2.

These standards can efficiently handle nowadays‟

typical resolutions and their implementations can provide

the desired frame rate, dictated by human vision real-time

requirement of almost 30 frames per second. The

prospective trends, though, for even higher definitions

indicate that the already heavy workload will become even

heavier, as will the technical complexity of future video

encoders and decoders.

Programmers have new tools, hardware and even new

computing paradigms in their effort to overcome such

problems. Unfortunately, trying to apply solutions tailored to

a small number of cores, to larger numbers, introduces a

series of issues. These can be related to the scalability of a

particular algorithm itself, or can pertain to side-effects on

the part of the hardware, such as cache-related issues.
This paper builds on the work of Konstantinos

Krommydas et al [2]. In their findings, they state that the

hyper-threading feature of Intel Core i7 multiprocessor, does

not cater to performance gains in the case of their

implementation, mainly attributing it to contention of the

core‟s shared resources. Of great importance, is the lock-free

queue used, whose contention limits any performance gains.

As a solution we propose a distributed queue scheme.

In Section 2, we provide background on the AVS

standard and briefly present its base and previous parallel

implementation. In Section 3, we present related literature,

motivate our work and discuss our contribution. Section 4

introduces our evaluation platform. Section 5, describes our

distributed queue approach and the inter macroblock (MB)

optimization tradeoffs, and provides results. Section 6

concludes the paper with some thoughts and future work.

2. AVS DECODER BACKGROUND

2.1. Base implementation

The AVS standard follows the MPEG 2‟s basic structure and

incorporates similar tools. The decoding process (Fig. 1)

entails the entropy decoding stage, intra prediction, the

motion compensation (MC) procedure for inter prediction,

inverse transform, inverse quantization, as well as a smart

deblocking filter. It sacrifices some of the video quality and

coding efficiency in favor of reducing the extra complexity

that comes with smaller block sizes [3]. In AVS, intra

predictions can be derived from the neighboring pixels in the

top left, top, top right and left MBs. A similar dependency

set exists for the deblocking filter. For more details on the

AVS standard, the reader can refer to [2, 3].

Fig. 1. AVS decoder block diagram

2.2. Parallel implementation

The AVS reference decoder performs decoding in a raster

scan order, where MBs are processed from top to bottom

and from left to the right. Any parallelization effort has to

take into account the dependencies related to intra prediction

and deblocking. Inter encoded MBs, namely these that do

not depend on MBs of the same video frame, can start

decoding as soon as the reference MBs (in previously

decoded frames) have been decoded. The latter is ensured

by the way frames are decoded (out of order decoding- in

the IPBB form). Experiments show that even in high-bitrate

encoded videos, inter MBs are abundant and provide an

excellent source of available parallelism [2].

Available work, i.e. MBs that can start the decoding

(MC) process, is dynamically put into a single shared queue.

The worker thread pool takes work from that queue, and

when possible bypasses the queue using a tail submit scheme

[4] (dependence-driven self-scheduling scheme - Fig. 2).

The latter optimization is beneficial for performance in

AVS, as it is in H.264. When a thread finds an available task

in the queue, it takes and executes it, and updates the

dependency numbers of the neighboring MBs. The first one

whose dependencies it zeroes, it takes for decoding without

putting it in the queue. The others (if any such exist), it puts

in the queue for another thread to take.

In [2] the authors choose not to assign a single thread

exclusively for bitstream parsing (BP) and variable length

decoding (VLD). In an effort to present a pragmatic,

practical approach they do not just decouple BP and VLD

from the rest of the decoding and measure pure decoding

time. Instead, the first thread to enter the BP/VLD critical

section, proceeds with BP/VLD, and starts putting eligible

MBs in the queue. This way, the other threads, which would

otherwise be blocked, do actual work, which is abundant

especially for inter-decoded frames. Readers interested in

the full set of the optimizations (sequential code

optimizations, vectorization) can refer to the paper we base

our work on [2].

3. RELATED WORK

Most research has focused on H.264. Since AVS and H.264

are based on the same basic principles, much of the work

and conclusions for H.264 are applicable to the AVS (and

vice versa). First, we list some of the literature regarding

H.264, which relates/ applies to our work, and then we

examine research on the AVS standard in particular.

Earlier works of Van der Tol et al. [5], and Chen et al.

[6] have investigated different levels of parallelization for

H.264, albeit with limiting assumptions (i.e. static MB-level

scheduling, limited frame-level parallelism). In [7], Mesa et

al. extend the above works about parallel scalability of the

H.264 decoder. They find that task-level parallelism does

not scale well, in contrast to data-level parallelism methods.

Distribution of the computation at the MB level proves to be

the best solution in terms of scalability and load balancing.

In [4], they present findings on a cache-coherent NUMA

multiprocessor and comment on the limitations of the single

shared queue. They conclude that a work stealing technique

or a tail submit method could shift these limitations.

Concerning AVS, not much has been done in terms of

optimization for multi-core systems. Instead, there has been

enough research on VLSI design of specific kernels, such as

Motion Compensation (MC) [8], and Inverse Quantization

kernel [9]. Optimization efforts have also been made for the

heterogeneous Tensilica SIMD processor [10], as well as

embedded System on Chip designs [11]. However, with

multi-core processors and very high definition videos

becoming the norm, a detailed study of scalable techniques

of the AVS standard to such multiprocessors is necessary.

To the best of our knowledge, the only all-around

optimization strategy for the AVS decoder on a commodity

multiprocessor system is [2]. Our paper tries to contribute to

the limited literature for AVS, extending the aforementioned

work, by investigating the applicability of already known

techniques (from H.264 literature) and by trying to apply

new ones. We extend the work of [4] by implementing a

distributed task-queue and measuring its performance and

compare its performance to the second proposed method in

[7] (tail submit). Finally, we investigate some new

optimizations regarding inter macroblocks and their

applicability to multi-cores with different number of cores.

4. EVALUATION PLATFORM

For our experiments, we used the Intel® Manycore Testing

Lab (MTL) [13]. MTL consists of four socket Intel Xeon

X7560 processors, totaling 32 cores, each running at

2.26GHz. Each of the four multiprocessors features a large

24MB last-level cache. Total system memory amounts to

64GB. Intel MTL has the Intel® Compiler, Vtune profiler

and other useful tools for code inspection and optimization.

The executables were all compiled with the 11.1 version

of the Intel® C/C++ Compiler, with the same set of

optimization options (for fairness). The Linux kernel version

running on our test machine was 2.6.18.

Fig. 2. Parallelization technique schematic.

Throughout the paper, results refer to the “Rush hour”

[14] encoded video file, which is indicative of the average

case for AVS (according to [2]), at FullHD (1920x1080

pixels) at 20Mbps. It contains a typical amount of inter

encoded MBs (in P/B frames) in order to showcase some of

the optimization techniques. The benchmark video follows

the encoding pattern of and YUV 4:2:0 format.

5. OPTIMIZATIONS

5.1. Distributed queues

Mesa et al. [7] concluded that a single task queue scheme is

one contention point that prevents video decoders (H.264

and AVS respectively) from scaling well at large numbers of

cores. The more threads probing the queue, the more the

work distribution gets serialized. In this paper, we propose a

distributed scheme of multiple task queues, along with a

work stealing technique.

In particular we extend the single lock-free queue of [2],

by assigning a separate queue to each worker thread. The

thread that performs VLD is responsible for assigning the

inter MBs (i.e. zero intra dependencies) to each of these

queues in a round-robin fashion. In inter frames, where most

of the MBs are inter-decoded, this leads to good load

balancing. Although decoding time per MB may vary, the

work stealing technique takes care of maintaining a good

balance. Worker threads that have work available in their

queues continue with actual decoding. When they have no

work, they resort to work stealing, by referring to the other

queues in a linear fashion. The update_dependencies

function, employs the tail submission technique (queue

bypassing) for the first dependency-free MB, and puts the

rest of the MBs it finds with zero dependencies in the

respective queue. We chose this simple scheme for the

update_dependencies functions, since the load imbalance it

may introduce is negligible, compared to data locality gains.

Since we still use a single dependency table (Fig.2) and

other data structures (such as queue head pointers), we have

to be extra careful of the false sharing effect [12].

Neighboring data in the same cache line may get invalidated

without reason, leading to high off-chip memory transfers.

This effect is even worse in architectures with larger cache

lines. Appropriate techniques, such as padding and proper

alignment along cache lines, were applied to minimize such

negative effects.

5.2. Inter MB decoding optimizations

In [2] the authors made use of a feature of inter MBs. That

is, identify the type of the MB during the VLD phase, and

enqueue it if it is of inter type (P or B). This (we call it P/B

optimization), would intuitively allow for the worker threads

to immediately start decoding such enqueued MBs.

However, for typical encoding bitrates and videos without

special characteristics (e.g. explosions, irregular patterns,

sudden movement), inter frames (P/B) consist mainly of

inter MBs. This effectively leads to most MBs being

enqueued during the VLD phase, and thus limiting the

utilization of the tail submit feature. This in turn leads to

higher contention if a single queue is used and, accordingly,

performance deterioration.

On the other hand, when we want to make use of the

distributed queues scheme, this optimization makes sense, in

that it fills all the queues „on-the-fly‟ (during VLD), and the

limited use of tail-submit is counterbalanced by the large

number of threads working concurrently on their private

queues. While for a small number of threads, the tail submit

technique (without the P/B optimization) is more efficient,

the new scheme (distributed queues) overtakes it as more

threads are added, and is suspected to scale well for more

than the 32 cores available in our experimental platform.

A different approach one might take, in respect to the

single queue approach, would be not to enqueue inter MBs

on the fly, but zero the number of their dependencies in the

dependence table (we name this technique P/B zero).

Unfortunately, this is practically equal to using the first P/B

optimization. The only difference is that tail-submit is used

for one in four MBs (on average), whereas in the original

P/B optimization, tail submit was utilized even less (talking

of inter frames). A combination of the above technique but

with the distributed queues scheme might be a good

compromise for a medium number of cores, but we need a

more efficient technique for the update_dependencies

procedure, on which we are currently working.

5.3. Results

We present results for the above optimization combinations

in Table 1, in frames per second (VLD is subtracted from

the measurement- we focus on „pure‟ MB decoding). Due to

space restrictions, we showcase only the 8, 16, 32 core runs.

We observe that for 8 and 16 cores, the distributed

queues scheme performs worse than the two single queue

ones. This is mainly due to the extra overhead related to the

logistics of the queues and worse data locality. A single

queue still scales well up to that number of cores. Moreover,

cores P/B opt. P/B zero Distr. Queues

8 69 fps 80 fps 59 fps

16 106 fps 115 fps 88 fps

32 104 fps 106.5 112 fps

Table 1. Results

P/B zero outperforms P/B opt., as it takes better advantage

of the tail submission technique in inter frames. In P/B opt.

inter MBs enter the single queue immediately as they are

VLDed. This limits the number of MBs bypassing the queue.

Yet, P/B zero, zeroes inter MBs‟ dependencies during VLD,

but leaves the enqueueing process to the

update_dependencies procedure. This way, one of the

zeroed MBs bypasses the queue, and the rest are enqueued.

This is confirmed by our results (frame-rate, and the

measured number of MBs that bypass the queue).

When it comes to more threads (note that we use 1

thread/physical core), we can see that the distributed queue

scheme starts performing better than the single queue

techniques. While the first two techniques show a decline in

decoding frame rate from 16 to 32 cores, the distributed

queues scheme demonstrates a constant frame-rate increase.

6. CONCLUSIONS/ FUTURE WORK

Video decoders, as many other applications, need to be

tackled from a different perspective as the number of cores

of future multiprocessors grows. New problems arise, and

new programming paradigms may have to be eventually

employed to continue accruing performance gains.

Effective and more complex queue schemes, with

architecture-aware work stealing, have to be used in order to

avoid contention and make best use of available resources.

In our case, we conclude that a distributed queue scheme is

useful only after a (big) number of cores. Small multi-core

systems will still perform reasonably well with single

queues, combined with techniques that exploit inter MBs‟

independence of same frame neighbors, as those presented.

 Additionally, sequential video decoder parts (mainly

Variable Length Decoding) constitute a serious bottleneck,

and need to be optimized to the fullest to reduce Amdahl‟s

Law implications on parallelism gains. We are working on

extending our present work towards these directions, as well.

At the same time, GPU architectures (e.g. Nvidia

CUDA) become prevalent in the area of scientific

computation and more computationally powerful many-core

GPUs become commercially available. Future work revolves

around how video decoding algorithms (both as independent

kernels, and as a whole) could harness the power of current

GPUs, in an efficient CPU-GPU co-scheduling scheme.

ACKNOWLEDGMENT

We would like to thank the management, staff, and facilities

of the Intel® Manycore Testing Lab [13].

7. REFERENCES

[1] AVS Workgroup, http://www.avs.org.cn/en/.

[2] K. Krommydas, et al., "Mapping and optimization

of the AVS video decoder on a high performance

chip multiprocessor," in Multimedia and Expo

(ICME), 2010 IEEE International Conference on,

2010, pp. 896-901.

[3] G. Wen, "AVS standard - Audio Video Coding

Standard Workgroup of China," Wireless and

Optical Communications, 2005. 14th Annual

WOCC 2005. International Conference on, 2005

[4] A. A. Mauricio Alvarez , Alex Ramírez , Cor

Meenderinck , Mateo Valero , Ben Juurlink,

"Performance Evaluation of Macroblock-level

Parallelization of H.264 Decoding on a CC-NUMA

Multiprocessor Architecture," presented at the

4CCC: 4th Colombian Computing Conference

[5] E. van der Tol, Jaspers, E., Gelderblom, R,

"Mapping of H.264 Decoding on a Multiprocessor

Architecture.," in Proc. SPIE Conf. on Image and

Video Communications and Processing, 2003.

[6] Y. Chen, Li, E., Zhou, X., Ge, S, "Implementation

of H. 264 Encoder and Decoder on Personal

Computers," Journal of Visual Communications

and Image Representation, vol. 17, 2006.

[7] M. A. Mesa, et al., "Scalability of Macroblock-

level Parallelism for H.264 Decoding," in Parallel

and Distributed Systems (ICPADS), 2009 15th

International Conference on, 2009, pp. 236-243.

[8] Z. Dajiang and L. Peilin, "A Hardware-Efficient

Dual-Standard VLSI Architecture for MC

Interpolation in AVS and H.264," in Circuits and

Systems, 2007. ISCAS 2007. IEEE International

Symposium on, 2007, pp. 2910-2913.

[9] S. Bin, et al., "An implemented VLSI architecture

of inverse quantizer for AVS HDTV video

decoder," in ASIC, 2005. ASICON 2005. 6th

International Conference On, 2005, pp. 244-247.

[10] M. Koziri, et al., "Implementation of the AVS

video decoder on a heterogeneous dual-core SIMD

processor," in Consumer Electronics (ICCE), 2010

Digest of Technical Papers International

Conference on, 2010, pp. 267-268.

[11] J. Xin, et al., "AVS video standard implementation

for SoC design," in Neural Networks and Signal

Processing, 2008 International Conference on,

2008, pp. 660-665.

 [12] J. Torrellas, et al., "False sharing and spatial

locality in multiprocessor caches," Computers,

IEEE Transactions on, vol. 43, pp. 651-663, 1994.

 [13] Home: www.intel.com/software/manycoretestinglab

 Intel® Software Network: www.intel.com/software

 [14] Raw benchmark videos: ftp://ftp.ldv.e-technik.tu-

muenchen.de/pub/test_sequences/1080p/

