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Abstract Approximate execution is a viable technique

for environments with energy constraints, provided that

applications are given the mechanisms to produce out-

puts of the highest possible quality within the available

energy budget.

This paper introduces a framework for energy-cons-

trained execution with controlled and graceful qual-

ity loss. A simple programming model allows devel-

opers to structure the computation in different tasks,
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and to express the relative importance of these tasks

for the quality of the end result. For non-significant

tasks, the developer can also supply less costly, ap-

proximate versions. The target energy consumption for

a given execution is specified when the application is

launched. A significance-aware runtime system employs

an application-specific analytical energy model to de-

cide how many cores to use for the execution, the op-

erating frequency for these cores, as well as the degree

of task approximation, so as to maximize the quality

of the output while meeting the user-specified energy

constraints.

Evaluation on a dual-socket 16-core Intel platform

using 9 kernels and applications shows that the pro-

posed framework performs very close to an oracle al-

ways selecting the optimal configuration, both in terms

of energy efficiency and quality of results. Also, a com-

parison with loop perforation (a well-known compile-

time approximation technique), shows that the pro-

posed framework results in significantly higher quality

for the same energy budget.

Keywords Approximate computing, significance,

energy efficiency, modeling

1 Introduction

Energy consumption is a fundamental challenge for the

entire computing ecosystem, from the tetherless devices

that must operate in severely energy-constrained envi-

ronments to the datacenters that must tame the data

deluge. Large-scale computational experiments that un-

derpin big science are hampered because the inordi-

nate power draw of high-performance computing hard-

ware makes the implementation of Exascale systems im-

practical. Likewise, current technologies are too energy-
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inefficient to realize smaller and more intelligent wear-

able devices for a range of ubiquitous computing ap-

plications that can benefit society, such as personalized

health-care.

Computing systems execute programs under the as-

sumption that every instruction in a program is equally

significant for the accuracy of the program output. This

conservative approach to program execution may un-

necessarily increase the energy footprint of software.

Earlier work on approximate computing [1, 11, 15] shows

that in several application domains, a program may

produce virtually unaffected output if some parts of

the program generate incorrect results or even fail com-

pletely. Many data-intensive applications and kernels

from multimedia, data mining and visualization algo-

rithms can tolerate a certain degree of imprecision.

As an example, Discrete Cosine Transform (DCT) is

a module of popular video compression kernels, which

transforms a block of image pixels to a block of fre-

quency coefficients. DCT can be partitioned into dif-

ferent layers of significance, owing to the fact that the

human eye is more sensitive to lower spatial frequencies,

rather than higher ones. Then, by explicitly tagging op-

erations that contribute to the computation of higher

frequencies as less-significant, one can leverage smart

underlying system software to trade-off video quality

with energy and performance improvements.

Approximate computing is particularly interesting

for programs that execute in energy-constrained envi-

ronments. Consider for example an embedded system

running on batteries, such as a mobile phone or an au-

tonomous robot: when the battery is low, it may be

preferable to run certain computations with a limited

energy budget to prolong system lifetime, even if this

comes at reduced output quality, or an acceptable com-

promise in user experience. As another example, cloud

providers contemplate billing their clients based on the

energy consumption of the hosted client applications.

Clients would like to make their applications energy-

aware and flexible, so that the energy cost of each appli-

cation fits the owner’s available budget. Furthermore,

the willingness of a specific client to pay for energy may

vary over time.

In this paper we introduce the first significance-

driven programming framework for energy-constrained

approximate computing. The framework comprises a pro-

gramming model, a compilation-profiling-modeling tool-

chain and a runtime system. The programming model

allows the developer to express the significance of com-

putational tasks, depending on how strongly these tasks

contribute to output quality. The developer can also

provide approximate versions of selected tasks with lower

complexity than that of their accurate counterparts.

Approximate tasks may return inaccurate results or

just a meaningful default value.

Our framework compiles and subjects each program

to an offline profiling phase that uses different input

data sets in order to measure the energy footprint of

the program under different levels of concurrency, dif-

ferent processor frequency steps, and different degrees

of approximation. This information is used to train a

model, which is then employed, at runtime, to pick the

proper configuration that achieves the highest output

quality under a user-defined energy budget for new data

sets.

This paper makes four contributions: (i) We intro-

duce a programming model that allows the developer

to structure the computation in terms of distinct tasks

with different levels of significance, and to supply ap-

proximate versions of non-significant tasks; (ii) We in-

troduce a profiling and model-training process to pre-

dict the energy footprint of programs as a function

of the input size, the number and frequency configu-

ration of the cores used to run the program and the

ratio of tasks that are executed accurately; (iii) We

introduce a runtime system that employs our model

to pick the configuration that will achieve the high-

est possible output quality within a user-defined energy

budget; (iv) We experimentally evaluate our approach

for several application benchmarks, showing that our

framework model performs very well in most cases, and

achieves better output quality compared to loop perfo-

ration [17] (a well-known compiler-based approximation

technique) for the same energy budget.

Specifically, our system can predict energy consump-

tion accurately for all but three out of a total of nine

benchmarks. This prediction is used effectively by the

runtime system to degrade output quality in a grace-

ful way, even when operating under severe energy con-

straints (down to 20% of the energy footprint of the

most efficient accurate execution). In one of the three

benchmarks where our model fails to make good predic-

tions, application behavior depends not only on the size

but also on the structure of the input data. The other

two benchmarks have widely varying locality patterns,

which in turn lead to additional data transfers between

the last-level non-shared caches of the cores. Such in-

herently unpredictable programs are not amenable to

profile-driven modeling and optimization.

The rest of the paper is structured as follows. Sec-

tion 2 introduces the programming model. Sections 3

and 4 discuss the energy modeling and prediction method-

ology respectively, as well as the runtime system which

exploits our model to allow graceful quality degradation

under energy constraints. Section 5 presents the exper-

imental evaluation of our framework on a multi core
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server, using nine benchmarks that we ported to our

programming model. Section 6 gives an overview of re-

lated work. Section 7 concludes the paper and presents

directions for future work.

2 Programming Model

Part of the problem of energy inefficiency in comput-

ing systems is that all parts in a program are treated as

equally important, despite the fact that only a subset of

these parts may be critical to produce acceptable pro-

gram output. Our vision is to elevate significance char-

acterization as a first class concern in software devel-

opment, similarly to parallelism and other algorithmic

properties that programmers traditionally focus on. To

this end, the main objectives of the proposed program-

ming model are to enables programmers to: (i) express

the significance of computations in terms of their contri-

bution to the quality of the output; (ii) specify approx-

imate alternatives for selected computations; (iii) ex-

press parallelism, beyond significance; (iv) optimizate

and explore trade-offs, via offline and online methods.

We adopt a task-based paradigm where the pro-

grammer expresses both parallelism and significance

using #pragma directives; this facilitates non-invasive

and incremental code transformations without exten-

sive code re-factoring and re-writing. Task scheduling

decisions are taken by the runtime system, which con-

siders resource availability and the data dependencies

between tasks. The directives proposed by our model

are extensions to those in the latest version of OpenMP

[9]. Listing 1 illustrates Sobel filter, which we use as a

running example, implemented with our programming

model.

Tasks are specified using the #pragma omp task di-

rective (Listing 2), followed by the task body function.

Task input and output is explicitly specified via the in()

and out() clauses. This information is exploited by the

runtime to detect task dependencies.

Task significance is given by the significant() clause.

It takes values in the range [0.0, 1.0], indicating the

relative importance of the task for the quality of the

output. Depending on their significance, tasks may be

approximated or dropped at runtime. The special val-

ues 1.0 and 0.0 are reserved for unconditional accurate

and approximate execution, respectively.

For tasks with significance less than 1.0, the pro-

grammer may provide an alternative, approximate task

body, through the approxfun() clause. This function is

executed whenever the runtime opts to approximate a

task. It typically implements a simpler version of the

computation in the task, which may even degenerate to

1 int sblX(byte *img , int y, int x) {
2 return img[(y-1)*WIDTH+x-1]
3 + 2*img[y*WIDTH+x-1] + img[(y+1)*WIDTH+x-1]
4 - img[(y-1)*WIDTH+x+1]
5 - 2*img[y*WIDTH+x+1] - img[(y+1)*WIDTH+x+1];
6 }
7

8 int sblX_appr(byte *img , int y, int x) {
9 return /* img[(y-1)*WIDTH+x-1] Ommited taps */

10 + 2*img[y*WIDTH+x-1] + img[(y+1)*WIDTH+x-1]
11 /* - img[(y-1)*WIDTH+x+1] Ommited taps *//
12 - 2*img[y*WIDTH+x+1] - img[(y+1)*WIDTH+x+1];
13 }
14

15 /* sblY and sblY_appr are similar */
16 void row_acc(byte *res , byte *img , int i) {
17 unsigned int p, j;
18 for (j=1; j<WIDTH -1; j++) {
19 p = sqrt(pow(sblX(img , i, j) ,2) +
20 pow(sblY(img , i, j) ,2));
21 res[i*WIDTH + j] = (p > 255) ? 255 : p;
22 }
23 }
24

25 void row_appr(byte *res , byte *img , int i) {
26 unsigned int p, j;
27 for (j=1; j<WIDTH -1; j++) {
28 /* abs instead of pow/sqrt ,
29 approximate versions of sblX , sblY */
30 p = abs(sblX_appr(img , i, j) +
31 sblY_appr(img , i, j));
32 res[i*WIDTH + j] = (p > 255) ? 255 : p;
33 }
34 }
35

36 double sobel(void) {
37 int i;
38 byte img[WIDTH*HEIGHT], res[WIDTH*HEIGHT ];
39 /* Initialize img array and reset res array */
40 ...
41 for (i=1; i<HEIGHT -1; i++)
42 #pragma omp task label(sobel) approxfun(row_appr) \
43 in(img[i*WIDTH +1:(i+1)*WIDTH -1]) \
44 out(res[i*WIDTH +1:(i+1)*WIDTH -1]) \
45 significant((i%9 + 1) /10.0)
46 row_acc(res , img , i); /* Compute a single
47 output image row */
48 #pragma omp taskwait label(sobel) ratio(0.35)
49 }

Listing 1: Programming model use case: Sobel filter

#pragma omp task [significant (...)] [label (...)]
[in(...)] [out (...)] [approxfun(function ())]

Listing 2: #pragma omp task

setting default values for the task output. If the runtime

system decides to execute a task approximately and the

programmer has not supplied an approxfun version, the

task is dropped. The approxfun function implicitly takes

the same arguments as the function implementing the

accurate version of the task body.

Finally, label() can be used to group tasks under a

common identifier (name), which is in turn used as a

reference to implement synchronization at the granu-

larity of task groups (discussed later in this section).

As an example, lines 41-46 of Listing 1 create a sepa-

rate task to compute each row of the output image. The
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significance of the tasks gradually ranges between 0.1

and 0.9 (line 45), so that there are no extreme quality

fluctuations across the output image. The approximate

function row appr implements a lightweight version of

the computation. All tasks created in the specific loop

belong to the sobel task group, using img as input and

res as output (lines 43-44).

#pragma omp taskwait [label (...)] [ratio (...)]

Listing 3: #pragma omp taskwait

Explicit barrier-like synchronization is supported via

the #pragma omp taskwait directive (Listing 3). If the

label() clause is missing, this serves as a global barrier,

instructing the runtime to wait for all tasks spawned

up to that point. Else, it becomes a barrier for the task

group that is specified via label(), in which case the

runtime system waits for the termination of all tasks of

that group.

Importantly, taskwait can also be used to control the

quality of application results. Using the ratio() clause,

the programmer can instruct the runtime to execute

in an accurate way (at least) the specified percentage

of tasks (globally or within a group, depending on the

scope of the barrier) while respecting task significance

– a more significant task should not be executed ap-

proximately while a less significant task is executed ac-

curately. The ratio takes values in the range [0.0, 1.0]

and serves as a single, straightforward knob to enforce

a minimum quality in the performance / quality / en-

ergy optimization space. Smaller ratios give the runtime

more energy reduction opportunities, but with a poten-

tial penalty in terms of output quality.

As an example, line 48 of Listing 1 specifies a barrier

for the tasks of the sobel task group. In this case the

runtime is instructed to ensure that, at a minimum,

the most significant 35% task of the group are executed

accurately. Note that the runtime may opt for a higher

ratio, e.g., if this is feasible with the energy budget of

the program.

The programming model is implemented by a source-

to-source compiler, based on the SCOOP [23] infras-

tructure. It recognizes the pragmas of the programming

model, and lowers them to corresponding calls of the

runtime system (discussed in Section 4). The resulting

code is then compiled by the standard gcc tool-chain to

produce the final executable.

Fig. 1: Energy footprint of the Fisheye benchmark under dif-
ferent (CPUFrequency, TaskRatio) configurations.

3 Modeling and Prediction of Application

Energy Footprint

We introduce an analytical model to predict the en-

ergy consumption of an application under different in-

put sizes and execution configurations, in terms of num-

ber of cores used, processor frequency, and the mix of

accurately and approximately executed tasks. The rea-

son for introducing the processor frequency as one of

the parameters that are explored by our model is be-

cause we have experimentally observed that the energy

footprint of a computation may correlate to the com-

bination of frequency and the task approximation ratio

in a non-trivial way.

For example, Figure 1 depicts the energy consump-

tion of the fisheye benchmark (discussed in more detail

in Section 5.1) for 16 cores, different CPU frequencies,

and different ratios of accurate/approximate tasks. The

plot shows that the most energy-efficient executions

when low quality can be tolerated (ratios 0.0-0.3) are

at either 1.2 or 2.8 GHz, while the best frequency when

targeting higher quality (ratios 0.6-0.8) is 2.4 GHz. Also

note that 1.6 GHz is a bad choice, independently of the

desired quality of the end result.

Next we describe our modelling and prediction ap-

proach in more detail. As an underlying platform, we

assume a general-purpose shared-memory architecture

with multiple multi-core processors/CPUs. All cores

within each CPU share the same last level cache and op-

erate at the same frequency (as is the case with the pop-

ular Intel processors). We start by presenting the ana-

lytical model for the execution time of a multi-tasking

computation on top of such a platform, and the energy

that is expected to be consumed by it. We then discuss

the process that is followed to train the model through

an offline profiling and fitting phase.
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3.1 Analytical Model of Execution Time

Let a computation employ m task-groups, with each

group i consisting of ni tasks. Let the accurate task ra-

tio for group i be ri. Also, let the average execution time

of accurate and approximate task versions for group i be

equal to Taccuratei and Tapproxi
, respectively. For sim-

plicity, we assume that a task group is well-balanced,

and that all tasks roughly take the same time to ex-

ecute, subject only to whether they are executed ac-

curately or approximately. Then, the time that is re-

quired for the computation to be executed in a purely

sequential way, is given by Equation 1, as a function of

the input size s, the CPU frequency f , the ratios, and

number of tasks for each group.

Tseq(f, r, s,n) =

m∑
i=1

(
ni · (ri · Taccuratei(f, s, ni)

+ (1− ri) · Tapproxi
(f, s, ni))

)
(1)

Note that larger problem sizes s may also require a

larger number of tasks in certain groups or more work

per task or both. Indeed, the number of tasks ni and the

time it takes for a task of group i to execute in its ac-

curate or approximate version (Taccuratei and Tapproxi
)

are open parameters of the model. This makes it pos-

sible to implicitly account for effects that can signifi-

cantly affect task execution time, such as locality, caching

and memory traffic due to different input and interme-

diate data footprints associated with different problem

sizes.

Equation 2 estimates the parallel execution time for

the same computation, as a function of the number of

cores c that are used. The assumption is that all cores

run at the same frequency f , which is typically the case

in most off-the-shelf platforms, including the one we use

in our evaluation.

Tpar(f, r, s,n, c) =
Tseq(f, r, s)

c · scaling(f, s, c)
(2)

The term scaling(f, s, c) captures the scalability of

the computation as a function of input size s, the fre-

quency f at which (all) cores run, and the number of

cores c. On a a multiprocessor with multi-core CPUs,

we assume a “packed” CPU allocation strategy, whereby

the runtime exploits all cores in a given CPU before us-

ing the cores in another CPU. Thus, at most one CPU

can have unused cores, which is the most energy effi-

cient allocation strategy for common platforms.

3.2 Analytical Model of Power Consumption

The power consumption of the processing elements is

given in Equation 3.

P = Pbackground(f, c) + Pdynamic(f, c, s, r) (3)

The Pbackground component captures the “background”

power consumed by the number of active cores c run-

ning at frequency f , when idle. The Pdynamic compo-

nent corresponds to the “dynamic” power consumption,

which depends on the computation that is actually be-

ing executed. This in turn is a function of the number

of cores used, the frequency of these cores, the input

size and the mix of accurate/approximate tasks. The

rationale behind this that the same task-group might

behave differently for different values of ratio. The ac-

tual accurate/approximate mix affects the instruction

mix of the overall application as well as the memory

locality and access pattern.

3.3 Offline Profiling and Model Fitting

In a profiling phase, the computation is executed with

three different, representative input data-sets, of vary-

ing size s (and thus also different memory footprints).

To account for locality, caching and memory traffic ef-

fects, we execute with a small working set that fits in

the last level cache (LLC) of a single processor, a large

working set that exceeds the total LLC capacity of all

processors in the system1 and, finally, an intermediate

working set. For each input, we execute the computa-

tion for all possible configurations (varying the num-

ber of cores c, the frequency f and the task ratio r).

We measure the average execution time of approximate

and accurate tasks for each task group, and the total

execution time of each group.

Then follows a step-wise model fitting phase, where

the performance data that was gathered in the profil-

ing phase is used as input to a regression process. The

objective is to train the different terms of the analytical

models presented above, so that they predict execution

time and energy consumption of a given computation

for the different configurations.

The first step is to produce estimation functions for
Taccuratei and Tapproxi

in Equation 1. We perform re-

gression to map the average execution time of tasks in a

given group i, for both their approximate and accurate

versions, to the frequency f , problem size s, and num-

ber of tasks ni. A separate function is created for each of

1 We skip problem sizes which are unrealistic. This is done
for the large data-set in the Monte Carlo and MD bench-
marks.
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the frequencies that are supported by the platform. We

use the average execution time of tasks that is observed

when executing across all ratios. Exponential, polyno-

mial and linear fitting functions are all attempted, and

we use the one which minimizes the prediction error

with respect to profiling data.

Next, we produce the function for the scaling term

in Equation 2, using the measured sequential and paral-

lel execution times for different combinations of prob-

lem sizes and number of cores (the latter for parallel

execution times). We also experiment with exponen-

tial, polynomial and linear fitting functions. The result

is a separate function for each frequency, which corre-

lates scalability to problem size and the number of cores

used.

In a last step, a similar approach is followed to pro-

duce the function for the dynamic power consumption

Pdynamic component used in Equation 3. Again, a sep-

arate function is produced for each frequency, which

returns an estimation based on the problem size, the

task ratio and the number of cores used. Note that

Pbackground can be computed just once, measuring the

power consumption as a function of the number of cores

that are turned on, without running any computation.

The whole profiling and model-fitting process is re-

peated for each different application, yielding different

functions for each case. This application-specific infor-

mation is then made available to the runtime system in

order to pick the best configuration for a given energy

budget.

4 Runtime System

We extend a task-based parallel runtime system that

implements OpenMP 4.0-style task dependencies [20]

to support our programming model for energy-aware

computing.

The runtime system implements a master/slave work

sharing scheduler. The master thread starts executing

the main program sequentially. Spawned tasks are dis-

tributed to local, per-core work queues round-robin.

Tasks are released for execution when their true depen-

dencies are satisfied. The runtime system implements

an efficient mechanism for identifying and enforcing de-

pendencies between tasks that arise from annotations of

the side effects of tasks with in(...) and out(...) clauses.

A ready for execution task moves from a local work

queue to a local ready queue. Workers select the oldest

tasks from their ready queues for execution. Work steal-

ing is used to facilitate load balancing between workers.

The main objective of the energy-aware runtime sys-

tem is to execute the application within the energy

budget specified by the user, while achieving the high-

est possible output quality. Energy budgets can be de-

fined either relatively to the energy consumption of the

most energy-efficient fully accurate execution, or as an

absolute value. The energy budget is set with an en-

vironment variable (ENERGY BUDGET ). Given the

energy budget, the problem size and the number of cre-

ated tasks, the runtime system uses the offline-trained

model to predict the Pareto-optimal configuration in

terms of number of cores, processor frequency, and ra-

tio of accurate/approximate tasks. This configuration is

selected to achieve execution within the energy budget,

while maximizing the ratio of accurate tasks. If the run-

time cannot identify an execution configuration within

the requested energy budget, it opts to execute with

the least energy consuming configuration.

Beyond achieving the selected ratio of accurate/ap-

proximate tasks and staying within the energy budget,

the runtime system also has to respect user-provided

wisdom on the relative importance of tasks for output

quality: high significance tasks should have higher pri-

ority for accurate execution over lower significance tasks

in the same task group.

Ideally, the runtime system can have a priori infor-

mation on the number of tasks to be issued in a task

group and the distribution of significance levels within

the group. In this case it is straightforward to execute

approximately the tasks with the lowest significance in

each group in order to achieve the target ratio. If this

is not the case, the respective information has to be

collected at runtime. We accomplish this by having the

master thread buffering tasks on creation, while post-

poning task issuing to worker queues. When the buffer

is full, or when a synchronization construct is reached,

the tasks in the buffer are sorted by significance. Then,

the runtime estimates the optimal execution configu-

ration and tags each task for accurate or approximate

execution according to its relative significance and the

target ratio. We use two runtime system algorithms, one

using global state for preserving the exact accurate task

ratio and one using distributed local state for estimat-

ing the accurate task ratio from partial execution-time

information. The algorithms are presented in an earlier

paper [21].

5 Experimental Evaluation

We use nine benchmarks to validate our framework and

its ability to execute applications with a pre-defined en-

ergy budget, while gracefully trading off output quality

with energy efficiency. The benchmarks have been man-

ually ported to the proposed significance-driven pro-

gramming model. We compare our framework against
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loop perforation [17] in terms of quality of results under

the same energy constraints.

5.1 Benchmarks

We apply different approximation approaches to each

benchmark, subject to algorithmic characteristics of the

underlying computation.

Sobel is a 2D filter for edge detection in images.

The approximate version of the tasks uses a lightweight

Sobel stencil with just 2/3 of the filter taps. Addi-

tionally, it substitutes the costly formula
√
sblx

2 + sbl2y
with its approximate counterpart |sblx|+ |sbly|. Signif-

icance is assigned to tasks in a round-robin manner,

which ensures that approximated pixels are uniformly

distributed throughout the output.

Discrete Cosine Transform (DCT ) is a module of the

JPEG compression and decompression algorithm [18].

We assign higher significance to tasks that compute

lower frequency coefficients, as the human eye is more

sensitive to those frequencies. Should a task be executed

approximately, the computation is dropped.

Fisheye lens distortion correction [2] is an image

processing application which transforms images distorted

by a fisheye lens back to the natural-looking perspective

space. The exact algorithm initially associates pixels of

the output, perspective space image, to points in the

distorted image. Then, interpolation on a 4×4 window

is applied to calculate each pixel value of the output,

based on the values of neighboring pixels of the corre-

sponding point in the distorted image. The approximate

task also performs the inverse mapping procedure, how-

ever instead of calculating each output pixel by interpo-

lating around the corresponding point in the input, it

simply uses the value of the nearest neighboring pixel.

K-means is an iterative algorithm for grouping data

points from a multi-dimensional space into k clusters.

Each iteration consists of two phases: Chunks of data

points are first assigned to different tasks, which inde-

pendently determine the nearest cluster for each data

point. Then, another task group is used to update the

cluster centers by taking into account the position of the

points that have moved. The first phase is characterized

as non-significant, because errors in the assignment of

individual points to clusters can be tolerated. Approxi-

mate tasks compute a simpler version of the Euclidean

distance while also considering only half of the total di-

mensions. The second phase is significant, as it is harder

to recover from a wrong estimate of a cluster center.

MC [22] applies a Monte Carlo approach to esti-

mate the boundary of a sub-domain within a larger par-

tial differential equation (PDE) domain, by performing

random walks from points of the sub-domain bound-

ary to the boundary of the initial domain. Approximate

configurations drop a percentage of the random walks

and the corresponding computations. An approximate,

lightweight methodology is also used to decide how far

from the current location the next step of a random

walk should move.

Canneal, a code from the PARSEC benchmark suite [3],

applies an annealing methodology to optimize the rout-

ing cost of a chip design. This optimization method

pseudo-randomly swaps net-list elements. If the swap

results in better routing cost it is accepted immediately.

Local minima are avoided by rarely accepting swaps

that increase the routing cost of the net-list. Approxi-

mate tasks try less swaps (1/8) than accurate ones. All

tasks are assigned the same significance value, so the

tasks to be approximated are randomly selected by the

runtime, according to the target ratio.

The MD (molecular dynamics) application simu-

lates the kinematic behaviour (position and velocity)

of liquid Argon atoms within a bounded space, under

the effects of a force produced by a Lennard-Jones pair

potential [5]. The potential is defined as a function of

distance (r) and two material specific constants (σ and

ε):

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(4)

The significance of the interaction between atoms is

strongly correlated with the distance between them.

The greater the distance between atom A and atom B,

the less the kinematic properties of A affect those of B

(and vice versa). In the task-based version of MD , the

3D container of the particles is partitioned into regions

which are updated every few time-steps to populate a

list of the particles that reside inside them. For each

given atom, one task per region is instantiated to cal-

culate the forces that operate on the atom due to the

particles contained in that specific region. The task that

performs the calculation for the region that contains the

atom in question, is tagged as fully significant. The sig-

nificance of tasks that are responsible for other regions

drops with increasing distance to the atoms home re-

gion.

BlackScholes is a benchmark of the Parsec suite [3].

It implements a mathematical model for a market of

derivatives, which calculates the buying and selling of

assets so as to reduce the financial risk. The computa-

tion of a stock price can be broken down to 4 blocks of

code A, B, C, D, with sig(A) > sig(B) � sig(C) >

sig(D). The least important parts (C and D) are ap-

proximated using less accurate but faster implementa-
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tions of mathematical functions such as exp and sqrt

[7].

There is a wide variety of applications which model

the behavior of materials when colliding or being sub-

ject to forces. Lulesh [6] implements a solution of the

Sedov blast problem for a material in three dimensions.

It defines a discrete mesh that covers the region of in-

terest and it partitions the problem into a collection of

elements where hydrodynamic equations are applied.

We introduce an approximate version of the hourglass

force calculation. Similarly to MD we consider the sig-

nificance of particles to be diminishing when moving

away from the impact site. Computations involving the

least significant particles can be dropped at execution

time.

5.2 Experimental Methodology

The experimental analysis was carried out on a system

equipped with two Intel(R) Xeon(R) E5-2650 proces-

sor, and 64 GB shared DRAM. Each processor has 8

cores and can be clocked at 1.2, 1.6, 2.0, 2.4, or 2.8GHz.

Energy and power are measured using the Running Av-

erage Power Limit (RAPL) registers of the processors.

The profiling phase uses a pool of representative in-

put sets for each benchmark, discussed in Section 3.

At the end of the profiling and model fitting process,

each benchmark is associated with a model estimating

its energy consumption according to the input size and

execution configuration. This formula is, in turn, used

by the runtime system to take online decisions on the

execution configuration.

To evaluate our approach, we use for all benchmarks

unseen input sets (and input set sizes) which have not

been used during the training phase. All benchmarks

are executed accurately, in all possible core and fre-

quency configurations. From those executions we iden-

tify the one that consumes the least energy. This is our

baseline scenario for each benchmark.

We then perform a number of experiments for each

benchmark, while requesting a gradually smaller energy

budget, expressed as a percentage of the baseline. The

framework uses the model to decide, at runtime, the ra-

tio, and concurrency level with which it can achieve ex-

ecution within the requested energy budget, while min-

imizing the impact on output quality by maximizing

the ratio of accurate tasks.

We present a comparison of the quality achieved us-

ing our framework with a perforated execution of each

benchmark targeting the same energy budget. We also

present the optimal (oracular) configuration (cores, ra-

tio) for each case and compare it to the one selected by

our system.

5.3 Experimental Evaluation and Discussion

Figures 2 summarizes our results. In all charts the hori-

zontal axis represents the requested energy budget, as a

percentage of the energy consumed by the most energy-

efficient accurate execution. The Y-axis of the first set

of charts corresponds to the energy that was actually

consumed by approximate executions as a percentage

of the energy consumed by the accurate execution. The

second set of charts is used to quantify output qual-

ity. We compare our framework against an oracle (op-

timal) configurator, as well as against loop perforation

for which an oracle has selected the optimal number of

dropped iterations.

For the first three applications (DCT, Sobel, Fish-

eye) output quality is quantified using PSNR (higher

is better). PSNR is a logarithmic metric. For Kmeans,

the metric of the quality of output is the relative differ-

ence of the average distance between data points and

the center of the cluster they are assigned to, com-

pared with that of the fully accurate execution (lower

is better). For the remaining five benchmarks we report

the relative error with respect to an accurate execution

(lower is better).

Our framework produces program configurations which

result in energy consumption that is very similar to the

optimal. Even in cases when the runtime opts for a non-

optimal configuration, the difference in the achieved en-

ergy footprint and quality of results is negligible, with

the exception of Canneal, Kmeans, and Lulesh which

are discussed in more detail later in this section. Both

our approach and the optimal tend to adapt concur-

rency to utilize all cores of both CPUs. This is expected,

as the dominant term in power estimation is due to the

activation of additional CPUs.

Imaging and media applications are well-suited for

our programming framework, as they take full advan-

tage of the significance and approximation features of

the programming model. Moreover, the specific imple-

mentations scale to larger inputs by adapting the num-

ber of tasks, instead of modifying the work per task.

Therefore it is easier for our model to predict their

behavior with high accuracy. Finally, the execution of

approximate tasks has a straightforward and easy to

model effect on execution time: more approximate tasks

result in less computation and thus more energy sav-

ings.

Sobel DCT, and Fisheye can execute with as little

as 50% of the energy required by the optimum accurate

execution and match the quality achieved by the ora-

cle. The minimum energy required depends mainly on

the complexity of the approximation function we use.

At the same time, the complexity and sophistication
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Fig. 2: Quality and energy metrics for different energy targets (as a percentage of the most energy-efficient accurate execution).
Energy & quality plots show the results achieved by our system, an oracle selecting the optimal configuration and loop
perforation.

of the approximation function determines output qual-

ity for the most aggressive degrees of approximation.

When approximating all tasks we observe PSNRs equal

to 18.70, 23.64, 22.09 dB for Sobel, DCT, and Fisheye

respectively. Perforated executions capped at the same

amount of energy produce results of inferior quality,

corresponding to PSNRs of 10.75, 14.48 and 8.19 dB

respectively. Our methodology clearly results in higher

quality of results with the same energy budget. However

it sometimes slightly overshoots the energy budget con-
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Fig. 3: Lena portrait compressed and decompressed using
DCT with a ratio of 0.3.

straints by picking ratio values which are higher than

the optimal. In the case of DCT we overspend, on aver-

age, by 6.2%, for Sobel this number is 2.1% and finally

Fisheye overspends by 6.4%. This leads to a pitfall in

Figure 2 where our framework seems to outperform the

oracle, which is clearly not possible. Figure 3 depicts

the Lena portrait compressed and decompressed using

DCT with a ratio of 0.3. The resulting output has a

PSNR of 34.62 dB (no visible quality loss), at a 45%

energy gain with respect to the most energy efficient

accurate execution.

MD is another well-behaved application for our frame-

work. In most cases we choose configurations which re-

sult in energy consumption that is very close to what an

oracle achieves. In fact, our estimations, excluding the

energy budgets 10% and 20% result in energy consump-
tion which differs by 4.5% from the user specified energy

budget. Moreover, we always achieve a better quality of

results than the perforated version of the benchmark.

With just 30% of the energy budget of the most energy

efficient accurate execution MD computes results with

a relative error in the order of 0.0006%.

For MC we observe that our framework makes opti-

mal choices in almost every case. Approximation in MC

drops random walks, similarly to perforation, therefore

we observe similar results with both techniques. A lower

energy budget results in pruning some of the random

walks of the search space. This reduces energy, albeit

with a measurable impact in quality. We can achieve

consumption as low as 30% of the energy required by

the most energy-efficient accurate execution, using a

ratio of 0.2 which results in a relative error of 5.9%.

Regarding Lulesh, we notice that for energy budgets

higher than 10% the framework version always produces

higher quality than the perforated one, but it tends to

overshoot the energy budget. The case of the energy

Fig. 4: Final positions of particles for an approximate execu-
tion with ratio 0.2. Particles have been colored according to
the relative error of their position with respect to an accurate
execution.

budget being 10% of the optimal accurate is particu-

larly peculiar: the perforated version is better in terms

of quality and energy than both our framework and the

oracle. This is due to the fact that the approximated

executions have to spend some of their energy budget

to compute the significance of tasks. Furthermore, ap-

proximated tasks do not access the memory with a reg-

ular pattern. Elements are visited according to their

distance from the point of blast. Unfortunately, this

access pattern affects memory locality in a detrimental

fashion. On the other hand the perforated version has

a regular memory access pattern and the respective en-

ergy drops linearly with respect to the number of the

dropped iterations. However, for higher – and realistic –

energy budgets our approach always produces results of

better quality compared with the perforated executions.

We do have to note that the two issues described above

limit the accuracy of our framework’s estimations. Fig-

ure 4 depicts the positions of particles calculated by a

small-scale approximate execution with ratio set to 0.2.

Particles are colored according to the relative error of

their final position with respect to the fully accurate

execution. The maximum relative error is negligible (in

the order of 10−8).

BlackScholes calculates prices for a number of as-

sets. The main loop iterates across different assets, how-

ever there is no loop involved in the calculation of each

particular asset. As a result, perforation is not applica-

ble and we limit our comparison between the proposed

framework and the optimal configuration by an ora-

cle. Because of the computational cost of approximate

tasks, the lowest energy budget obtained by the Oracle

is 60% of the accurate execution; our framework fol-
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lows closely at 63.3%. Once again, we produce results of

higher quality than the oracle for energy budgets higher

than 60% due to slightly overshooting the target energy

budget by executing more accurate tasks.

Our model is less accurate in its predictions for Can-

neal . This is a consequence of the bad, unpredictable lo-

cality pattern if the application. Canneal uses large data

structures to store information on net-list elements. The

random way each task accesses memory locations in-

creases cache misses, in particular false sharing misses

that introduce excessive data transfers between the last-

level non-shared caches of cores. This unpredictable be-

havior cannot be modeled accurately by our framework.

As a result, we underestimate the execution time of the

application and often select configurations that do not

satisfy the energy constraints.

Kmeans reveals the limitations of our approach. It

can not be modeled effectively, as it is iterative, with

the number of iterations being heavily dependent on

the characteristics of the input set (and not just the in-

put set size). Moreover, wrong decisions in the approx-

imate tasks (point classification) tend to increase point

movement between clusters, and thus the workload of

accurate tasks (cluster center calculation). In addition,

even when we approximate 100% of the point classifi-

cation tasks, we can only reduce the energy footprint

by at most 60% because our approximation disregards

half of the coordinates of each point. For such applica-

tions, a blind approach such as loop perforation proves

to be a viable solution for medium-to-large energy bud-

gets as it produces solutions which are as good as our

framework using less energy.

To sum up the results of our experimental campaign

we note that there are scenarios in which it simply im-

possible to arbitrarily decrease the energy footprint of

an application due to the fact that even the approxi-

mate versions of tasks come with computational cost.

We do observe however, that in the bulk of the test-

cases our framework succeeds in gracefully trading qual-

ity to reduce the cost of executing an application.

6 Related Work

To the best of our knowledge this work is the first to

propose a parallel programming model for significance-

aware approximate computation, and the first to model

and explore a design space for approximate parallel ap-

plications that achieves quality optimization under re-

source constraints. Our work departs from prior art in

approximate computing in several ways.

6.1 Parallel Approximation Frameworks

Quickstep [8], is a tool that approximately parallelizes

sequential programs. The parallelized programs are sub-

jected to statistical accuracy tests for correctness. Quick-

step tolerates races that occur after removing synchro-

nization operations that would otherwise be necessary

to preserve the semantics of the sequential program.

Quickstep thus exposes additional parallelization and

optimization opportunities via approximating the data

and control dependencies in a program. On the other

hand, QuickStep does not enable algorithmic and application-

specific approximation, which is the focus of our work.

and does not include energy-aware optimizations in the

runtime system.

Variability-aware OpenMP [11] and variation tol-

erant Open-MP [10], are a sets of OpenMP extensions

that enable a programmer to specify blocks of code that

can be computed approximately. The programmer may

also specify error tolerance in terms of the number of

most significant bits in a variable which are guaranteed

to be correct. We follow a different scheme that allows

approximate –in our context, not significant– tasks to

be selectively dropped from execution and dynamic er-

ror checks to detect and recover from errors via selective

task restarting. Variability-aware OpenMP applies ap-

proximation only to specific FPU operations, which ex-

ecute on specialized FPUs with configurable accuracy.

Our framework applies selective approximation at the

granularity of tasks, using the significance abstraction.

Our programming and execution model thus provides

additional flexibility to drop or approximate code, while

preserving output quality. Furthermore, our framework

does not require specialized hardware support and runs

on commodity systems.

6.2 Other Approximation Frameworks

Several frameworks for approximate computing discard

parts of code at runtime, while asserting that the qual-

ity of the result complies with quality criteria provided

by the programmer. Green [1] is an API for loop-level

and function approximation. Loops are approximated

with a reduction of the loop trip count. Functions are

approximated with multi-versioning. The API includes

calibration functions that build application-specific QoS

models for the outputs of the approximated blocks of

code, as well as re-calibration functions for correcting

unacceptable errors that may incur due to approxima-

tion. Sloan et al. [19] provide guidelines for manual con-

trol of approximate computation and error checking in

software. These frameworks delegate the control of ap-

proximate code execution to the programmer. We ex-
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plore an alternative approach where the programmer

uses a higher level of abstraction for approximation,

namely computational significance, while the system

software translates this abstraction into energy- and

performance-efficient approximate execution.

Loop perforation [17] is a compiler technique that

classifies loop iterations into critical and non-critical

ones. The latter can be dropped, as long as the results

of the loop are acceptable from a quality standpoint.

Input sampling and code versioning [25] also use the

compiler to selectively discard inputs to functions and

substitute accurate function implementations with ap-

proximate ones. Similarly to loop perforation and code

versioning, our framework benefits from task dropping

and the execution of approximate versions of tasks.

However, we follow a different approach whereby these

optimizations are driven from user input on the relative

significance of code blocks and are used selectively in

the runtime system to meet user-defined quality crite-

ria energy savings and performance gain. While these

approaches demonstrate aggressive performance opti-

mization thanks to approximation, they do not consider

parallelism in execution. Furthermore, these techniques

operate at a granularity different than parallel tasks

or specific runtime energy optimization opportunities

which are exposed through approximation.

Several software and hardware schemes for approxi-

mate computing follow a domain-specific approach. Ap-

proxIt [24] is a framework for approximate iterative

methods, based on a lightweight quality control mech-

anism. Unlike our task-based approach, ApproxIt uses

coarse-grain approximation at a minimum granularity

of one solver iteration. Gschwandtner et al. use a sim-

ilar iterative approach to execute error-tolerant solvers

on processors that operate with near-threshold voltage

(NTC) and reduce energy consumption by replacing

cores operating at nominal voltage with NTC cores [4].

Schmoll et al. [16] present algorithmic and static anal-

ysis techniques to detect variables that must be com-

puted reliably and variables that can be computed ap-

proximately in an H.264 video decoder. Although we

follow a domain-agnostic approach in our approximate

computing framework, we provide sufficient abstrac-

tions for implementing the aforementioned application-

specific approximation methods.

Other tools automate the generation and execution

of approximate computations. SAGE [14] is a compiler

and runtime environment for automatic generation of

approximate kernels in machine learning and image pro-

cessing applications. Paraprox [13] implements trans-

parent approximation for data-parallel programs by rec-

ognizing common algorithmic kernels and replacing them

with approximate equivalents. ASAC [12] provides sen-

sitivity analysis for automatically generated code an-

notations that quantify significance. We do not explore

automatic generation of approximate code in this work.

However, our techniques for quality-aware, selective ex-

ecution of approximate code are directly applicable to

scenarios where the approximate code is derived from

a compiler, instead of source code annotations.

7 Conclusion

This paper introduced a directive-based programming

model that allows developers to specify computational

significance at the granularity of tasks. This informa-

tion is used to achieve energy-constrained execution

with graceful quality degradation. An offline, profile-

based, training process produces a model which predicts

the energy footprint of a given application as a function

of its input size, the number of cores used, the processor

frequency, and the ratio of accurate to total number of

tasks. This model is exploited by the runtime system of

an energy-constrained multi-core platform to steer exe-

cution towards a configuration that maximizes quality

of output while complying with energy constraints.

The experimental evaluation across several bench-

mark codes shows that the exploitation of programmer

wisdom on the significance of computations is neces-

sary in order to achieve energy constrained execution

without excessive quality loss. This is particularly evi-

dent when comparing our approach against loop perfo-

ration [17], a blind approximation technique applied at

the compiler level. In this work we consider program-

mer wisdom as the corner stone of significance-driven

computing. However, our intuition indicates that an au-

tomatic, or at least semi-automatic significance analysis

of computations may be realistic and would extend the

applicability of the proposed framework.

In the future, we plan to investigate automatic sig-

nificance analysis methods. We also intend to explore

alternative optimization scenarios, by combining profile-

based methodologies with dynamic heuristics in the

runtime system. Moreover, we will investigate effective

domain-specific ways to express quality constraints, and

use the framework to achieve automated energy-efficient

execution within quality limitations. Finally we plan to

work on cost effective ways to evaluate the intermediate

quality of results at runtime.
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