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Abstract—Wide-angle (fisheye) lenses are often used in virtual
reality and computer vision applications to widen the field of view
of conventional cameras. Those lenses, however, distort images.
For most real-world applications the video stream needs to be
transformed, at real-time (20 frames/sec or better), back to the
natural-looking, central perspective space.

This paper presents the implementation, optimization and
characterization of a fisheye lens distortion correction application
on three platforms: a conventional, homogeneous multicore
processor by Intel, a heterogeneous multicore (Cell BE), and
an FPGA implementing an automatically generated streaming
accelerator. We evaluate the interaction of the application with
those architectures using both high- and low-level performance
metrics. In macroscopic terms, we find that todays mainstream
conventional multicores are not effective in supporting real-time
distortion correction, at least not with the currently commercially
available core counts. Architectures, such as the Cell BE and
FPGAs, offer the necessary computational power and scalability,
at the expense of significantly higher development effort. Among
these three platforms, only the FPGA and a fully optimized ver-
sion of the code running on the Cell processor can provide real-
time processing speed. In general, FPGAs meet the expectations
of performance, flexibility, and low overhead. General purpose
multicores are, on the other hand, much easier to program.

Keywords-Cell, FPGA, Image Warping, Performance Evalua-
tion

I. INTRODUCTION

Difficulties in scaling single-thread performance and limit-

ing the power envelope in high performance processors, has

forced CPU vendors to introduce general purpose multi-core

units in a single die. Moreover, there is a growing trend in

the High Performance and Desktop computing communities

to include accelerators to speed up time consuming, number

crunching application kernels. Reconfigurable logic, such as

FPGAs, vector processors such as the Synergistic Processing

Elements (SPEs) in Cell processor, and Graphics Processing

Units (GPUs) have been shown to speed up applications in

multimedia, graphics, data mining, scientific computing, etc.

by orders of magnitude, compared to conventional multi-cores

[10] [22].

There is little systematic research on how accelerators based

on different computing substrates, such as multi-cores, vector

accelerators, and reconfigurable devices compare in terms of

performance, memory behavior, and ease of programming.

This paper attempts to advance our understanding in these is-

sues by characterizing an important image warping application

- fisheye lens distortion correction - on three contemporary

platforms, namely an x86 Chip Multiprocessor (CMP), the

Cell processor, and a Virtex-4 FPGA (III).

Fisheye lenses allow imaging a large sector of the sur-

rounding space instantaneously (II). While ordinary rectilinear

lenses map incoming light rays to a planar photosensitive

surface, fisheye lenses map them to a spherical surface, which

is capable of a much wider field of view (FoV). It is possible,

and in fact very common, for fisheye lenses to encompass a

FoV of 180𝑜. Such hemispherical images have been tradition-

ally used for applications such as consumer digital imaging

and video capture, video surveillance [18], robot navigation

[14], content creation for immersive environments and virtual

reality [27], photography [29], astronomy, etc. Fisheye lens

distortion correction is an image warping application which

transforms the distorted images back to the natural-looking,

central perspective space (Fig. 1).

This paper explores how the inherent parallelism of the

wide-angle lens distortion correction algorithm is exploited

on different computational fabrics to achieve real time func-

tionality for megapixel input frames (IV). It also presents a

detailed characterization of macroscopic performance (IV-A)

and lower-level metrics (IV-B). Although the algorithm has

a high degree of data level parallelism at multiple levels of

granularity, the exploitation of this parallelism is not trivial

due to complex memory access patterns.

Some of the most important findings of the paper are the

following: although the architecture of cache-based, general

purpose multi-core systems has been described as being

mismatched to streaming workloads, due to lack of spatial

locality of streaming data references, our characterization

shows that this is not necessarily the case. For streaming

imaging applications that require substantial processing per

pixel, such multi-core processors perform at least as good

as the Cell processor per executing thread. Both platforms

achieve speed up which is linear to the number of executing

threads (8𝑥 and 4𝑥 for the Cell and Core 2 Quad, respectively).

Moreover, processors that rely on spatial computing to

”spread out” parallel tasks (Cell and FPGA), require placement

of pixel data close to the execution cores to meet performance
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Fig. 1. The wide-angle lens distortion correction algorithm for two cases for field of view FoV = 60
𝑜 and FoV = 8

𝑜. The output images are VGA (640x480).
The lower FoV results into a zoomed output image.

requirements. By placing pixel data in the Local Stores of

the SPEs and the on-chip SRAMs of FPGAs, the distortion

correction application becomes compute-bound, rather than

memory bound, and can meet the bandwidth requirements of

multiple independent threads. This pixel placement is more

critical for FPGAs which cannot rely on high-speed buses and

memory controllers to feed their computation units.

In addition to performance, development time is recognized

as an important component of overall effectiveness of a target

platform. Although FPGA devices have the highest develop-

ment time, the effort to develop and optimize the application

on the Cell processor was actually comparable to that on the

FPGA device, especially when using an architectural synthesis

tool [5] to map the application to the reconfigurable fabric.

II. FISHEYE LENS DISTORTION CORRECTION

ALGORITHM

The stereoscopic geometry of wide-angle photography does

not comply with the conventional central perspective projec-

tion shown in Fig. 2a. The latter is based on the premise that

the incidence angle of an incoming ray from an object point is

equal to the angle between the ray and the optical axis. Object

points with incidence angle close to 90𝑜 would be projected

to a point at infinite distance from the principle point, thus

limiting the FoV to angles close to the optical axis.

The wide-angle projection model is based on the principle

that the incidence angle is proportional to the distance between

the image point and the central point (Fig. 2b). The incoming

rays are refracted closer to the optical axis, thus expanding

the FoV.

In order to associate the coordinates (i,j ) of a point at the

2D central perspective image space to the coordinates (x,y)

of the corresponding point at the wide-angle space (inverse

mapping), one has to first compute the coordinates (𝑋𝑐, 𝑌𝑐, 𝑍𝑐)

of the projection of the (i,j ) point to the 3D camera coordinate

system by applying a rotation matrix:
⎡
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After some algebraic transformations [25], the equations

that describe the projection on the image plane when using

wide-angle lens are:

𝑥 =
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𝜋
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√

𝑋2
𝑐
+𝑌 2
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where (𝑋𝑐, 𝑌𝑐, 𝑍𝑐) are object point coordinates on the 3D cam-

era coordinate system, 𝑑𝑥, 𝑑𝑦 are lens-distortion parameters,

𝑥ℎ, 𝑦ℎ are the coordinates of the principle point and 𝑅 is the

image radius.

Note that equations (1) produce a fractional pair of coor-

dinates at the wide-angle plane, and the pixel value at that

point has to be interpolated based on the values of the pixels

at neighboring integer positions.

Bicubic interpolation is a robust, yet computationally ex-

pensive technique used to approximate intermediate points of

a continuous event given the interpolation nodes, or sam-

ple points [16]. Although other techniques such as nearest

neighbor or bilinear are simpler and more widely used in

hardware implementations, the high PSNR1 requirements of

the fisheye correction module make this the method of choice.

The bicubic interpolation method uses cubic sampled functions

to approximate an intermediate value based on the fundamental

property that the sample function is equal to the interpolation

function in the sample points.

As a last step, at an extra computational cost, we apply

1Peak Signal to Noise Ratio is frequently used to measure signal quality
in images.



(a) Central Perspective projection model (b) Wide-angle projection model

Fig. 2. Projection model of fisheye lens.

1: {Input: The frames (in the wide-angle space) to be corrected}
2: {Output: The corrected frames (in the perspective space)}
3: for all frames do
4: for all pixels in the output frame do
5: Compute the corresponding fractional position in the input

frame (InverseMapping())
6: Interpolate the pixel value at that fractional position

(BicubicInterpolation())
7: end for
8: Apply a 2-D low-pass filter to resize the output frame (LPF())
9: end for

Fig. 3. High-level pseudocode of the fisheye lens distortion correction
algorithm.

a 5-tap vertical and a 5-tap horizontal low pass filter on

the corrected image in order to downscale it to a VGA

(640x480) output resolution2. The low pass filter has the

additional positive effect of eliminating any potential high

frequency artifact noise on the image. The pseudo-code in

Fig. 3 outlines the algorithm. The inverse mapping and two-

dimensional bicubic interpolation flows are depicted in more

detail in Fig. 4.

III. INTRODUCTION TO TARGET PLATFORMS

A. Intel Core 2 Quad

The Intel Core 2 Quad Q9300 is a representative implemen-

tation of mainstream, homogeneous multicore systems. The

processor is clocked at 2.5 GHz and supports a 1.3 GHz FSB

(front side bus). It is organized as two independent dual core

processor blocks packaged together. Each of the dual core

blocks integrates a 3MB L2 cache (12 way set associative, 64

bytes cache line), shared between the two cores of the block.

Moreover, each core accesses a 64KB private L1 cache (32KB

2The fisheye lens distortion correction algorithm is used in the context of
a video conferencing system.

data + 32KB code, 8-way set associative, 64 bytes cache line).

If the two dual core blocks have to communicate, they do so

through the FSB. The processor has a thermal design power

of 95W and supports the SSE 4.1 vector instructions set. The

system we used for our experimental evaluation is equipped

with 2GB dual-channel, DDR2 RAM, clocked at 667 MHz.

B. Cell Broadband Engine (CBE)

The Cell BE is an heterogeneous multicore processor. It

integrates 8 Synergistic Processing Element cores (SPEs) and

a separate 2-way SMT PowerPC core (PPE) [15]. These 9

cores, the main memory and the I/O interfaces are connected

by an on-chip network, the Element Interconnect Bus (EIB).

The processor is clocked at 3.2 GHz. Each SPE is organized

as an 128-bit wide SIMD computational engine (Synergistic

Processing Unit - SPU) and a Memory Flow Controller (MFC).

There is a single 128x128 bit register file per SPE. Each

SPE accesses a private, 256KB local storage (LS). The LS

has bandwidth and latency characteristics similar to those

of an L1 cache, however its content is explicitly software-

controlled. It is shared by both program code and data.

SPEs can not directly access the main memory. They can,

instead, issue asynchronous DMA requests to transfer data

between main memory and the LS, or between LSs of different

SPEs. Up to 2 SIMD instructions can be issued per cycle -

although specific instructions on each issue slot - resulting to a

maximum theoretical performance of 204.8 Gflops for single-

precision and 14.63 Gflops for double-precision floating-point

operations. The typical power consumption envelope of a CBE

processor is 60-80W.

The system we used for our experimental evaluation is an

IBM QS20 blade, equipped with 1 GB of external DRAM.

C. Reconfigurable Logic

Compared to the fixed hardware of the Core 2 Quad and Cell

architectures, reconfigurable devices (FPGAs) are essentially



Fig. 4. Inverse mapping is used to convert the coordinates from the perspective space back to the wide-angle space. A 4x4 pixel neighborhood around the
fractional points on the distorted space is used to perform bicubic interpolation and compute the pixel values at the fractional points.

high density arrays of uncommitted logic blocks that are

configured post-fabrication [7]. The functionality of FPGAs

is determined through configuration bits which are used to

specify the functionality of the configurable logic blocks and

the routing channels between them. Modern FPGAs also

contain ”islands” of hard intellectual property (IP) logic such

as general purpose microprocessors, slices of DSP logic, and

on-chip SRAMs.

Reconfigurable devices offer the highest degree of flexibility

in tailoring the architecture to match the application, since

they essentially emulate the functionality of a custom chip,

i.e. ASIC (Application Specific Instruction Set). FPGAs avoid

the traditional ISA-based von-Neumann architecture, followed

by CPUs and the Cell processor, and can trade-off computing

resources and performance by selecting the appropriate level

of parallelism to implement an algorithm. Since reconfigurable

logic is more efficient in implementing specific applications

than multi-core CPUs, it enjoys higher power efficiency than

any general purpose computing substrate.

The main drawbacks of FPGAs are twofold: first, the

FPGAs are primarily programmed using Hardware Description

Languages (VHDL or Verilog), which is a time-consuming and

labor-intensive task, and requires deep knowledge of low-level

hardware details. Although there has been a growing trend to

program FPGA applications using high level languages, such

as C-like languages [11], [19] and [23], most FPGA developers

continue to use VHDL or Verilog to map their applications into

the reconfigurable fabric.

Second, the achievable clock frequency in reconfigurable

devices is lower (by almost an order of magnitude) compared

with the full custom design of high performance processors.

In fact, almost all FPGA designs operate in a clock frequency

less than 200 MHz, despite the aggressive technology scaling

of FPGA devices3.

We use the Virtex-4 LX80 FPGA to implement the distor-

tion correction hardware module. The LX80 device includes

3Next generation Virtex-6 FPGAs from Xilinx will be fabricated at 40nm
CMOS technology.

80,460 logic cells, 200 on-chip SRAMs (18 Kbit each) and 80

DSP slices [2]. The hardware module is part of an embedded

System On Chip (SoC), which also includes a Microblaze

processor, a multi-port memory controller to provide high-

bandwidth access to external SDRAM memory, and a variety

of peripheral units. The FPGA device operates using a single

clock at 62.5 MHz.

Using an internally developed architectural synthesis toolset

and programming methodology, we generated the FPGA mod-

ule without using a hardware description language. Proteus,

our CAD tool [5], produces hardware accelerators that fol-

low the streaming architectural paradigm [3]. This approach

produces several independent load/store units (called stream

interface units, SMIFs) used to prefetch data from wide, slow

memories and turn it into narrow, high-speed streams of vector

elements. It also generates the data path used to execute the

program, which is expressed using an assembly-like streaming

Data Flow Graph (sDFG).

Design automation allows us to turn FPGA program-

ming from gate-level to algorithm-level and quickly convert

the sDFG for our application (approximately 800 lines of

code) into very efficient, synthesizable Verilog (approximately

100,000 lines of code).

IV. ALGORITHM OPTIMIZATIONS FOR PARALLEL

EXECUTION

This section outlines the restructuring and optimizations of

the original code in order to exploit the diverse parallel archi-

tectures of Core 2 Quad, Cell, and FPGA. Some optimizations,

especially the higher level ones, are common to all platforms.

Others are only fit for specific architectures.

A. High-level Optimizations

An important observation from the algorithmic analysis of

section II is that the fractional pixel coordinates follow a com-

plicated non-linear pattern (Fig. 4). Although the trace is not

data dependent, and thus can be theoretically pre-computed,

the complex memory access pattern deems aggressive DMA

prefetching impractical.



Fig. 5. Block diagram of the fisheye lens distortion correction pipeline implemented in reconfigurable logic.

We alleviate this problem by applying 2D tiling in each

frame, a technique used by optimizing compilers to improve

cache hit rate. We partition the output frame in blocks of

equal size, and produce pixels block by block, by assigning

one block to one thread (Core 2 Quad) or SPE (Cell). By

tiling computations to exploit reuse at the block level, we

also facilitate data distribution to SPE Local Stores in the Cell

processor, and to the on-chip SRAMs of the FPGA, and we

improve locality on the cache memory hierarchy of the Core

2 Quad architecture. Tiling allows us to store the working set

within a small and constant latency from the computational

units, instead of in remote (and possibly off-chip) memories.

Moreover, organizing computations around pixel tiles fa-

cilitates task-level pipelining and allows multiple tiles to be

processed in the computational pipeline at any moment. In

this scheme, each pipeline stage is dedicated to a single

transformation so that successive tiles are processed simul-

taneously. For example, while all pixels of tile N are being

processed in the bicubic interpolation stage, the tile N+1 is

in the inverse mapping stage. We apply pipelining only to the

FPGA implementation, which can exploit customization of the

different pipeline stages to the task they execute. Pipelining

is also possible for fixed architectures such as the Core 2

Quad and the Cell, however the application offers enough

data-parallelism to exploit the 4 and 8 respectively execution

contexts of these processors. Fig. 5 shows the pipelined block

diagram of the streaming accelerator for fisheye lens distortion

correction as implemented in the Virtex-4 FPGA.

B. Low-Level Optimizations

The fisheye lens distortion correction algorithm has abun-

dant data level parallelism which can be exploited by the

SIMD extensions of Core 2 Quad and Cell. Most calculations

shown in Fig. 3 are enclosed in doubly-nested loops. The

outer loop (pixel scan) first computes the fractional coordinates

of each pixel in the tile (inverse mapping) and then applies

bicubic interpolation within a nested loop of three iterations,

one iteration for each of the color components (RGB). Like-

wise, two subsequent outer loops are used for the vertical and

horizontal low-pass filtering, each enclosing a second-level

nested loop with three iterations.

We utilize the SIMD capability of Core 2 Quad and SPEs

by vectorizing four FP operations in inverse mapping, bicubic

interpolation and low pass filtering. The implicit loop unrolling

due to vectorization has the positive side-effect of reducing

the backward branches of the outer loop by a factor of 4.

An additional explicit 3𝑥 unrolling of the inner loops furthers

the positive effects of branch elimination and increases the

potential for efficient instruction scheduling. This is important

for SPEs, in which mispredicted branches incur a large penalty.

The SIMDization and loop unrolling provides a cumulative

speed up of 12.4𝑥 for Cell, and 1.7𝑥 for the Core 2 Quad.

The loop unrolling optimization produced a large number

of instructions that could be scheduled in parallel in the dual-

issue pipeline. However, experimental results showed that the

compiler was too conservative on rescheduling independent

instructions. In order to reduce the pipeline stalls and produce

a faster executable, we manually schedule the instructions at

the source code level. We interleave the instructions that access

the memory with computational operations, thus enabling the

compiler to schedule them more efficiently and eliminating

most of the pipeline stalls.

Bicubic interpolation accesses memory addresses that are

not optimally aligned for vector loading operations (Fig. 4).

The aforementioned implicit loop unrolling requires each row

of the 4x4 window to be stored in a vector register, so the

compiler inserts extra instructions in order to move the scalar

data to the preferred slot. If vector registers are loaded row-

wise, data dependencies from previous loads stall future loads

on the same register, making the vector register a point of

contention. We eliminate most of these stalls by reversing the

order of storing in the vector registers. We load the registers
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Fig. 6. Execution time and performance scalability. HL and LL stand for high-level and low-level optimizations respectively, whereas IMA stands for inverse
mapping amortization.

column-wise instead of the intuitive row-wise order. This

modification spreads out the instructions that access the same

register, allowing enough time to load a pixel into a register,

before loading the next one on the same register.

Moreover, the function that performs bicubic interpolation

includes a conditional statement that checks whether a given

location is inside the frame boundaries. After applying the

SIMD optimization, we need to extract the coordinates of

each point from the corresponding vector registers in order to

evaluate these statements. We face a problem similar to that

of unaligned loads, since we need to extract the individual

coordinates, calculate the value of the conditional, and then

execute or bypass the instruction in the body of the conditional

statement. In order to eliminate the additional stalls that are

inserted due to the consecutive extraction operations from a

vector register, we vectorize the calculation of the conditionals,

move them at the beginning of the outer loop, and extract the

conditional values enough cycles before they are needed. The

aforementioned low-level optimizations are described in more

detail in [8].

A final optimization step for the Cell processor is to move

the inverse mapping task to the PowerPC (PPE) processor,

instead of the SPEs. As aforementioned, the correspondence

of input versus output pixel coordinates depends solely on

the region of interest (ROI) and the field of view (FoV), but

not on pixel values. These two parameters can be changed

interactively at run-time, however this occurs infrequently, if at

all. As a result, the cost of inverse mapping can be amortized,

if it is computed once and reused across multiple frames.

This is achieved at the expense of storage space: the size

of the resulting data structure is 4.8 MB, since it contains

1280x960 pairs of single-precision floating points. However,

a data structure of that size cannot be accommodated in the

local store of SPEs. In section V.B we evaluate this option in

detail.

The FPGA implementation of Fig. 5 exploits the flexibility

of the reconfigurable fabric by scheduling a large number

of sDFG operations (around 400 in all pipeline stages) in

each cycle using the modulo scheduler of Proteus. By placing

incoming pixel data, and inter-stage intermediate results in the

on-chip SRAMs of the reconfigurable device, the architecture

keeps the wide data path fully utilized, and eliminates stalls

due to memory latency. The intermediate on-chip buffers of

Fig. 5 play the role of Local Store buffers in the Cell processor.

The fisheye distortion correction module for the FPGA was

developed using the Proteus CAD tool [5] and is described in

more detail in [6].

We evaluated the execution time of the application with a

FoV varying from 1.0𝑜 to 60.0𝑜 and for all possible ROIs

on the input frame, and we found the execution time to

be insensitive to these parameters. This was expected, since

the size and resolution of the output image are fixed, and

the amount of computation per output image pixel is not

dependent on the input data and parameters. For the rest of

the paper, we assume that the FoV is 40.0𝑜.

V. PERFORMANCE EVALUATION OF THE FISHEYE

LENS DISTORTION CORRECTION ALGORITHM

In this section, we evaluate the performance of fisheye

lens distortion correction on the three platforms we described

in section III. All results are obtained from executing the

application on real hardware, rather than on simulators.

The application was compiled on the Core 2 Quad using

both Intel’s icc compiler and gcc, with the compiler opti-

mization flags that resulted to the lowest execution times. The

performance of executables produced by icc proved slightly
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Fig. 7. Total number of retired instructions and CPI for the fastest
implementation on each platform.

higher, so we only report these results. The code on the Intel-

based platform has been parallelized using POSIX threads.

Performance data have been collected by Intel VTune perfor-

mance analyzer [13] and Intel Thread Profiler [12].

The application was compiled on the Cell processor using

both gcc (version 4.2.1) and xlc compiler (version 9.0). The

performance of the executables produced by gcc was higher,

so we only report results using gcc. Low-level performance

data have been collected by the Cell Performance Counter

tool (CPC) [1] which is used for setting up and monitoring the

hardware performance counters in the Cell processor. These

counters allow the user to quantitatively evaluate interactions

at the hardware / software boundary.

A. Performance and Scalability Analysis

Fig. 6 illustrates the performance of the application in

terms of processed frames/sec in each platform after each

optimization, i.e. HL for high-level optimizations only, HL+LL

for high- and low-level optimizations, and finally IMA (inverse

mapping amortization) when inverse mapping is executed

once and the fractional coordinates are stored in memory and

reused.

As a first observation, the speed up is proportional to the

number of execution contexts available by the underlying

platforms (i.e close to 8𝑥 and 4𝑥 for Cell and Core 2 Quad,

respectively). This is expected, since there is no dependency

between threads in this application. Moreover, the memory and

bus hierarchies are able to keep the data paths close to full

utilization, i.e. the application is compute-bound for all cases

we measured. Assuming that we require real-time processing

of at least 20 frames/sec (for human viewing), we observe

that only the Cell processor and the FPGA can deliver it. The

scalability results, combined with the low-level performance

analysis discussed in the following subsection allow us to

speculate that, should the Core 2 Quad processor be equipped

with 8 cores, it would also probably be capable of achieving

real-time performance. In all cases, reconfigurable computing

shows its advantages over von Neuman-based CPUs, since
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Fig. 8. Runtime breakdown for each function.

the FPGA is 37.5𝑥 faster per Hz of execution than the Cell

processor using all eight SPEs, and 56𝑥 faster per Hz than the

Core 2 Quad processor using all four threads.

Exploiting fine-level parallelism with vectorization and

loop unrolling provided 12.4𝑥 speed up for Cell and 1.7𝑥
speed up for Core 2 Quad, compared with the HL optimiza-

tions only. This is a testament of careful source code rewriting

(most probably, manual) needed to optimize SPE execution.

The lack of a dynamic branch prediction mechanism in hard-

ware, the lack of automatic or compiler assisted SIMDization,

as well as the overly conservative instruction scheduling by the

SPE compiler, place the burden on the programmer to produce

optimized code.

Finally, inverse mapping amortization proved to be benefi-

cial only for the Cell processor and provided an extra 1.43𝑥
speed up with respect to the HL+LL optimizations. As far

as the Core 2 Quad processor is concerned, after applying

the LL optimizations the compiler produced very optimized,

inlined code for inverse mapping function, thus making its

contribution to the total execution time negligible.

Fig. 7 depicts the total number of retired instructions and

the effective CPI for the three platforms when all available

resources are used. Note that the CPI of the FPGA at around

0.0015 is approximately 500 times smaller than the CPI of

the two CPUs. The three platforms are based on different

ISAs, thus a direct CPI comparison among them is not valid.

Nevertheless, this number is a good indication of the superior

resource utilization offered by reconfigurable devices.

In order to better understand the reason why SIMD opti-

mizations have such a different effect on the Core 2 Quad and

Cell platforms, we break down the function execution times in

Fig. 8. The SPEs in Cell processor spend approximately 75%
of their time executing inverse mapping in the HL optimization

case, i.e. before any low-level optimizations, whereas the Core

2 Quad spends only 18%. These percentages drop to 15% and

0.3% (due to inlining and compiler optimizations) respectively

after the LL optimizations are applied.

This runtime imbalance is mainly due to the superior
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Fig. 9. Average off-chip bandwidth requirements.

performance of the x86 floating point unit and the capability to

execute the elementary functions of eq. 1 in hardware, rather

than with software libraries, as in Cell. In that case, vector

optimizations are critical in improving the total execution time.

Note that in the pipelined FPGA module, the execution time

per frame is equal to the longest executing task, which is

the bicubic interpolation. In this case, Fig. 8 implies that the

low pass filters (both vertical and horizontal) and the inverse

mapping finish earlier and have to spin-wait before they start

with the next tile. The limiting factor in exploiting additional

ILP in the bicubic interpolation stage, in order to reduce its

latency, is the number of output ports in the pipeline SRAMs

between stage 1 and stage 2 of the FPGA.

B. Memory Performance

A key performance limiting factor in many streaming

applications is the off-chip bandwidth requirements. Fig. 9

depicts the amount of data transferred per second from main

memory to the chip for the three target architectures. The

amount of data transfers per frame is almost fully predictable.

Approximately 4.98 MBytes of input data need to be fetched,

in order to generate an output frame of 900 Kbytes which has

to be stored on disk or presented on screen. Inverse mapping

amortization across different frames may generate additional

traffic. If the combined capacity of outer-level caches - i.e. the

L2 for Core 2 Quad and all LSs for Cell BE - is not sufficient

to fully accommodate the working set for the computation of

a frame, the fractional coordinates, namely up to 1.32 MBytes

of additional data per frame, may also need to be transferred

from the main memory.

Fig. 10 depicts the off-chip data transfers per instruction

executed. At most 0.007 bytes need to be transferred from

the main memory for the execution of each instruction. This

proves both the effectiveness of 2D tiling in terms of data

reuse, and the compute intensity of the application.

The rate is significantly lower for the Core 2 Quad than for

the Cell BE, due to the larger combined outer-level cache of

the former (6MB L2 in Core 2 Quad vs 2MB LSs and 512

KB L2 in Cell).

For the Cell BE, Fig. 10 reveals that the amortization of the

inverse mapping cost results to more transfers per instruction.
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Fig. 10. Data transfers (bytes) from off-chip memory per instruction.The rates
reported have been observed when executing with the maximum concurrency
supported by each platform (4 threads on the Core 2 Quad, 8 SPEs on the
Cell BE). The results are indistinguishable when less execution contexts are
used.

This is expected, since the LSs cannot accommodate both the

input and output data for each frame, including the fractional

coordinates. As a consequence, the coordinates always need to

be transferred from the main memory on a tile-per-tile basis.

At a first glance the diagram also seems to indicate that the

Cell code is less memory efficient when the low-level opti-

mizations are applied. This is however not true; the observed

difference can be attributed to the significant reduction in the

number of instructions that comes with SIMDization and loop

unrolling.

It should be noted that the discussion in this subsection

refers to average memory bandwidth requirements. However

memory transfer requests often tend to be bursty, causing

stalls, should the memory subsystem prove incapable of ef-

ficiently serving the bursts. This issue is discussed in the

following subsection.

C. Analysis of stalling time

The number of stall cycles is a metric that quantifies exe-

cution delays due to either resource shortage or architectural

bottlenecks. Fig. 11 illustrates the total number of stall cycles

on the Core 2 Quad and the Cell BE under different degrees

of optimization. Apart from the totals, it also reports the stall

cycles due to two major delay factors, namely the interaction

with the memory subsystem and the mispredicted branches.

It has to be mentioned that other events, such as delayed by-

passes, DTLB misses or blocked loads, which also contribute

to the total number of stalls, are not reported individually in

the charts, since their individual contribution is less profound.

It can be easily observed that the Cell BE is, due to its

purposely simple architectural design, less forgiving to sub-

optimal software. The number of stall cycles is significantly

higher for the tiled version of the code, on the Cell BE than on

the Core 2 Quad. However, the low-level optimizations result

to the elimination of most stalls on the Cell BE. At the same

time, they reduce stall cycles by approximately 50% on the

Core 2 Quad.

The sophisticated branch predictor of the Intel processor
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Fig. 11. Stall cycles (total, branch related and memory related) for the Core
2 Quad and the Cell BE. The number of stalls is cumulative (from all active
execution contexts) and has been observed when executing with the maximum
concurrency supported by each platform (4 threads on the Core 2 Quad, 8
SPEs on the Cell BE). The results are indistinguishable when less execution
contexts are used.

manages to practically eliminate all stalls related to branch

mispredictions. On the contrary, the Cell BE does not have a

branch prediction unit. It predicts all branches as not taken -

unless explicitly hinted otherwise by software - and charges a

penalty of 20 cycles for mispredicted branches, whereas the

typical instruction latency is 2 to 7 cycles. It should be noted

that this penalty is always paid in the case of backward loop

branches. The low-level optimizations, and more specifically

loop unrolling and SIMDization, reduce the number of loop

iterations, and as a consequence the number of backward

branches. The branch-related stalls are further reduced (and

almost eliminated) by software hinting. A significant contribu-

tor of stall cycles is the interaction between the processor and

the memory hierarchy. Bursty memory access patterns may

introduce stalls due to conflicts for cache ports, or shortage

of slots in the load and store queues of the processor. The

problem is worse on the Cell BE, where the Local Store

is single-ported. SPE initiated requests may contend with

each other, as well as with DMA transfers. Once again, low-

level optimizations result to a significant reduction of memory

related stalls. Loop unrolling allows the production of more

efficient instruction schedules. Manual instruction scheduling,

especially in the case of Cell BE, also reduces conflicts in

cases where the compiler proves overly conservative.

DMA transfers between LSs and the main memory may

also introduce delays due to either contention for EIB chan-

nels, or due to the DMA transfer latency itself. Double

buffering proves very effective in overlapping these delays

with computation. The CPC tool reported a limited cumulative

number of stalls attributed to DMA transfers, which are

approximately 600 cycles in the worst case.

D. Development Cost

Development cost is increasingly recognized as a signifi-

cant component that needs to be considered when adopting

a new platform for application development. We measure

programming effort as one aspect in the comparison of the

programming models of the three platforms. Because it is

difficult to get accurate development-time statistics for coding

applications and also to measure the quality of code, we

use Lines-of-Code (LOC) as our primary metric to quantify

programming effort.

The initial single-threaded C version was approximately

800 lines of source code. The fully optimized Cell version

required an extra 1500 LOC, while the fully optimized x86

code required only 500 lines of extra code. The FPGA sDFG

was written using approximately 800 lines of assembly-like

instructions. Moreover, the FPGA implementation required

multiple time-consuming synthesis, place & route iterations

which should also be counted in the total development effort.

Based on these findings, the Core 2 Quad architecture seems

to have better programmability in general, whereas the Cell

processor has a slight advantage over the FPGA. However,

based on the total measured development time, we think that

designing and implementation of reconfigurable systems using

high level languages (an area of intense research the last few

years) will be very competitive in terms of development effort

compared to multicore and manycore systems.

VI. RELATED WORK

The attention of both high-performance and general-purpose

computing has lately turned to multicore systems, due to the

diminishing performance returns of increasing processor clock

frequency, and the associated power consumption and heat

dissipation problems. At the same time, hardware accelera-

tors - such as FPGAs, GPUs, or non-conventional multicore

architectures such as the Cell BE - are often used to improve

performance of computationally demanding algorithms or ap-

plications with execution time constraints.

Baker et al. describe the implementation of a matched

filter on an FPGA, the Cell BE and a GPU [4]. Similarly,

Thomas et al. implement a random number generator on a

CPU, GPU, FPGA and a massively parallel processor (MPP)

[26]. In [28] the authors describe the implementation of the

map-reduce programming model on FPGAs and GPUs and

in [17] they do the same for the Cell BE. The map-reduce

infrastructure is consecutively used for the implementation of

simple applications.

All the aforementioned papers focus on macroscopic met-

rics, such as speedup over a CPU and price / performance

or power / performance ratios. In this paper we analyze the

algorithm / hardware interaction using both macroscopic and

low-level performance metrics across different platforms. We

also identify and quantify the effects of optimizations both

within and across architectures. Our work is targeted towards

whole system performance instead of focusing on a specific

system block. The main drawback of less conventional archi-

tectures - such as the Cell BE, GPUs and FPGAs - compared

with general-purpose CPUs, is that algorithm implementation

is a significantly more labor-intensive task. Previous work

has focused on programming models and support to facilitate

implementations. CellSs [21] and [24] introduce programming

models, compiler and runtime support for task and data



management on the Cell BE. Sequoia [9] and RapidMind [20]

do the same for systems with explicitly managed memory

hierarchies, such as the Cell BE and GPUs.

VII. CONCLUSIONS

Modern conventional multicores and hardware accelerators

- such as the Cell BE, or FPGAs - offer unprecedented com-

putational power that allows the efficient execution of applica-

tions with high computational requirements and stringent time

constraints, which previously required high-performance com-

puting substrates or custom hardware (ASIC) implementations.

In this paper we presented the implementation of a real-time

image warping algorithm - with many real-world applications -

on three architectures: i) a conventional, homogeneous, Intel-

based multicore, ii) an heterogeneous multicore with SIMD

accelerator cores (Cell BE), and iii) an FPGA. We analyzed

and characterized the performance of the algorithm on all

underlying architectures using both macroscopic and low-level

performance metrics. We also applied a series of high- and

low-level optimizations and indentified their effect on both

performance and the interaction with the hardware.

We find that conventional multicores are not capable of

supporting real-time video distortion correction, at least not

with the currently commercially available core-counts per

package. More exotic architectures, such as the Cell BE and

FPGAs offer the necessary computational power, at the cost

of significantly higher development effort. This additional

effort can, however be partially alleviated by advanced tools,

development models and support environments that allow the

developer to focus on accurately expressing the algorithm,

rather than on low-level optimizations.
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