
Architectural and Compiler Support for Energy Reduction in the
Memory Hierarchy of High Performance Microprocessors*

Nikolaos Bellas Ibrahim Hajj, Constantine Polychronopoulos and George Stamoulist
Depxtment of Electrical & Computer Engineering

and the Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1308 West Main Street, Urbana, IL 61801

Abstract

In this paper we propose a technique that uses an ad-
ditional mini cache located between the I-Cache and
the CPU core, and buffers instructions that are nested
within loops and are continuously otherwise fetched from
the I-Cache. This mechanism is combined with code
modifications, through the compiler, that greatly sim-
plify the required hardware, eliminate unnecessary in-
structionfetching, and consequently reduce signal switch-
ing activity and the dissipated energy.

We show that the additionalcache, dubbed L-Cache,
is much smaller and simpler than the I-Cache when the
compiler assumes the role of allocating instructions in
it. Throughsimulation, we show that, for the SPECfp95
benchmarks, the I-Cache remains disabled most of the
time, and the “cheaper” extra cache is used instead. We
present experimental results that validate the effective-
ness of this technique, and present the energy gains for
most of the SPEC95 benchmarks.

1 Introduction

The problem of the wasted energy caused by unneces-
sary activity in various parts of the CPU during code
execution has traditionally been ignored in code opti-
mization and architecture design. Processor architects
and compiler writers are concerned with system perfor-
mance/throughput and they do little, if anything at all,
to eliminate energy/power dissipation at this level. Re-
searchers in the CAD community have started tackling
the problem of power minimization through compiler
transformations, yet this process is still in its infancy.

An increasing number of architecture features have
been exposed to the compiler to enhance performance.
The advantage of this cooperation is that the compiler
can generate code that exploits the characteristics of
the machine and avoids expensive stalls. We believe
that such schemes can also be applied for power/energy

‘This work was supported by Intel Corp., Santa Clara,
CA

+Intel Corporation, Santa Clara, CA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ISLPED98, Monterey, CA, USA
0 1998 ACM I-58113.059.7/98/0008..$5.00

optimizationby exposing the memory hierarchy features
in the compiler.

We are targeting the activity caused by the I-Cache
subsystem which is one of the main power consumers
in most of today’s microprocessors. The on-chip Ll
and L2 caches of the 21164 DEC Alpha chip dissipate
25% of the total power of the processor [I]. In [2], a
power analysis of the DLX processor shows that the
I-Cache memory and the I-Cache controller are respon-
sible for almost 50% of the total power consumption
for some programs. The StrongARM SA-110 processor
from DEC, which targets specifically low power applica-
tions, dissipates about 27% of the power in the I-Cache.

The paper is organized as follows: In section 2,
we review related work. In section 3, we outline our
approach and give some motivation. In section 4 we
present the steps proposed for compiler enhancements,
and in section 5 we describe the hardware modifica-
tions. Power estimation and experimental evaluations
are given in sections 6 and 7, respectively. Section 8
gives conclusions.

2 Related Work

There has been little research done in the field of software-
based power minimization. In [3][4], a brief review of
some compiler techniques that are of interest in the
power minimization arena is presented. As expected,
standard compiler optimizations, such as loop unrolling,
software pipelining etc., are also beneficial for the re-
duction of energy since they reduce the running time of
the code. In [5] and in subsequent papers, a method-
ology that attempts to relate the power consumed by a
microprocessor to the software that executes on it, is de-
scribed. This is different from the often used “bottom-
UP” approach in which power models are built using
a layout, gate or RT-level model of each unit and the
power consumption of the whole chip is the sum of the
power consumed by each component unit. The authors
characterize each instruction of a given microprocessor
in terms of the power it dissipates when it is executed.

The problem of register allocation, which is central
in the code generation phase of a compiler, is solved aim-
ing at the minimization of switching activity in [6][7].
In [7], the problem of optimizing the energy for the vari-
able allocation in registers and memory is solved using
a minimum cost network flow.

The impact of memory hierarchy in minimizingpower
consumption, and the exploration of data-reuse so that
the power required to read or write data in the memory
is reduced is addressed in [8]. The same authors propose

70

a novel way to organize complex data structures in the
memory hierarchy, so that a cost function is minimized.
The goal here is to reduce power when complex data
structures are manipulated in various ways [Y]. In [IO],
a mechanism is described. which enables the by-pass of
the I-Cache by storing the instructions of a loop in an
extra buffer. That method makes a series of restrictive
assumptions such as all the basic blocks within a loop
are executed upon entry in the loop, and all the loops
are small enough to be accomodated in the extra buffer.
Our method is applicable to any type of code without
any rest.rictions.

In [I 11, an extra, smaller cache is added between the
CPIJ and the Ll caches. The extra caches, called filter
caches in [ll], deliver large energy gains at the expense
of large miss rates. That scheme is better suited for
embedded applications which can trade off energy re-
duction for performance degradation, but is probably
unacceptable for the high-end processor market. Our
method also uses an extra cache, but it almost elimi-
nates the performance overhead by having the compiler
exploit the new memory hierarchy, and eliminate un-
necessary misses in the extra cache.

3 Motivation and Approach

During a loop execution, the I-Cache unit frequently
repeats its previous tasks over and over again: if a pro-
gram is caught in a loop, the I-Cache unit fetches the
same instructions to the CPU core, and the ID decodes
the very same instructions. This approach works for
performance but it unnecessarily performs more work,
and thus it dissipates more power than really needed.

All the instructions that belong to a frequently exe-
cuted loop can be fetched only the first time the thread
of control passes through them. Subsequently, they can
be stored in a special internal cache (the L-Cache) which
is placed between the I-Cache and the CPU core. Each
time the IF unit attempts to fetch an instruction from
within the loop, the instruction that resides in this cache
can be used instead. In the ideal case, the I-Cache unit
can be shut down for the duration of the loop, as it does
not need to operate, and its energy dissipation can be
saved.

The approach advocated in our scheme relies on the
use of profile data from previous runs to select the best
instructions to be cached. The unit of allocation is the
basic block, i.e. an instruction is placed in the L-Cache
only if it belongs to a selected basic block. After selec-
tion, the compiler lays out the target program so that
the selected blocks are placed contiguously before the
non-placed ones. The main effort of the compiler fo-
cuses on placing the selected basic blocks in positions
so that two blocks that. need to be in the L-Cache at the
same time, do not map in the same L-Cache location.

The compiler maximizes the number of basic blocks
that can be placed in the L-Cache by determining their
nesting, and using their execution profile. A basic block,
as opposed to the whole loop, is the unit of allocation in
the L-Cache because, in most cases, the loop contains
basic blocks which are seldom executed during typical
runs. These are blocks that take care of an exception
condition or do error handling. If the whole loop was t,o
be allocated in the L-Cache, these basic blocks would
occupy space but hardly ever used.

4 Compiler Enhancements

The first technique we are using is function inlining. In-
lining replaces the function call with the body of the

called function [l2] [13]. This step aims at exposing
izs many basic blocks as possible in frequently executed
routines. Our scheme assumes that no interprocedu-
ral basic block allocation can take place, i.e.. at any
given time, only basic blocks that belong to the same
function can reside in the L-Cache. This precaution is
taken since the compiler cannot know a-priori where the
linker/loader will place the functions in the memory ad-
dress space. Hence, each function in the source code is
considered separately. Only functions which contribute
a large number of execution cycles are selected for in-
lining.

After inlining, the code is laid out so that the most
frequently executed basic blocks are placed in the L-
Cache. In order to do that, we need to place these blocks
contiguously in memory so that they do not overlap.
Consider the following code :

do 100 i=l, n
Bl ; 8 basic block

if (error) then

error handling;
B2; It basic block

100 cant inue

When the code is compiled, the basic blocks Bl and
B2 will be separated by the code for the if-statement
in the final layout. If the L-Cache size is smaller than
the sum of the sizes of Bl, B2 and the if-statement,
but larger than the sum of the sizes of Bl and B2, the
blocks Bl and 82 will overlap when stored in the L-
Cache. Therefore, we need to place Bl and B2 one
after the other and leave the if-statement at the end.

Figure 1: Block placement overview

This is usually the case in loops. Blocks that are ex-
ecuted for every iteration are intermingled with blocks
that are seldom executed. We identify such cases and
move the infrequently executed code away so that the
normal flow of control is in a straight-line sequence.
This entails the insertion of extra branch and jump in-
structions to retain the original semantics of the code.
The algorithm is outlined in Fig. 1.

The object code and profile data for the original
program are used as input to our tool. The output

71

(L)

Figure 3: First step of block placement

produced is an equivalent object code in which some
of the basic blocks have been reordered and placed in
specific memory locations.

The control flow graph is built for each function of
the original program in step (1). Note that the pro-
gram can be either the original or the one that has been
created after inlining.

Next, in the same step, the tool finds the loops
and the nesting for every basic block [14]. Basic blocks
within loops that contain function calls are not ronsid-
ered for placement. A LabelSet for every basic block
B is the set of loops t,o which B belongs. If B is not
nested, LabclSet(B) = {). If B is enclosed in loops L, ,

Lz and LJ, then LabelSet = {L~,Lz,LJ}. These
are the same sets used in [15]. In Fig. 2, an example is
given to describe the data structures used, and the infor-
mation produced during the first step of the algorithm.
A loop nesting is shown in 2(a), the corresponding CFG
in 2(b), and the LabelSets in 2(c).

In step (2), we construct a tree using the LabelSets
as follows: the nodes are the different LabelSets found in
the previous step. There is an arc between two such La-
b&jets < 11, /2 > if II is a proper subset of /2 (Fig. 3a).
This data structure is a tree, called LabelTree, since each
basic block cannot have two different nestings.

Step (3) (shown in Fig. 4) takes over the main part
of the allocation algorithm.

The algorithm scans the basic blocks in descending
order of execution frequency. Hence, the most Impor-
tant blocks are the first to be considered and have a
greater chance to be placed in the L-Cache. For every
node in the LabelTree we designate a size, which de-
notes the position in the L-Cache where a basic block
of the node should be placed in every step of the al-
gorithm. The size should always be less than or equal
to the cache size or the current basic block cannot be
placed in the L-Cache.

The first step is to propagate the effect of the size of
the basic block under consideration towards the leaves
of the tree rooted at node N (DOWN-TRAV()). Sup-
pose, for example, that the current basic block is B3

Figure 3: LabelTree

in Fig. 3a. Both nodes B1 and Bz have already been
considered and placed in the L-Cache. The size of B3
added to the maz(size(B1),size(B*)) should not ex-
ceed the cache size C. If this is the case, B3 is placed
in the L-Cache. In other words, B3 will remain in the
L-Cache while B1 and B2 are executed, and it will not
be replaced. This step aims at placing 83 in a different
cache position from both B1 and Bz. If Ba overlapped
with them, it would have to be fetched from the I-Cache
instead, since it would be replaced by B1 after being ex-
ecuted. This technique maximizes the number of basic
blocks that are placed in the cache and avoids conflicts
between them.

If maz(size(B1),size(Bz))+size(B3) > C, theplace
ment of B3 is not possible, and the algorithm continues
with the next basic block.

Subsequently, the algorithmcalls UP-TRAV() which
propagates the effect of the new placement to the outer
blocks. This, in effect, reduces the chance of the outer
blocks to be placed in the L-Cache, which is not both-
ering at all, since we are mostly interested for the inner,
most frequently executed blocks. In Fig. 3a, the an-
notated LabelTree for the example in Fig. 2 is given
with the final placement of the basic blocks in 3b. All
the blocks except Bg are placed in the L-Cache (the
positions are in the parentheses-C is the size of the L-
Cache).

The algorit.hm is greedy, because it tries to accu-
mulate as many important basic blocks as possible in
the L-Cache. In the case where the most frequently
executed basic blocks are the most deeply nested, the
algorithm will succeed in putting all of them in the L-
Cache provided that the size of each one is smaller than
the cache size.

A basic block will not be selected for placement in
algorithm Allocate0 if any of the following is true:

. It belongs to a library and not to a user function.
We follow the convention that only user functions
are candidates for placement since they have the
tightest and deepest loops.

. The algorithm finds that the basic block was too
large to fit in the L-Cache. This can be either
because the size of the block is larger than the
cache size, or because it cannot fit at the same
time with other, more important, basic blocks.

. Its execution frequency is smaller than a thresh-
old, and is thus deemed unimportant.

. It is not nested in a loop. There is no point in
placing such a basic block in the L-Cache since it

72

Figure 4: Placement Algorithm

will be executed only once for each invocation of
its function.

. Even if its execution frequency is large, its eze-
cution density might be small. For example, a
basic block that is located in a function which is
invoked a lot of times might have a large execu-
tion frequency, but it might only be executed few
times for every function invocation. We define the
execution density of a basic block as the ratio of
the number of times it is executed to the number
of times that the function in which it belongs, is
invoked.

. Finally, a very small basic block is not placed in
the L-Cache even if it passes all the other require-
ments. The extra branch instructions that might
be needed to link it to its successor basic blocks
will be an important overhead in this case.

A basic block is placed in the L-Cache only if it is
expected to stay there for a long period of time without
gett,ing replaced. This, in effect, decouples the com-
munication between the I-Cache and the L-Cache, and
reduces the traffic between them.

Step (4) in our methodology is the placement of the
basic blocks in the global address space. The algorithm
takes as input the placement of the basic blocks with
respect to the L-Cache and tries to minimize the neces-
sary space as much as possible.

Finally, in step (5), the tool performs the actuallay-
out of the code, and restructures t,he CFG. It starts by

Figure 5: LCache organization

placing the basic blocks that were selected in step (3).
Those blocks are placed at the beginning, in the mem-
ory locations assigned to them in step (4). Then, all the
other basic blocks are placed contiguously. Branches are
placed at the end of the blocks, if needed, to sustain the
functionality of the code. These branches int,roduce a
performance overhead with respect to the initial code.
As we will see in the experimental evaluation section,
the overhead is small.

5 Hardware modifications

The extra hardware needed to implement our scheme is
shown in Fig. 5.

The functionality of the L-Cache is as follows: The
Program Coz~nier (PC) is presented to the L-Cache tag
at the beginning of the clock cycle. The L-Cache tag
will only be enabled if the “blocked-purl” signal is on.
This signal is generated by the Instruction Fetch Unit
(IFU), and its meaning is explained in the following
paragraphs. In that case, the comparator checks for
a match, and if it finds one, it instructs the multiplexer
to drive the contents of the L-Cache in the data path.
The I-Cache is disabled.

In case of a L-Cache miss (“LCache-Hit” is off),
the I-Cache controller activates the I-Cache at the next
clock cycle, and de-activates the data portion of the L-
Cache. We should emphasize at this point, that the
L-Cache and the I-Cache are not accessed in parallel.
The I-Cache is accessed if the L-Cache misses using an
extra clock cycle, whereas the L-Cache is accessed only
when “blocked-part” = on. If “blocked-part” = off, the
I-Cache controller activates the I-Cache without waiting
for the “LCache-Hit” signal.

Recall that the compiler has already laid out the
code so that the basic blocks that are destined for the
L-Cache are placed before the others. A 32.bit regis-
ter is used to hold the address of the first non-placed
block in the main memory layout. If the PC has a value
less than that address, the 32.bit comparator will set
“blocked-part” = on, else this signal will be set to off.

This way, the machine can figure out which portion of
the code executes with only an extra comparison.

This simplification is only possible because of the
way that the code has been restructured in the compi-
lation phase. Notice also that if “blocked-part” = on, the
L-Cache can still miss: this will happen, for example,
when the basic block to be placed in the L-Cache has
not been executed before, i.e. the first time the thread
of control passes through it. Therefore, the tag portion

73

Table 1: L-Cache utilization statistics : percent of instructions fetched from the L-Cache

of the L-Cache is still needed. In that case, the I-Cache
will provide the new instruction to the data path, as
well as to the L-Cache.

The block size of the L-Cache is one word. This
simplifies the transfer of data from the I-Cache to the
L-Cache in case of an L-Cache miss. Since our algorithm
selects a basic block only if it is expected to reside in the
L-Cache for a long period of time, the one-word block
size does not severely affect the L-Cache hit rates.

Finally, we extend the instruction set, and we add a
new instruction called “allot” which marks the bound-
ary between the placed and the non-placed code. This
extra instructions is used to store the address of the
first non-placed instruction in the 32-bit register, as de-
scribed above, and is the first instruction to be executed
upon entry in a procedure.

6 Power Estimation

We have deceloped our cache energy models based on [16]
It is a transistor level model which uses the run-time
characteristics of the cache to estimate the energy dis-
sipation of its main components. A 0.8um technology
with 3.3 Volts power supply is assumed. The cache en-
ergy is a function of the cache complexity (cache size,

block size, and associativity), its internal organization

(banking), and the run time statistics (mumber of ac-
cesses, hits, misses, average number of bits read, input
switching probabilities). The model is used for both the
I-Cache and the L-Cache.

The run-time statistics are extracted by simulating
traces of the SPECS5 benchmarks in a cache simulator.
We used the SpeedShop [17] set of tools from SGI to
gather the profile data and generate the dynamic in-
struction traces that were fed into our cache simulator.

7 Experimental Evaluation

The SPEC95 benchmarks were compiled with the MIPS
compiler. First, we ran the benchmarks to collect the
profile data. The data were used to drive the inline and
the block placement heuristics. The tool, along with
the restructuring of the body of the program, selected
various statistics regarding the quality of the generated
code. The utilization statistics of the L-Cache are given
in Table 1. The percentage of the dynamically executed
instructions that are taken from the L-Cache is given
for every benchmark, and for 6 different sizes of the
L-Cache. An L-Cache with capacity n in&r. has size
4n bytes. The I-Cache is 16KB, direct-mapped, with
a block size of 32 bytes. A basic clock was selected

Benchmark

tomcatv
swim
SU2COr

hydroZd
mgnd
aPPlu
turb3d
7lp
wave5
FP aver.

?P
m88ksim
COlllpR.SS
Ii
INT aver.

L-CO
64 1nstr.

0.2%
0.0%
0.1%
3.8%
0.9%
8.0%
1.4%
2.2%
4.0%

--m%
l.sK

2.3%
2.3%
0.0%

----cm

e szze
128 Instr.

0.0%
0.0%
1.0%
5.2%
0.9%

24.0%
3.7%
4.0%
2.7%
4.6%
1.9%
2.3%
2.3%
0.0%
1.5%

Table 2: Execution time overhead

for placement only if it had execution time larger than
0.01% of the execution time of the program, had at least
five instructions, and an execution density of at least
five.

This percentage is high for all the SPECfp95 bench-
marks, reflecting the efficacy of our approach for these
programs. As expected, a larger L-Cache is more suc-
cessful in storing basic blocks and therefore in disabling
the I-Cache for a larger period of time. In some cases,
even a small L-Cache is capable of effectively shutting-
down the I-Cache for the duration of the program exe-
cution. The law of diminishing returns applies here as
well, since a very large L-Cache (1024 instr.) is usually
as succesful as smaller ones. In most cases, a 256 instr.
L-Cache approximates the performance of an infinite
size L-Cache.

On the other hand, most integer benchmarks do not
have a large number of basic blocks that can be cached
in the L-Cache. They are also insensitive to the cache
size variation, which is to be expected since the basic
blocks of integer programs are generally small. Most of
the basic blocks of the SPECint95 benchmarks are not
nested, or, they are nested within a loop that contains
a function call; hence, they cannot be included in the
L-Cache.

The execution time overhead is given in Table 2 only
for L-Caches with size 256 and 512 bytes. The overhead
is due to the insertion of jump instructions at the end
of the basic blocks which have been selected from the
algorithm, and the non-perfect hit rate in the L-Cache.
The overhead has maximum value 24%, but is usually
less than 4.0%.

Finally, the energy savings are depicted in Fig. 6.

74

Figure 6: Normalized energy savings for SPEC95

benchmarks

The energy dissipation of the modified scheme (L-Cache
and I-Cache) is normalized with respect to the energy
dissipation of the original scheme (only I-Cache). The
2 bars represent the savings for the schemes with L-
Caches of 256 and 512 bytes, respectively. In both
graphs, the original scheme has an energy dissipation
of 1.

In the modified scheme, both caches will contribute
to the total energy dissipation. Their individual con-
tribution is shown with dark color for the I-Cache and
light color for the L-Cache. The sum of the individ-
ual contributions is the total energy consumption of the
modified scheme with respect to the original. For exam-
ple, suZcor has a energy consumption which is around
30% of that of the original scheme when the L-Cache is
128 instr. large. This is due to the L-Cache (15%) and
the I-Cache (15%).

An optimal L-Cache has size of 128 instr. (i.e. 0.5
KB) for the FP benchmarks. Small caches are not very
succesful in disabling the I-Cache. Larger caches, on
the other hand, have larger energy dissipation per ac-
cess. and do not accomodate many more basic blocks
than average sized ones. The energy dissipation drops
as the size increases, but it goes up again for the larger
caches. On the average, the new scheme dissipates only
45% of the energy of the original scheme for the FP
benchmarks, when a 128 instr. L-Cache is included.
Notice also that the new scheme never dissipates more
energy than the original one.

8 Conclusions

This paper presented a paradigm for hardware/compiler
co-design that targets activity minimizationin a proces-
sor. These techniques are orthogonal to the standard
circuit or gate level techniques that are traditionally
used by designers to reduce energy and can therefore be
used to further reduce energy consumption without im-
pairing performance. This paradigm describes a more
judicious use of the I-Cache unit of a processor when
the Row of control is caught within a loop. The com-
piler is given the responsibility to restructure the code.
The aim is to minimize the overlap between basic blocks
that are selected to be placed in an extra cache.

The gains from this modifications can be very im-
portant for machines with a very high energy consump-
tion in the I-Cache unit. The savings are dependent on
the structure of the program, and can be maximized for

scientific computations with regular loop patberns.

References

[l] J Edmondon, “Internal Organization of the Alpha
21164, a 300-MHz 64.bit Quad-issue CMOS RISC Mi-
croprocessor,” Dzgztal Technzcnl Journal, vol. 7, no. 1,
pp 119-135,1995.

[2] A. Kalambur and M. J. Irwin, “An Extended Address-
ing Mode For Low Power,” in Internatzonal Sympo-
stum of Low Power Electronzcs and Deszgn, pp. 208-
213, IEEE/ACM, Aug. 1997.

[3] V. Tiwarl, S M&k, and A. Wolfe, “Compilation Tech-
niques for Low Energy: An Overview,” in Proceedzngs
of the IEEE L’ymposzum on Low Power Electronzcs,
(San Diego, CA), Oct. 1994.

[4] H. Mehta, R. M Owens, M. J. Irwm, R. Chen, and
D. Ghosh, “Techmques for Low Energy Software,” in
Internataonal Symposzum of Low Power Electronzcs
and Desagn, pp 72-75, IEEE/ACM, Aug. 1997.

[5] V. Tlwarl, S. M&k, and A. Wolfe, “Power Analysis of
Embedded Software A First Step Towards Software
Power Minimizatmn,” IEEE Transactzons on VLSI
Systems, vol. 2, pp. 437-445, Dec. 1994.

[6] J. Chang and M Pedram, “Register Allocation and
Bindlng for Low Power,” in Deszgn Automataon Con-
ference, pp 29-35, IEEE/ACM, 1995.

[7] C Gebotys, “Low Energy Memory and Register Allo-
cation Using Network Flow,” in Deszgn Automatzon
Conference, pp. 435-440, IEEE/ACM, June 1997.

[B] J. Diguet, S. Wuytack, F. Catthoor, and H. D. Man,
“Formalized Methodology for Data Reuse Exploration
m Hierarchical Memory Mappmgs,” in Internatzonai
Symposaum of Low Power Electronacs nnd Deszgn,
pp. 30-35, IEEE/ACM, Aug. 1997.

[9] S. Wuytack, F. Catthoor, and H. DeMan, “Transform-
ing Set Data Types to Power Optimal Data Struc-
tures,” IEEE Transcactzons on Computer-Azded De-
szgn, vol. 15, pp. 619%629, June 1996.

[lo] R. Bajwa, M Hwaki, H. Kojima, D. Gorny, K. Nltta,
A. Shrldhar, K Seki, and K. Sasaki, “Instruction
Buffermg to Reduce Power in Processors for Signal
Processing,” IEEE Transactzons on VLSI Systems,
vol 5, pp. 417-424, Dec. 1997.

[11] Johnson Kin, Munish Gupta and William Mangione-
Smith, “The Filter Cache: An Energy Efficient Mem-
ory Structure,” in IEEE Internatzonal Synposzum on
Mzwoarchztecture, pp 184-193, Dec. 1997.

[12] S. McFarling, “Procedure Merging with Instruction
Caches,” in Conference on Programmzng Language
Deszgn and Implementatzon, pp. 71-79, ACM SIG-
PLAN, June 1991

(131 A. Ayers, R. Gottlieb, and R. Schooler, “Aggressive
Inlining,” in Conference on Progranmzng Language
Deszgn and Implementatzon, pp 134~145, ACM SIG-
PLAN, June 1997.

[14] A. Aho, R. Sethi, and J. Ullman, Compzlers: Przncz-
pies, Technzques and Tools Addison-Wesley, 1986.

[15] S. McFarling, “Program Optimization for Instruction
Caches,” in Proceedzngs of the Internatzonal Conjer-
ence on Archztecturnl Support for Programmzng Lan-
guages and Operatzng Systems, pp. 16-27, ACM SIG-
PLAN, June 1989.

[16] S. Wilson and N. Jouppl, “An Enhanced Access and
Cycle Time Model for On-Chip Caches,” DEC WRL
Technical Report 93/5, July 1994.

[17] SpeedShop User’s Guzde Silicon Graphics Inc., 1996

75

