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Abstract 

In this paper we propose a technique that uses an ad- 
ditional mini cache located between the I-Cache and 
the CPU core, and buffers instructions that are nested 
within loops and are continuously otherwise fetched from 
the I-Cache. This mechanism is combined with code 
modifications, through the compiler, that greatly sim- 
plify the required hardware, eliminate unnecessary in- 
structionfetching, and consequently reduce signal switch- 
ing activity and the dissipated energy. 

We show that the additionalcache, dubbed L-Cache, 
is much smaller and simpler than the I-Cache when the 
compiler assumes the role of allocating instructions in 
it. Throughsimulation, we show that, for the SPECfp95 
benchmarks, the I-Cache remains disabled most of the 
time, and the “cheaper” extra cache is used instead. We 
present experimental results that validate the effective- 
ness of this technique, and present the energy gains for 
most of the SPEC95 benchmarks. 

1 Introduction 

The problem of the wasted energy caused by unneces- 
sary activity in various parts of the CPU during code 
execution has traditionally been ignored in code opti- 
mization and architecture design. Processor architects 
and compiler writers are concerned with system perfor- 
mance/throughput and they do little, if anything at all, 
to eliminate energy/power dissipation at this level. Re- 
searchers in the CAD community have started tackling 
the problem of power minimization through compiler 
transformations, yet this process is still in its infancy. 

An increasing number of architecture features have 
been exposed to the compiler to enhance performance. 
The advantage of this cooperation is that the compiler 
can generate code that exploits the characteristics of 
the machine and avoids expensive stalls. We believe 
that such schemes can also be applied for power/energy 
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optimizationby exposing the memory hierarchy features 
in the compiler. 

We are targeting the activity caused by the I-Cache 
subsystem which is one of the main power consumers 
in most of today’s microprocessors. The on-chip Ll 
and L2 caches of the 21164 DEC Alpha chip dissipate 
25% of the total power of the processor [I]. In [2], a 
power analysis of the DLX processor shows that the 
I-Cache memory and the I-Cache controller are respon- 
sible for almost 50% of the total power consumption 
for some programs. The StrongARM SA-110 processor 
from DEC, which targets specifically low power applica- 
tions, dissipates about 27% of the power in the I-Cache. 

The paper is organized as follows: In section 2, 
we review related work. In section 3, we outline our 
approach and give some motivation. In section 4 we 
present the steps proposed for compiler enhancements, 
and in section 5 we describe the hardware modifica- 
tions. Power estimation and experimental evaluations 
are given in sections 6 and 7, respectively. Section 8 
gives conclusions. 

2 Related Work 

There has been little research done in the field of software- 
based power minimization. In [3][4], a brief review of 
some compiler techniques that are of interest in the 
power minimization arena is presented. As expected, 
standard compiler optimizations, such as loop unrolling, 
software pipelining etc., are also beneficial for the re- 
duction of energy since they reduce the running time of 
the code. In [5] and in subsequent papers, a method- 
ology that attempts to relate the power consumed by a 
microprocessor to the software that executes on it, is de- 
scribed. This is different from the often used “bottom- 
UP” approach in which power models are built using 
a layout, gate or RT-level model of each unit and the 
power consumption of the whole chip is the sum of the 
power consumed by each component unit. The authors 
characterize each instruction of a given microprocessor 
in terms of the power it dissipates when it is executed. 

The problem of register allocation, which is central 
in the code generation phase of a compiler, is solved aim- 
ing at the minimization of switching activity in [6][7]. 
In [7], the problem of optimizing the energy for the vari- 
able allocation in registers and memory is solved using 
a minimum cost network flow. 

The impact of memory hierarchy in minimizingpower 
consumption, and the exploration of data-reuse so that 
the power required to read or write data in the memory 
is reduced is addressed in [8]. The same authors propose 
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a novel way to organize complex data structures in the 
memory hierarchy, so that a cost function is minimized. 
The goal here is to reduce power when complex data 
structures are manipulated in various ways [Y]. In [IO], 
a mechanism is described. which enables the by-pass of 
the I-Cache by storing the instructions of a loop in an 
extra buffer. That method makes a series of restrictive 
assumptions such as all the basic blocks within a loop 
are executed upon entry in the loop, and all the loops 
are small enough to be accomodated in the extra buffer. 
Our method is applicable to any type of code without 
any rest.rictions. 

In [I 11, an extra, smaller cache is added between the 
CPIJ and the Ll caches. The extra caches, called filter 
caches in [ll], deliver large energy gains at the expense 
of large miss rates. That scheme is better suited for 
embedded applications which can trade off energy re- 
duction for performance degradation, but is probably 
unacceptable for the high-end processor market. Our 
method also uses an extra cache, but it almost elimi- 
nates the performance overhead by having the compiler 
exploit the new memory hierarchy, and eliminate un- 
necessary misses in the extra cache. 

3 Motivation and Approach 

During a loop execution, the I-Cache unit frequently 
repeats its previous tasks over and over again: if a pro- 
gram is caught in a loop, the I-Cache unit fetches the 
same instructions to the CPU core, and the ID decodes 
the very same instructions. This approach works for 
performance but it unnecessarily performs more work, 
and thus it dissipates more power than really needed. 

All the instructions that belong to a frequently exe- 
cuted loop can be fetched only the first time the thread 
of control passes through them. Subsequently, they can 
be stored in a special internal cache (the L-Cache) which 
is placed between the I-Cache and the CPU core. Each 
time the IF unit attempts to fetch an instruction from 
within the loop, the instruction that resides in this cache 
can be used instead. In the ideal case, the I-Cache unit 
can be shut down for the duration of the loop, as it does 
not need to operate, and its energy dissipation can be 
saved. 

The approach advocated in our scheme relies on the 
use of profile data from previous runs to select the best 
instructions to be cached. The unit of allocation is the 
basic block, i.e. an instruction is placed in the L-Cache 
only if it belongs to a selected basic block. After selec- 
tion, the compiler lays out the target program so that 
the selected blocks are placed contiguously before the 
non-placed ones. The main effort of the compiler fo- 
cuses on placing the selected basic blocks in positions 
so that two blocks that. need to be in the L-Cache at the 
same time, do not map in the same L-Cache location. 

The compiler maximizes the number of basic blocks 
that can be placed in the L-Cache by determining their 
nesting, and using their execution profile. A basic block, 
as opposed to the whole loop, is the unit of allocation in 
the L-Cache because, in most cases, the loop contains 
basic blocks which are seldom executed during typical 
runs. These are blocks that take care of an exception 
condition or do error handling. If the whole loop was t,o 
be allocated in the L-Cache, these basic blocks would 
occupy space but hardly ever used. 

4 Compiler Enhancements 

The first technique we are using is function inlining. In- 
lining replaces the function call with the body of the 

called function [l2] [13]. This step aims at exposing 
izs many basic blocks as possible in frequently executed 
routines. Our scheme assumes that no interprocedu- 
ral basic block allocation can take place, i.e.. at any 
given time, only basic blocks that belong to the same 
function can reside in the L-Cache. This precaution is 
taken since the compiler cannot know a-priori where the 
linker/loader will place the functions in the memory ad- 
dress space. Hence, each function in the source code is 
considered separately. Only functions which contribute 
a large number of execution cycles are selected for in- 
lining. 

After inlining, the code is laid out so that the most 
frequently executed basic blocks are placed in the L- 
Cache. In order to do that, we need to place these blocks 
contiguously in memory so that they do not overlap. 
Consider the following code : 

do 100 i=l, n 
Bl ; 8 basic block 

if (error) then 

error handling; 
B2; It basic block 

100 cant inue 

When the code is compiled, the basic blocks Bl and 
B2 will be separated by the code for the if-statement 
in the final layout. If the L-Cache size is smaller than 
the sum of the sizes of Bl, B2 and the if-statement, 
but larger than the sum of the sizes of Bl and B2, the 
blocks Bl and 82 will overlap when stored in the L- 
Cache. Therefore, we need to place Bl and B2 one 
after the other and leave the if-statement at the end. 

Figure 1: Block placement overview 

This is usually the case in loops. Blocks that are ex- 
ecuted for every iteration are intermingled with blocks 
that are seldom executed. We identify such cases and 
move the infrequently executed code away so that the 
normal flow of control is in a straight-line sequence. 
This entails the insertion of extra branch and jump in- 
structions to retain the original semantics of the code. 
The algorithm is outlined in Fig. 1. 

The object code and profile data for the original 
program are used as input to our tool. The output 
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(L) 

Figure 3: First step of block placement 

produced is an equivalent object code in which some 
of the basic blocks have been reordered and placed in 
specific memory locations. 

The control flow graph is built for each function of 
the original program in step (1). Note that the pro- 
gram can be either the original or the one that has been 
created after inlining. 

Next, in the same step, the tool finds the loops 
and the nesting for every basic block [14]. Basic blocks 
within loops that contain function calls are not ronsid- 
ered for placement. A LabelSet for every basic block 
B is the set of loops t,o which B belongs. If B is not 
nested, LabclSet( B) = {). If B is enclosed in loops L, , 

Lz and LJ, then LabelSet = {L~,Lz,LJ}. These 
are the same sets used in [15]. In Fig. 2, an example is 
given to describe the data structures used, and the infor- 
mation produced during the first step of the algorithm. 
A loop nesting is shown in 2(a), the corresponding CFG 
in 2(b), and the LabelSets in 2(c). 

In step (2), we construct a tree using the LabelSets 
as follows: the nodes are the different LabelSets found in 
the previous step. There is an arc between two such La- 
b&jets < 11, /2 > if II is a proper subset of /2 (Fig. 3a). 
This data structure is a tree, called LabelTree, since each 
basic block cannot have two different nestings. 

Step (3) (shown in Fig. 4) takes over the main part 
of the allocation algorithm. 

The algorithm scans the basic blocks in descending 
order of execution frequency. Hence, the most Impor- 
tant blocks are the first to be considered and have a 
greater chance to be placed in the L-Cache. For every 
node in the LabelTree we designate a size, which de- 
notes the position in the L-Cache where a basic block 
of the node should be placed in every step of the al- 
gorithm. The size should always be less than or equal 
to the cache size or the current basic block cannot be 
placed in the L-Cache. 

The first step is to propagate the effect of the size of 
the basic block under consideration towards the leaves 
of the tree rooted at node N (DOWN-TRAV()). Sup- 
pose, for example, that the current basic block is B3 

Figure 3: LabelTree 

in Fig. 3a. Both nodes B1 and Bz have already been 
considered and placed in the L-Cache. The size of B3 
added to the maz(size(B1),size(B*)) should not ex- 
ceed the cache size C. If this is the case, B3 is placed 
in the L-Cache. In other words, B3 will remain in the 
L-Cache while B1 and B2 are executed, and it will not 
be replaced. This step aims at placing 83 in a different 
cache position from both B1 and Bz. If Ba overlapped 
with them, it would have to be fetched from the I-Cache 
instead, since it would be replaced by B1 after being ex- 
ecuted. This technique maximizes the number of basic 
blocks that are placed in the cache and avoids conflicts 
between them. 

If maz(size(B1),size(Bz))+size(B3) > C, theplace 
ment of B3 is not possible, and the algorithm continues 
with the next basic block. 

Subsequently, the algorithmcalls UP-TRAV() which 
propagates the effect of the new placement to the outer 
blocks. This, in effect, reduces the chance of the outer 
blocks to be placed in the L-Cache, which is not both- 
ering at all, since we are mostly interested for the inner, 
most frequently executed blocks. In Fig. 3a, the an- 
notated LabelTree for the example in Fig. 2 is given 
with the final placement of the basic blocks in 3b. All 
the blocks except Bg are placed in the L-Cache (the 
positions are in the parentheses-C is the size of the L- 
Cache). 

The algorit.hm is greedy, because it tries to accu- 
mulate as many important basic blocks as possible in 
the L-Cache. In the case where the most frequently 
executed basic blocks are the most deeply nested, the 
algorithm will succeed in putting all of them in the L- 
Cache provided that the size of each one is smaller than 
the cache size. 

A basic block will not be selected for placement in 
algorithm Allocate0 if any of the following is true: 

. It belongs to a library and not to a user function. 
We follow the convention that only user functions 
are candidates for placement since they have the 
tightest and deepest loops. 

. The algorithm finds that the basic block was too 
large to fit in the L-Cache. This can be either 
because the size of the block is larger than the 
cache size, or because it cannot fit at the same 
time with other, more important, basic blocks. 

. Its execution frequency is smaller than a thresh- 
old, and is thus deemed unimportant. 

. It is not nested in a loop. There is no point in 
placing such a basic block in the L-Cache since it 
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Figure 4: Placement Algorithm 

will be executed only once for each invocation of 
its function. 

. Even if its execution frequency is large, its eze- 
cution density might be small. For example, a 
basic block that is located in a function which is 
invoked a lot of times might have a large execu- 
tion frequency, but it might only be executed few 
times for every function invocation. We define the 
execution density of a basic block as the ratio of 
the number of times it is executed to the number 
of times that the function in which it belongs, is 
invoked. 

. Finally, a very small basic block is not placed in 
the L-Cache even if it passes all the other require- 
ments. The extra branch instructions that might 
be needed to link it to its successor basic blocks 
will be an important overhead in this case. 

A basic block is placed in the L-Cache only if it is 
expected to stay there for a long period of time without 
gett,ing replaced. This, in effect, decouples the com- 
munication between the I-Cache and the L-Cache, and 
reduces the traffic between them. 

Step (4) in our methodology is the placement of the 
basic blocks in the global address space. The algorithm 
takes as input the placement of the basic blocks with 
respect to the L-Cache and tries to minimize the neces- 
sary space as much as possible. 

Finally, in step (5), the tool performs the actuallay- 
out of the code, and restructures t,he CFG. It starts by 

Figure 5: LCache organization 

placing the basic blocks that were selected in step (3). 
Those blocks are placed at the beginning, in the mem- 
ory locations assigned to them in step (4). Then, all the 
other basic blocks are placed contiguously. Branches are 
placed at the end of the blocks, if needed, to sustain the 
functionality of the code. These branches int,roduce a 
performance overhead with respect to the initial code. 
As we will see in the experimental evaluation section, 
the overhead is small. 

5 Hardware modifications 

The extra hardware needed to implement our scheme is 
shown in Fig. 5. 

The functionality of the L-Cache is as follows: The 
Program Coz~nier (PC) is presented to the L-Cache tag 
at the beginning of the clock cycle. The L-Cache tag 
will only be enabled if the “blocked-purl” signal is on. 
This signal is generated by the Instruction Fetch Unit 
(IFU), and its meaning is explained in the following 
paragraphs. In that case, the comparator checks for 
a match, and if it finds one, it instructs the multiplexer 
to drive the contents of the L-Cache in the data path. 
The I-Cache is disabled. 

In case of a L-Cache miss (“LCache-Hit” is off), 
the I-Cache controller activates the I-Cache at the next 
clock cycle, and de-activates the data portion of the L- 
Cache. We should emphasize at this point, that the 
L-Cache and the I-Cache are not accessed in parallel. 
The I-Cache is accessed if the L-Cache misses using an 
extra clock cycle, whereas the L-Cache is accessed only 
when “blocked-part” = on. If “blocked-part” = off, the 
I-Cache controller activates the I-Cache without waiting 
for the “LCache-Hit” signal. 

Recall that the compiler has already laid out the 
code so that the basic blocks that are destined for the 
L-Cache are placed before the others. A 32.bit regis- 
ter is used to hold the address of the first non-placed 
block in the main memory layout. If the PC has a value 
less than that address, the 32.bit comparator will set 
“blocked-part” = on, else this signal will be set to off. 

This way, the machine can figure out which portion of 
the code executes with only an extra comparison. 

This simplification is only possible because of the 
way that the code has been restructured in the compi- 
lation phase. Notice also that if “blocked-part” = on, the 
L-Cache can still miss: this will happen, for example, 
when the basic block to be placed in the L-Cache has 
not been executed before, i.e. the first time the thread 
of control passes through it. Therefore, the tag portion 
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Table 1: L-Cache utilization statistics : percent of instructions fetched from the L-Cache 

of the L-Cache is still needed. In that case, the I-Cache 
will provide the new instruction to the data path, as 
well as to the L-Cache. 

The block size of the L-Cache is one word. This 
simplifies the transfer of data from the I-Cache to the 
L-Cache in case of an L-Cache miss. Since our algorithm 
selects a basic block only if it is expected to reside in the 
L-Cache for a long period of time, the one-word block 
size does not severely affect the L-Cache hit rates. 

Finally, we extend the instruction set, and we add a 
new instruction called “allot” which marks the bound- 
ary between the placed and the non-placed code. This 
extra instructions is used to store the address of the 
first non-placed instruction in the 32-bit register, as de- 
scribed above, and is the first instruction to be executed 
upon entry in a procedure. 

6 Power Estimation 

We have deceloped our cache energy models based on [16] 
It is a transistor level model which uses the run-time 
characteristics of the cache to estimate the energy dis- 
sipation of its main components. A 0.8um technology 
with 3.3 Volts power supply is assumed. The cache en- 
ergy is a function of the cache complexity (cache size, 

block size, and associativity), its internal organization 

(banking), and the run time statistics (mumber of ac- 
cesses, hits, misses, average number of bits read, input 
switching probabilities). The model is used for both the 
I-Cache and the L-Cache. 

The run-time statistics are extracted by simulating 
traces of the SPECS5 benchmarks in a cache simulator. 
We used the SpeedShop [17] set of tools from SGI to 
gather the profile data and generate the dynamic in- 
struction traces that were fed into our cache simulator. 

7 Experimental Evaluation 

The SPEC95 benchmarks were compiled with the MIPS 
compiler. First, we ran the benchmarks to collect the 
profile data. The data were used to drive the inline and 
the block placement heuristics. The tool, along with 
the restructuring of the body of the program, selected 
various statistics regarding the quality of the generated 
code. The utilization statistics of the L-Cache are given 
in Table 1. The percentage of the dynamically executed 
instructions that are taken from the L-Cache is given 
for every benchmark, and for 6 different sizes of the 
L-Cache. An L-Cache with capacity n in&r. has size 
4n bytes. The I-Cache is 16KB, direct-mapped, with 
a block size of 32 bytes. A basic clock was selected 

Benchmark 

tomcatv 
swim 
SU2COr 

hydroZd 
mgnd 
aPPlu 
turb3d 
7lp 
wave5 
FP aver. 

?P 
m88ksim 
COlllpR.SS 
Ii 
INT aver. 

L-CO 
64 1nstr. 

0.2% 
0.0% 
0.1% 
3.8% 
0.9% 
8.0% 
1.4% 
2.2% 
4.0% 

--m% 
l.sK 

2.3% 
2.3% 
0.0% 

----cm 

e szze 
128 Instr. 

0.0% 
0.0% 
1.0% 
5.2% 
0.9% 

24.0% 
3.7% 
4.0% 
2.7% 
4.6% 
1.9% 
2.3% 
2.3% 
0.0% 
1.5% 

Table 2: Execution time overhead 

for placement only if it had execution time larger than 
0.01% of the execution time of the program, had at least 
five instructions, and an execution density of at least 
five. 

This percentage is high for all the SPECfp95 bench- 
marks, reflecting the efficacy of our approach for these 
programs. As expected, a larger L-Cache is more suc- 
cessful in storing basic blocks and therefore in disabling 
the I-Cache for a larger period of time. In some cases, 
even a small L-Cache is capable of effectively shutting- 
down the I-Cache for the duration of the program exe- 
cution. The law of diminishing returns applies here as 
well, since a very large L-Cache (1024 instr.) is usually 
as succesful as smaller ones. In most cases, a 256 instr. 
L-Cache approximates the performance of an infinite 
size L-Cache. 

On the other hand, most integer benchmarks do not 
have a large number of basic blocks that can be cached 
in the L-Cache. They are also insensitive to the cache 
size variation, which is to be expected since the basic 
blocks of integer programs are generally small. Most of 
the basic blocks of the SPECint95 benchmarks are not 
nested, or, they are nested within a loop that contains 
a function call; hence, they cannot be included in the 
L-Cache. 

The execution time overhead is given in Table 2 only 
for L-Caches with size 256 and 512 bytes. The overhead 
is due to the insertion of jump instructions at the end 
of the basic blocks which have been selected from the 
algorithm, and the non-perfect hit rate in the L-Cache. 
The overhead has maximum value 24%, but is usually 
less than 4.0%. 

Finally, the energy savings are depicted in Fig. 6. 
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Figure 6: Normalized energy savings for SPEC95 

benchmarks 

The energy dissipation of the modified scheme (L-Cache 
and I-Cache) is normalized with respect to the energy 
dissipation of the original scheme (only I-Cache). The 
2 bars represent the savings for the schemes with L- 
Caches of 256 and 512 bytes, respectively. In both 
graphs, the original scheme has an energy dissipation 
of 1. 

In the modified scheme, both caches will contribute 
to the total energy dissipation. Their individual con- 
tribution is shown with dark color for the I-Cache and 
light color for the L-Cache. The sum of the individ- 
ual contributions is the total energy consumption of the 
modified scheme with respect to the original. For exam- 
ple, suZcor has a energy consumption which is around 
30% of that of the original scheme when the L-Cache is 
128 instr. large. This is due to the L-Cache (15%) and 
the I-Cache (15%). 

An optimal L-Cache has size of 128 instr. (i.e. 0.5 
KB) for the FP benchmarks. Small caches are not very 
succesful in disabling the I-Cache. Larger caches, on 
the other hand, have larger energy dissipation per ac- 
cess. and do not accomodate many more basic blocks 
than average sized ones. The energy dissipation drops 
as the size increases, but it goes up again for the larger 
caches. On the average, the new scheme dissipates only 
45% of the energy of the original scheme for the FP 
benchmarks, when a 128 instr. L-Cache is included. 
Notice also that the new scheme never dissipates more 
energy than the original one. 

8 Conclusions 

This paper presented a paradigm for hardware/compiler 
co-design that targets activity minimizationin a proces- 
sor. These techniques are orthogonal to the standard 
circuit or gate level techniques that are traditionally 
used by designers to reduce energy and can therefore be 
used to further reduce energy consumption without im- 
pairing performance. This paradigm describes a more 
judicious use of the I-Cache unit of a processor when 
the Row of control is caught within a loop. The com- 
piler is given the responsibility to restructure the code. 
The aim is to minimize the overlap between basic blocks 
that are selected to be placed in an extra cache. 

The gains from this modifications can be very im- 
portant for machines with a very high energy consump- 
tion in the I-Cache unit. The savings are dependent on 
the structure of the program, and can be maximized for 

scientific computations with regular loop patberns. 
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