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Abstract The proliferation of heterogeneous computing
platforms presents the parallel computing community with
new challenges. One such challenge entails evaluating the
efficacy of such parallel architectures and identifying the
architectural innovations that ultimately benefit applica-
tions. To address this challenge, we need benchmarks that
capture the execution patterns (i.e., dwarfs or motifs) of
applications, both present and future, in order to guide
future hardware design. Furthermore, we desire a com-
mon programming model for the benchmarks that facilitates
code portability across a wide variety of different proces-
sors (e.g., CPU, APU, GPU, FPGA, DSP) and computing
environments (e.g., embedded, mobile, desktop, server). As
such, we present the latest release of OpenDwarfs, a bench-
mark suite that currently realizes the Berkeley dwarfs in
OpenCL, a vendor-agnostic and open-standard computing
language for parallel computing. Using OpenDwarfs, we
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characterize a diverse set of modern fixed and reconfig-
urable parallel platforms: multi-core CPUs, discrete and
integrated GPUs, Intel Xeon Phi co-processor, as well as
a FPGA. We describe the computation and communication
patterns exposed by a representative set of dwarfs, obtain
relevant profiling data and execution information, and draw
conclusions that highlight the complex interplay between
dwarfs’ patterns and the underlying hardware architecture
of modern parallel platforms.
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1 Introduction

Over the span of the last decade, the computing world has
borne witness to a parallel computing revolution, which
delivered parallel computing to the masses while doing so at
low cost. The programmer has been presented with a myr-
iad of new computing platforms promising ever-increasing
performance. Programming these platforms entails famil-
iarizing oneself with a wide gamut of programming envi-
ronments, along with optimization strategies strongly tied
to the underlying architecture. The aforementioned realiza-
tions present the parallel computing community with two
challenging problems:

(a) The need of a common means of programming, and
(b) The need of a commonmeans of evaluating this diverse

set of parallel architectures.

The former problem was effectively solved through a
concerted industry effort that led to a new parallel program-
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ming model, i.e., OpenCL. Other efforts, like SOpenCL [18]
and Altera OpenCL [1] enable transforming OpenCL ker-
nels to equivalent synthesizable hardware descriptions, thus
facilitating exploitation of FPGAs as hardware accelerators,
while obviating the overhead of additional development cost
and expertise.

The latter problem cannot be sufficiently addressed by
the existing benchmark suites. Such benchmarks suites
(e.g., SPEC CPU [10], PARSEC [4]) are often written in
a language tied to a particular architecture and porting the
benchmarks to another platform would typically mandate
re-writing them using the programming model suited for
the platform under consideration. The additional caveat in
simply re-casting these benchmarks as OpenCL implemen-
tations is that existing benchmark suites represent collec-
tions of overly specific applications that do not address the
question of what the best way of expressing a parallel com-
putation is. This impedes innovations in hardware design,
which will come as a quid pro quo, only when software
idiosyncrasies are taken into account at design and evalu-
ation stages. This is not going to happen unless software
requirements are abstracted in a higher level and represented
by a set of more meaningful benchmarks.

To address all these issues, we presented an early imple-
mentation of a benchmark suite for heterogeneous comput-
ing in OpenCL (the ancestor of OpenDwarfs – then called
”OpenCL and the 13 Dwarfs” [9]), in which applications
are based on the computation and communication patterns
defined by Berkeley’s Dwarfs [3]. That work-in-progress
paper included preliminary evaluation of the benchmarks in
a selection of Intel CPUs, AMD and NVIDIA GPUs.

Subsequently, in [13] we provided a first discussion on
performance results of OpenDwarfs on a broader range
of modern architectures, to include integrated GPUs, Intel
Xeon Phi and, for the first time, Xilinx FPGA. In this work
results were based on an updated version of the benchmark
suite that contained fixes for prior bugs and more dwarf
implementations.

Our latest piece of work [12] provided an extensive
characterization of OpenDwarfs on fixed and reconfig-
urable target architectures. The OpenDwarfs benchmark
suite underwent a major revision, adding features geared
toward more thorough dwarf coverage, code readability,
uniformity, and usability. One of the new features was pre-
liminary support for Altera FPGAs (through the Altera
OpenCL SDK) and the incorporation of two Altera OpenCL
dwarf implementations. Also, dwarf implementations did
not favor an architecture over another via hardware-specific
optimizations, as was the case for some dwarfs in prior
versions.

In this paper, we extend prior work in terms of useful
background information for OpenCL and data transfers in
heterogeneous architectures, more details on the SOpenCL
tool used for generating the FPGA dwarf implementations,
its front- and back-end, as well as the implementations
themselves, and discuss various issues that have been raised
during presentations and discussions of the previous works
with the community (notably the concept of uniformity
of de-optimization). Most importantly, we make an extra
step towards a complete characterization of OpenDwarfs,
by presenting, evaluating and discussing the results of an
additional two dwarfs (combinational logic, sparse linear
algebra). As with prior works, our evaluation efforts tar-
get the same broad range of target architectures, including
Xilinx FPGA. Our contributions are two-fold:

(a) We present the latest implementation of the OpenD-
warfs benchmark suite, as has evolved throughout
prior works. We have continuously been attempting
to rectify prior release’s shortcomings with each new
version, propose and implement necessary changes
towards a comprehensive benchmark suite that adheres
both to the dwarfs’ concept and established benchmark
creation guidelines.

(b) We verify functional portability and characterize
OpenDwarfs’ performance on multi-core CPUs, dis-
crete and integrated GPUs, the Intel Xeon Phi co-
processor and even FPGAs, and relate our observations
to the underlying computation and communication
pattern of each dwarf.

The rest of the paper is organized as follows: in Section 2
we discuss related work and how our work differs and/or
builds upon it. In Section 3 we provide a brief overview
of OpenCL and the FPGA technology. Section 4 presents
our latest contributions to the OpenDwarfs project and the
rationale behind some of our design choices. Following this,
in Section 5, we introduce SOpenCL, the tool we use for
automatically converting OpenCL kernels to synthesizable
Verilog for the FPGA. Section 6 outlines our experimental
setup, followed by results and a detailed discussion for each
one of the dwarfs under consideration in Section 7. Section 8
concludes the paper and discusses future work.

2 Related Work

HPC engineering and research have highlighted the impor-
tance of developing benchmarks that capture high-level
computation and communication patterns. In [19] the
authors emphasize the need for benchmarks to be related
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to scientific paradigms, where a paradigm defines what the
important problems in a scientific domain are and what
the set of accepted solutions is. This notion of paradigm
parallels that of the computational dwarf. A dwarf is an
algorithmic method that encapsulates a specific computa-
tion and communication pattern. The seven original dwarfs,
attributed to P. Colella’s unpublished work, became known
as Berkeley’s dwarfs, after Asanovic et al. [3] formalized
the dwarf concept and complemented the original set of
dwarfs with six more. Based in part on the dwarfs, Keutzer
et al. later attempted to define a pattern language for parallel
programming [11].

The combination of the aforementioned works sets a con-
crete theoretical basis for benchmark suites. Following this
path and based on the very same nature of the dwarfs and
the global acceptance of OpenCL, our work on extend-
ing OpenDwarfs attempts to present an all-encompassing
benchmark suite for heterogeneous computing. Such a
benchmark suite, whose application selection delineates
modern parallel application requirements, can constitute the
basis for comparing and guiding hardware and architectural
design. On a parallel path with OpenDwarfs, which was
based on OpenCL from the onset, many existing benchmark
suites were re-implemented in OpenCL and new ones were
released (e.g., Rodinia [5], SHOC [7], Parboil [21]). Most
of them were originally developed as GPU benchmarks and
as such still carry optimizations that favor GPU platforms.
This violates the portability requirement for benchmarks
that mandates a lack of bias for one platform over another [3,
19] and prevents drawing broader conclusions with respect
to hardware innovations. We attempt to address the above
issues with our efforts in extending OpenDwarfs.

On the practical side of matters, benchmark suites are
used for characterizing architectures. In [5] and [7] the
authors discuss architectural differences between CPUs and
GPUs on a higher level. Although not based on OpenCL
kernels, a more detailed discussion on architectural fea-
tures’ implications with respect to algorithms and insight on
future architectural design requirements is given in [17]. In
this work, we complement prior research by characterizing
OpenDwarfs on a diverse set of modern parallel architec-
tures, including CPUs, APUs, discrete GPUs, the Intel Xeon
Phi co-processor, as well as on FPGAs. The trend of incor-
porating GPUs and co-processors like Intel Xeon Phi in
computer clusters makes such up-to-date studies imperative
(four supercomputers in Top500 list’s top ten [22] make use
of such accelerators). Even more so, when the benchmarks
used capture characteristics of real-world applications (i.e.,
benchmarks based on the dwarf concept) that such systems
are routinely used for.

3 Background

3.1 OpenCL

OpenCL provides a parallel programming framework for a
variety of devices, ranging from conventional Chip Multi-
processors (CMPs) to combinations of heterogeneous cores
such as CMPs, GPUs, and FPGAs. Its platform model com-
prises a host processor and a number of compute devices.
Each device consists of a number of compute units, which
are subsequently subdivided into a number of processing
elements. An OpenCL application is organized as a host
program and a number of kernel functions. The host part
executes on the host processor and submits commands that
refer to either the execution of a kernel function or the
manipulation of memory objects. Kernel functions contain
the computational part of an application and are executed
on the compute devices. The work corresponding to a sin-
gle invocation of a kernel is called a work-item. Multiple
work-items are organized in a work-group.

OpenCL allows for geometrical partitioning of the grid
of independent computations to an N-dimensional space
of work-groups, with each work-group being subsequently
partitioned to an N-dimensional space of work-items, where
1 ≤ N ≤ 3. Once a command that refers to the execution
of a kernel function is submitted, the host part of the appli-
cation defines an abstract index space, and each work-item
executes for a single point in the index space. A work-item
is identified by a tuple of IDs, defining its position within
the work-group, as well as the position of the work-group
within the computation grid. Based on these IDs, a work-
item is able to access different data (SIMD style) or follow
a different path of execution.

Data transfers between host and device occur via the
PCIe bus in the cases of discrete GPUs and other types of
co-processors like Intel Xeon Phi. In such cases, the large
gap between the (high) computation capability of the device
and the (comparatively low) PCIe bandwidth may incur sig-
nificant overall performance deterioration. The problem is
aggravated when an algorithmic pattern demands multiple
kernel launches between costly host-to-device and device-
to-host data transfers. Daga et al. [6] re-visit Amdahl’s law
to account for the parallel overhead incurred by data trans-
fers in accelerators like discrete or fused GPUs. Similar
behavior, with respect to restricting available parallelism is
observed in CPUs and APUs, too, when no special consider-
ations are taken during OpenCLmemory buffer creation and
manipulation. In generic OpenCL implementations, if the
CPU-as-device scenario is not taken into account, unnec-
essary buffers are allocated and unnecessary data transfers
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Table 1 Dwarf instantiations
in OpenDwarfs. Dwarf Dwarf Instantiation

Dense Linear Algebra LUD(LU Decomposition)

Sparse Matrix-Vector Matrix CSR (Compressed Sparse-Row Vector

Multiplication Multiplication)

Graph Traversal BFS (Breadth-First Search)

Spectral Methods FFT (Fast Fourier Transform)

N-body Methods GEM (Electrostatic Surface Potential Calculation)

Structured Grid SRAD (Speckle Reducing Anisotropic Diffusion)

Unstructured Grid CFD (Computational Fluid Dynamics)

Combinational Logic CRC (Cyclic Redundancy Check)

Dynamic Programming NW (Needleman-Wunsch)

Backtrack & Branch and Bound NQ (N-Queens Solver)

Finite State Machine TDM (Temporal Data Mining)

Graphical Models HMM (Hidden Markov Model)

MapReduce StreamMR

take place within the common memory space. The data
transfer part on the CPU cases can be practically eliminated.
This requires use of the CL MEM USE HOST POINTER
flag and passing the host-side pointer to the CPU allo-
cated memory location as a parameter at OpenCL buffer
creation time. The OpenCL data transfer commands are
consequently rendered useless. In APUs, due to the tight
coupling of the CPU and GPU core on the same die, and
depending on the exact architecture, more data transfer
options are available for faster data transfers between the
CPU and GPU side. Lee et al. [16] and Spafford et al. [20]
have studied the tradeoffs of fused memory hierarchies. We
leave a detailed study of the dwarfs with respect to data
transfers on APUs for future research.

3.2 FPGA Technology

Compared to the fixed hardware of the CPU and GPU
architectures, FPGAs (field-programmable gate arrays) are
configured post-fabrication through configuration bits that
specify the functionality of the configurable high-density
arrays of uncommitted logic blocks and the routing channels
between them. They offer the highest degree of flexibil-
ity in tailoring the architecture to match the application,
since they essentially emulate the functionality of an ASIC
(Application Specific Integrated Circuit). FPGAs avoid
the overheads of the traditional ISA-based von Neumann
architecture followed by CPUs and GPUs and can trade-
off computing resources and performance by selecting the
appropriate level of parallelism to implement an algorithm.
Since reconfigurable logic is more efficient in implementing
specific applications than multicore CPUs, it enjoys higher

power efficiency than any general-purpose computing sub-
strate.

The main drawbacks of FPGAs are two-fold:

(a) They are traditionally programmed using Hardware
Description Languages (VHDL or Verilog), a time-
consuming and labor-intensive task, which requires
deep knowledge of low-level hardware details. Using
SOpenCL, we alleviate the burden of implementing
accelerators in FPGAs by utilizing the same OpenCL
code-base used for CPU and GPU programming.

(b) The achievable clock frequency in reconfigurable
devices is lower (by almost an order of magnitude)
compared to high-performance processors. In fact,
most FPGA designs operate in a clock frequency less
than 200 MHz, despite aggressive technology scaling.

4 OpenDwarfs Benchmark Suite

OpenDwarfs is a benchmark suite that comprises 13 of
the dwarfs, as defined in [3]. The dwarfs and their cor-
responding instantiations (i.e., applications) are shown in
Table 1. The current OpenDwarfs release provides full cov-
erage of the dwarfs, including more stable implementations
of the Finite State Machine and Backtrack & Branch and
Bound dwarfs. CSR (Sparse Linear Algebra dwarf) and
CRC (Combinational Logic dwarf) have been extended to
allow for a wider range of options, including running with
varying work-group sizes or running the main kernel multi-
ple times. We plan to propagate these changes to the rest of
the dwarfs, as they can uncover potential performance issues
for each of the dwarfs on devices of different capabilities.
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An important departure from previous implementations
of OpenDwarfs is related to the uniformity of optimization
level across all dwarfs. More precisely, none of the dwarfs
contains optimizations that would make a specific architec-
ture more favorable than another. Use of shared memory,
for instance, in many of the dwarfs in previous OpenD-
warfs releases favored GPU architectures. Also, work-group
sizes should be left to the OpenCL run-time to select for
the underlying architecture, rather than being hard-coded
(in which case they may be ideal for a specific architec-
ture, but sub-optimal for another). Such favoritism limits the
scope of a benchmark suite, as we discuss in Section 2, in
that it takes away from the general suitability of an archi-
tecture with respect to the computation and communication
pattern intrinsic to a dwarf and rather focuses attention
into very architecture-specific and often exotic software
optimizations. We claim that architectural design should
be guided by the dwarfs on the premise that they form
basic, recurring, patterns of computation and communica-
tion, and that the ensuing architectures following this design
approach would be efficient without the need for the afore-
mentioned optimizations (at least the most complex ones for
programmers).

Of course, the above point does not detract from the
usefulness of optimized dwarf implementations for specific
architectures that may employ each and every software tech-
nique available to get the most of the current underlying
architecture. In fact, we have ourselves been working on
providing such optimized implementations for dwarfs on a
wide array of CPUs, GPUs and MIC (e.g., N-body meth-
ods [14]) and plan to enrich the OpenDwarfs repository
with such implementations as a next step. The open source
nature of OpenDwarfs actively encourages the developers’
community to embrace and contribute to this goal, as well.

In the end, optimized and unoptimized implementations
of dwarf benchmarks are complementary and one would
argue essential constituent parts of a complete benchmark
suite. We identify three cases that exemplify why the above
is a practical reality:

(a) Hardware (CPU, GPU, etc.) vendors are mostly inter-
ested in the most optimized implementation for their
device, in order to stress their current device’s capa-
bilities. When designing a new architecture, however,
they need a basic, unoptimized implementation based
on the dwarfs’ concept, so that the workloads are
representative of broad categories, on which they
can subsequently build and develop their design in a
hardware-software synergistic approach.

(b) Compiler writers also employ both types of imple-
mentations: the unoptimized ones to test their com-
piler back-end optimizations on and the (manually)

optimized ones to compare the efficacy of such com-
piler optimizations. Once more, the generality of the
benchmarks, being based on the dwarfs concept, is of
fundamental importance in the generality (and hence
success) of new compiler techniques.

(c) Independent parts/organizations (e.g., lists ranking
hardware, IT magazines) want a set of benchmarks that
is portable across devices and in which all devices start
from the same starting point (i.e., unoptimized imple-
mentations) for fairness in comparisons/rankings.

In order to enhance code uniformity, readability and
usability for our benchmark suite, we have augmented the
OpenDwarfs library of common functions. For example, we
have introduced more uniform error checking functionality
and messages, while a set of common options can be used to
select and initialize the desired OpenCL device type at run-
time. CPU, GPU, Intel Xeon Phi and FPGA are the currently
available choices. Finally, it retains the previous version’s
timing infrastructure. The latter offers custom macro defini-
tions, which record, categorize and print timing information
of the following types: data transfer time (host to device and
device to host), kernel execution time, and total execution
time. The former two are reported both as an aggregate, and
in its constituent parts (e.g., total kernel execution time, and
time per kernel- for multi-kernel dwarf implementations).

The build system has remained largely the same, except
for changes allowing selecting the Altera OpenCL SDK
for FPGA execution, while a test-run make target allows
installation verification and execution of the dwarfs using
default small test datasets. FPGA support for Altera FPGAs
is offered, but currently limited to two of the dwarfs, due
to lack of complete support of the OpenCL standard by the
Altera OpenCL SDK, which requires certain alterations to
the code for successful compilation and full FPGA compat-
ibility [2]. We plan to provide full coverage in upcoming
releases. For completeness in the context of this work we
use SOpenCL for full Xilinx FPGA OpenCL support.

5 SOpenCL (Silicon OpenCL) Tool

We use the SOpenCL tool [18] to automatically gener-
ate hardware accelerators for the OpenDwarfs kernels, thus
dramatically minimizing development time and increasing
productivity. SOpenCL enables quick exploration of dif-
ferent architectural scenarios and evaluation of the quality
of the design in terms of computational bandwidth, clock
frequency, and size. The final output of this procedure is
synthesizable Verilog, functionally equivalent to the original
OpenCL kernels, which can in turn be used to config-
ure an FPGA. Despite the above merits of SOpenCL, and
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Figure 1 Architectural template of a processing element (PE) module
(left). An example block diagram of an automatically generated hard-
ware accelerator (right) instantiates multiple PEs, although only the

PEs with external access are equipped with a streaming unit. OpenCL
arrays are implemented as internal FPGA SRAMs.

the advantages of high-level synthesis (HLS) tools in gen-
eral, a well-thought manual hardware implementation in a
hardware design language by an experienced designer is
expected to be better-performing. In evaluating the results
(Section 7) across architectures the reader should bear in
mind the relative immaturity of HLS tools for FPGAs (and
in our case SOpenCL) compared to commercial, mature
OpenCL drivers and run-times (Section 6.1) for the other
devices. The large span of potential solutions, stemming
from the customization capabilities of the FPGA fabric, fur-
ther exacerbates the job of a HLS tool. The rest of this
section outlines some of the basic concepts of the SOpenCL
compilation tool-flow and template architecture.

5.1 Front-end

The SOpenCL front end is a source-to-source compiler
that adjusts the parallelism granularity of an OpenCL ker-
nel to better match the hardware capabilities of the FPGA.
OpenCL kernel code specifies computation at a work-item
granularity. A straightforward approach would map a work-
item to an invocation of the hardware accelerator. This
approach is suboptimal for FPGAs which incur heavy over-
head to initiate thousands of work-items of fine granularity.

SOpenCL, instead, applies source-to-source transforma-
tions that collectively aim to coarsen the granularity of a
kernel function at a work-group level. The main step in
this series of transformations is logical thread serializa-
tion. Work-items inside a work-group can be executed in
any sequence, provided that no synchronization operation
is present inside a kernel function. Based on this observa-
tion, we serialize the execution of work-items by enclosing
the instructions in the body of a kernel function into a triple
nested loop, given that the maximum number of dimen-
sions in the abstract index space within a work-group is
three. Each loop nest enumerates the work-items in the cor-
responding dimension, thus serializing their execution. The
output of this stage is a semantically equivalent C code at
the work-group granularity.

5.2 Back-end

SOpenCL back-end flow is based on the LLVM compiler
infrastructure [15] and generates the synthesizable Verilog
for synthesizing the final hardware modules of the accel-
erator. The functionality of the back-end supports bitwidth
optimization, predication, and swing modulo scheduling
(SMS) as separate LLVM compilation passes:
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(a) Bitwidth optimization is used to minimize the width
of functional units and wiring connecting them, to the
maximum expected width of operands at each level
of the circuit, based on the expected range of input
data and the type of operations performed on input and
intermediate data. Experimental evaluation on several
integer benchmarks shows significant area and perfor-
mance improvement due to bitwidth optimizations.

(b) Predication converts control dependencies to data
dependences in the inner loop, transforming its body
to a single basic block. This is a prerequisite in order
to apply modulo scheduling in the subsequent step.

(c) Swing modulo scheduling is used to generate a sched-
ule for the inner loops. The scheduler identifies an
iterative pattern of instructions and their assignment
to functional units (FUs), so that each iteration can
be initiated before the previous ones terminate. SMS
creates software pipelines under the criterion of min-
imizing the Initiation Interval (II), which is the con-
stant interval between launches of successive work-
items. Lower values of Initiation Interval correspond
to higher throughput since more work-items are ini-
tiated and, therefore, more results are produced per
cycle. That makes the Initiation Interval the main
factor affecting computational bandwidth in modulo
scheduled loop code.

5.3 Accelerator Architecture

Figure 1 outlines the architectural template of a Pro-
cessing Element (PE), which consists of the data path
and the streaming unit. The Data Path implements the
modulo-scheduled computations of an innermost loop in
the OpenCL kernel. It consists of a network of functional
units (FUs) that produce and consume data elements using
explicit input and output FIFO channels to the stream-
ing units. The customizable parameters of the data path
are the type and bitwidth of functional units (ALUs for
arithmetic and logical instructions, shifters, etc.), the cus-
tom operation performed within a generic functional unit
(e.g., only addition or subtraction for an ALU), the num-
ber and size of registers in the queues between functional
units, and the bandwidth to and from the streaming unit.
For example, when II=1, one FU will be generated for
each LLVM instruction in the inner loop. The data path
supports both standard and complex data types and all
standard arithmetic operations, including integer and IEEE-
754 compliant single- and double-precision floating point.
At compile time, the system selects and integrates the
appropriate implementation according to precision require-
ments and the target initiation interval. We use floating-
point (FP) units generated by the FloPoCo [8] arithmetic
unit generator.

In case the kernel consists of a single inner loop, the
streaming unit handles all issues regarding data transfers
between the main memory, and the data path. These include
address calculation, data alignment, data ordering, and bus
arbitration and interfacing. The streaming unit consists of
one or more input and output stream modules. It is gen-
erated to match the memory access pattern of the specific
application, the characteristics of the interconnect to main
memory, and the bandwidth requirements of the data path.
SOpenCL infrastructure supports arbitrary loop nests and
shapes. Different loops at the same level of a loop nest are
implemented as distinct PEs data paths, which communi-
cate and synchronize through local memory buffers (Fig. 1).
Similarly, SOpenCL supports barrier synchronization con-
structs within a computational kernel.

Finally, Control Elements (CEs) are used to control and
execute code of outer loops in a multilevel loop nest. CEs
have a simpler, less optimized architecture, since outer loop
code does not execute as frequently as inner loop code.

6 Experimental Setup

This section presents our experimental setup. First, we
present the software setup and methodology used for col-
lecting the results and discuss the hardware used in our
experiments.

6.1 Software and experimental methodology

For benchmarking our target architectures we use OpenD-
warfs (as discussed in Section 4), available for download at
https://github.com/opendwarfs/OpenDwarfs.

The CPU/GPU/APU software environment consists of
64-bit Debian Linux 7.0 with kernel version 2.6.37, GCC
4.7.2 and AMD APP SDK 2.8. AMD GPU/APU drivers are
AMD Catalyst 13.1. Intel Xeon Phi is hosted on a CentOS
6.3 environment with the Intel SDK for OpenCL applica-
tions XE 2013. For profiling we use AMD CodeXL 1.3
and Intel Vtune Amplifier XE 2013 for the CPU/GPU/APU
and Intel Xeon Phi, respectively. In Table 2 we provide
details about the subset of dwarf applications used and their

Table 2 OpenDwarfs benchmark test parameters/inputs.

Benchmark Problem Size

GEM Input file & parameters: nucleosome 80 1 0.

NW Two protein sequences of 4096 letters each.

SRAD 2048x2048 FP matrix, 128 iterations.

BFS Graph: 248,730 nodes and 893,003 edges.

CRC Input data-stream: 100MB.

CSR 20482 x 20482 sparse matrix.
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Table 3 Configuration of the target fixed architectures.

Model AMD Opteron AMD Llano AMD Radeon AMD A10- AMD Radeon AMD Radeon Intel Xeon Phi

6272 A8-3850 HD 6550D 5800K HD 7660D HD 7970 P1750

Type CPU CPUa Integr. GPUa CPUa Integr. GPUa Discrete GPU Co-processor

Frequency 2.1 GHz 2.9 GHz 600 MHz 3.8 GHz 800 MHz 925 MHz 1.09 GHz

Cores 16 4 5b 4 6b 32b 61

Threads/core 1 1 5 1 4 4 4

L1/L2/L3 16/2048/ 64/1024/- 8/128/- 64/2048/- 8/128/- 16/768/- 32/512/-

Cache (KB) 8192c (per core) (L1 per CU) (per 2 cores) (L1 per CU) (L1 per CU) (percore)

SIMD (SP) 4-way 4-way 16-way 8-way 16-way 16-way 16-way

Process 32nm 32nm 32nm 32nm 32nm 32nm 22nm

TDP 115W 100Wa 100Wa 100Wa 100Wa 210W 300W

GFLOPS (SP) 134.4 46.4 480 121.6 614.4 3790 2092.8

aCPU and GPU fused on the same die, total TDP
bCompute Units (CU)
cL1: 16KBx16 data shared, L2: 2MBx8 shared, L3: 8MBx2 shared

input datasets and/or parameters. Kernel execution time and
data transfer times are accounted for and measured by use
of the corresponding OpenDwarfs timing infrastructure. In
turn, the aforementioned infrastructure lies on the OpenCL
events (which return timing information as a cl ulong type)
to provide accurate timing in nanosecond resolution.

6.2 Hardware

In order to capture a wide range of parallel architectures, we
pick a set of representative device types: a high-end multi-
core CPU (AMD Opteron 6272) and a high-performance
discrete GPU (AMD Radeon HD 7970). An integrated GPU
(AMD Radeon HD 6550D) and a low-powered low-end
CPU (A8-3850), both part of a heterogeneous Llano APU
system (i.e., CPU and GPU fused on the same die), as
well as a newer generation APU system (Trinity) com-
prising an A10-5800K and an AMD Radeon HD 7660D
integrated GPU. Finally, an Intel Xeon Phi co-processor.
Details for each of the aforementioned architectures are
given in Table 3.

To evaluate OpenDwarfs on FPGAs, we use the Xil-
inx Virtex-6 LX760 FPGA on a PCIe v2.1 board, which
consumes approximately 50 W and contains 118560 logic
slices. Each slice includes 4 LUTs and 8 flip-flops.
FPGA clock frequency ranges from 150 to 200 MHz
for all designs. FPGAs can be reconfigured in various
ways, leading to a potentially huge design space. We pro-
vide representative alternative hardware implementations
(denoted by FPGA Ci) with increasing hardware resources
for each dwarf, loop unrolling, where applicable (Table 4).

These alternative implementations indicate the trade-offs
between performance and area on the FPGA, and illus-
trate the performance scalability with additional hardware
(i.e., more accelerator instantiations). Generating a lower-
performing implementation may appear counter-intuitive,
however design restrictions, such as energy-efficiency and
area requirements (often associated with a target device’s
cost), may favor a low-performing implementation over a
fast, area- and power-demanding one that may only fit in a
high-end FPGA.

Memory Hierarchy Memory hierarchy and organization is
oftentimes a decisive factor affecting performance, depend-
ing on an application’s underlying communication patterns.
CPUs traditionally employ a multi-level data cache hier-
archy of varying size and latency to exploit spatial and
temporal locality of memory references and avoid costly
main memory (RAM) accesses. GPUs, like AMD Radeon
HD 7970 and the rest in our experimental set-up, utilize
a similar multi-level approach, where the first level is dis-
tinguished in software- and hardware-managed cache (L2
cache is hardware-managed only) and may provide for sig-
nificant speed-ups by reducing accesses to the lower-latency
GDDR5 memory of the GPU. Intel Xeon Phi includes L1
and L2 caches on a per-core basis, where the L2 512KB
per-core caches provide for a total of 25MB L2 fully coher-
ent cache in the current generation devices. Details for the
caches of the fixed architectures in our study are provided
in Table 3. Finally, our FPGA board – Virtex-6 LX760, con-
tains DDR3 memory through which we transfer all data
inputs to the on-chip FPGA BRAMs before triggering the
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Table 4 FPGA
implementations details. GEM

FPGA C1 Single accelerator

FPGA C2 Single accelerator, 4-way inner loop unrolling

NW

FPGA C1 Single accelerator per OpenCL kernel

FPGA C2 Multiple accelerators (5) per OpenCL kernel,fully unrolled inner loop

SRAD

FPGA C1 Single accelerator per OpenCL kernel

FPGA C2 Multiple accelerators (5) per OpenCL kernel,fully unrolled inner loop

BFS

FPGA C1 Single accelerator per OpenCL kernel

CRC

FPGA C1 Single accelerator

FPGA C2 Multiple accelerators (20)

FPGA C3 Multiple accelerators, enhanced data partitioning across BRAMs

CSR

FPGA C1 Single accelerator

FPGA C2 Single accelerator, fully unrolled inner loop

SOpenCL-implemented accelerators. Likewise, all outputs
are transferred from the BRAMs back to the DDR3 mem-
ory (Fig. 2). For a single FPGA accelerator, input data are
stored sequentially in BRAMs without any special parti-
tioning across multiple BRAM banks. This is typically the
biggest obstacle for achieving high bandwidth and, hence,
high performance. For multiple accelerators, we manually
partition the data across multiple BRAMs to be able to
exploit the increased bandwidth requirements. We have not

attempted to automate data partitioning to multiple BRAMs
to achieve higher bandwidth.

7 Results

Here we present our results of running a representative sub-
set of the dwarfs on a wide array of parallel architectures.
After we verify functional portability across all platforms,

Figure 2 FPGA memory
organization.
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Figure 3 GEM.

including the FPGA, we characterize the dwarfs and illus-
trate their utility in guiding architectural innovation, which
is one of the main premises of the OpenDwarfs benchmark
suite.

7.1 N-body Methods: GEM

The n-body class of algorithms refers to those algorithms
that are characterized by all-to-all computations within
a set of particles (bodies). In the case of GEM, our n-
body application, the electrostatic surface potential of a
biomolecule is calculated as the sum of charges contributed
by all atoms in the biomolecule due to their interaction
with a specific surface vertex (two sets of bodies). In
Fig. 3 we illustrate the computation pattern of GEM and
present the pseudocode running on the OpenCL host and
device. Each work-item accumulates the potential at a single
vertex due to every atom in the biomolecule. A num-
ber of work-groups (BLOCKS=120 in our example) each
having blockDimX*blockDimY work-items (4096 in our
example) is launched, until all vertices’ potential has been
calculated.

GEM’s computation pattern is regular, in that the same
amount of computation is performed by each work-item
in a work-group and no dependencies hinder compu-
tation continuity. Total execution time mainly depends
on the maximum computation throughput. Computation
itself is characterized by FP arithmetic, including (typi-
cally expensive) division and square root operations that
constitute one of the main bottlenecks. Special hardware
can provide low latency alternatives of these operations,
albeit at the cost of minor accuracy loss that may or
may not be acceptable for certain types of applications.
Such fast math implementations are featured in many
architectures and typically utilize look-up tables for fast
calculations.

With respect to data accesses, atom data is accessed
in a serial pattern, simultaneously by all work-items. This

facilitates efficient utilization of cache memories avail-
able in each architecture. Figure 4 and Table 3 can assist
in pinpointing which architectural features are important
for satisfactory GEM performance: good FP performance
and sufficient first level cache. With respect to the for-
mer, Opteron 6272 and A10-5800K CPUs reach about 130
GFLOPS and A8-3850 falls behind by a factor of 2.9, as
defined by their number of cores, SIMD capability and core
frequency. However, the cache hierarchy between the three
CPU architectures is fundamentally different. Opteron 6272
has 16K of L1 cache per core, which is shared among all
16 cores. Given the computation and communication pat-
tern of n-body dwarfs, such types of caches may be an
efficient choice. Cache miss rates at this level (L1), are
also indicative of the fact: A8-3850 with 64KB of dedi-
cated L1 cache per core is characterized by a 0.55 % L1
cache miss rate, with Opteron 6272 at 10.2 % and A10-
5800K a higher 24.25 %. Those data accesses that result in
L1 cache misses are mostly served by L2 cache and rarely
require expensive RAM memory accesses. Measured L2
cache miss rates are 4.5 %, 0.18 % and 0 %, respectively,
reflecting the L2 cache capability of the respective plat-
forms (Table 3). Of course, the absolute number of accesses
to L2 cache, depend on the previous level’s cache misses,
so a smaller percentage on a platform, tells only part of
the story if we plan to compare different platforms to each
other. In cases where data accesses follow a predictable pat-
tern, like in GEM, specialized hardware can predict what
data is going to be needed and fetch it ahead of time. Such
hardware prefetch units are available - and of advanced
maturity - in multi-core CPUs. This proactive loading of
data can take place between the main memory and last
level cache (LLC) or between different cache levels. In all
three CPU platforms, a large number of prefetch instruc-
tions is emitted, as seen through profiling the appropriate
counter, which, together with the regular data access pat-
terns, verify the overall low L1 cache miss rates mentioned
earlier.
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Figure 4 Results: a GEM, b NW, c SRAD, d BFS, e CRC, f CSR.

Xeon Phi’s execution is characterized by high vector-
ization intensity (12.84, the ideal being 16), which results
from regular data access patterns and implies efficient auto-
vectorization on behalf of the Intel OpenCL compiler and
its implicit vectorization module. However, profiling reveals
that the estimated latency impact is high indicating that the
majority of L1 misses result in misses in L2 cache, too. This
signifies the need for optimizations such as data reorgani-
zation and blocking for L2 cache, or the introduction of a

more advanced hardware prefetch unit in future Xeon Phi
editions - currently there is lack of automatic (i.e., hardware)
prefetching to L1 cache (only main memory to L2 cache
prefetching is supported). Further enhancement of the ring
interconnect that allows efficient sharing of the dedicated
(per core) L2 cache contents across cores would also assist
in attaining better performance for the n-body dwarf. While
Xeon Phi, lying between the multi-core CPU and many-core
GPU paradigms, achieves good overall performance for this
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Figure 5 Needleman-Wunsch.

- unoptimized, architecture agnostic - code implementa-
tion, it falls behind its theoretical maximum performance of
nearly 2 TFLOPS.

With respect to GPU performance, raw FP performance
is one of the deciding factors, as well. As a result HD
7970 performs the best and is characterized by the best
occupancy (70 %), compared to 57.14 % and 37.5 %
for HD 7660D and HD 6550D, respectively. In all three
cases, cache hit rates are over 97 % (reaching 99.96 %
for HD 7970, corroborating that our conclusions for the
CPU cache architectures hold for GPUs, too, for this class
of applications (i.e, n-body dwarf). Correspondingly, the
measured percentage of memory unit stalls is held at low
levels. In fact, the memory unit is kept busy for over 76 %
of the time for all three GPU architectures, including all
extra fetches and writes and taking any cache or memory
effects into account.

Although FPGAs are not made for FP performance,
SOpenCL produces accelerators whose performance lies
between that of CPUs and GPUs. SOpenCL instanti-
ates modules for single-precision FP operations, such as
division and square root. Partially unrolling the outer
loop executed by each thread four times results in
nearly 4-fold speedup (FPGA C2) compared to the base
accelerator configuration (FPGA C1). Multiple acceler-
ators can be instantiated and process in parallel dif-
ferent vertices on the grid, thus providing even higher
speedup (FPGA C3).

7.2 Dynamic Programming: Needleman-Wunsch (NW)

Dynamic programming is a programming method in which
a complex problem is solved by decomposition into smaller
subproblems. Combining the solutions to the subproblems
provides the solution to the original problem. Our dynamic
programming dwarf, Needleman-Wunsch, performs protein
sequence alignment, i.e., attempts to identify the similar-
ity level between two given strings of aminoacids. Figure 5
illustrates its computation pattern and two levels of par-
allelism. Each element of the 2D matrix depends on the
values of its west, north and north-west neighbors. This set
of dependencies limits available parallelism and enforces a
wave-front computation pattern. On the first level blocks
of computation (i.e., OpenCL work-groups) are launched
across the anti-diagonal and on the second level, each of
the work-group’s work-items works on cells on each anti-
diagonal. Available parallelism at each stage is variable,
starting with a single work-group, increasing as we reach
the main anti-diagonal and decreasing again as we reach the
bottom right. Parallelism varies within each work-group in a
similar way, as shown in the respective figure, where a vari-
able number of work-items work independently in parallel
at each anti-diagonal’s level. Needleman-Wunsch algorithm
imposes significant synchronization overhead (repetitive
barrier invocation within the kernel) and requires modest
integer performance. Computations for each 2D matrix cell
entail calculating an alignment score that depends on the
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Figure 6 NW profiling on HD
7660D.

three neighboring entries (west, north, northwest) and a max
operation (i.e., nested if statements).

In algorithms like NW that are characterized by inter- and
intra-work-group dependencies there are two big considera-
tions. First, the overhead for repetitively launching a kernel
(corresponding to inter-work-group synchronization), and
second, the cost of the intra- work-group synchronization
via barrier() or any other synchronization primitives. Intro-
ducing system-wide (hardware) barriers would help to solve
the former of the problems, while optimization of already
existing intra-work-group synchronization primitives would
be beneficial for this kind of applications for the latter case.

Memory accesses follow the same pattern as computa-
tion, i.e., for each element the west, north and northwest
elements are loaded from the reference matrix. For each
anti-diagonal m within a work-group (Fig. 5) the updated
data from anti-diagonal m-1 is used.

As we can observe, GPUs do not perform considerably
better than the CPUs. In fact, Opteron 6272 surpasses all
GPUs (and even Xeon Phi), when we only take kernel exe-
cution time into account. What needs to be emphasized in
the case of algorithms, such as NW, is the variability in the
characteristics of each kernel iteration. In Fig. 6 we observe
such variability for metrics like the percentage of the time
the ALU is busy, the cache hit rate, the fetch unit is busy
or stalled, on the HD 7660D. Similar behavior is observed
in the case of HD 6550D. Most of these metrics can be
observed to be a function of the number of active wavefronts
in every kernel launch. For instance, cache hit follows an
inverse-U-shaped curve, as do most of the aforementioned
metrics. In both cases, occupancy is below 40 % (25 %
for HD 6550D) and ALU packing efficiency barely reaches
50%, which indicates a mediocre job on behalf of the shader
compiler in packing scalar and vector instructions as VLIW
instructions of the Llano and Trinity integrated GPUs (i.e.,
HD 6550D and HD 7660D).

As expected, the FPGA performs the best when it comes
to integer code, in which case, its performance lies closer
to GPUs than to CPUs. Multiple accelerators (5 pairs) and

fully unrolling the innermost loop deliver higher perfor-
mance (FPGA C2) than a single pair (FPGA C1) and render
the FPGA implementation the fastest choice for the dynamic
programming dwarf. In the FPGA implementation of NW,
the data fetches’ pattern favors decoupling of the compute
path from the data fetch & fetch address generation unit, as
well as from the data store & store address generation unit.
This allows aggressive data prefetching in buffers ahead of
time of the actual data requests.

7.3 Structured Grids: Speckle Reducing Anisotropic
Diffusion (SRAD)

Structured grids refers to those algorithms in which compu-
tation proceeds as a series of grid update steps. It constitutes
a separate class of algorithms from unstructured grids, in
that the data is arranged in a regular grid of two or more
dimensions (typically 2D or 3D). SRAD is a structured
grids application that attempts to eliminate speckles (i.e.,
locally correlated noise) from images, following a partial
differential equation approach. Figure 7 presents a high-
level overview of the SRAD algorithm, without getting into
the specific details (parameters, etc.) of the method. Perfor-
mance is determined by FP compute power. The computa-
tional pattern is characterized by a mix of FP calculations
including divisions, additions and multiplications. Many of
the computations in both SRAD kernels are in the form:
x = a∗b+c∗d+e∗f +g∗e. These computations can easily
be transformed by the compiler to multiply-and-add oper-
ations. In such cases, special fused multiply-and-add units
can offer a faster alternative to the typical series of separate
multiplication and addition. While such units are already
existent, more instances can be beneficial for the structured
grids dwarf.

A series of if statements (simple in kernel1, nested in ker-
nel2) handles boundary conditions and different branches
are taken by different work-items, potentially within the
same work-group. Since boundaries constitute only a small
part of the execution profile, especially for large datasets,
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Figure 7 SRAD.

these branches do not introduce significant divergence. In
the case of CPU and Xeon Phi execution, branch mispredic-
tion rate never exceeded 1 %, while on the GPUs VALUU-
tilization remained above 86 % indicating a high number
of active vector ALU threads in a wave and consequently
minimal branch divergence and code serialization.

Following its computational pattern, memory access pat-
terns in SRAD, as in all kinds of stencil computation, are
localized and statically determined, an attribute that favors
data parallelism. Although the data access pattern is a pri-
ori known, non-consecutive data accesses, prohibit ideal
caching. As in the NW case, where data is accessed in a
non-linear pattern, data locality is an issue here, too. Cache
hit rates, especially for the GPUs, remain low (e.g., 33 % for
HD 7970). This leads to the memory unit being stalled for a
large percentage of the execution time (e.g., 45 % and 29 %
on average for HD 7970, for the two OpenCL kernels). Cor-
respondingly, the vector and scalar ALU instruction units
are busy for a small percentage of the total GPU execu-
tion time (about 21 % and 5.6 % for our example, on the
two kernels on HD 7970). All this is highlighted by com-
paring performance across the three GPUs, and once more,

indicates the need for advancements in the memory technol-
ogy that would make fast, large caches more affordable for
computer architects.

On the CPU and Xeon Phi side, large cache lines can
afford to host more than one row of the 2D input data
(depending on the input sequences’ sizes). The huge L3
cache of Opteron 6272, along with its high core count, make
it very efficient in executing this structured grid dwarf. In
such algorithms, it is a balance between cache and com-
pute power that distinguishes a good target architecture. Of
course, depending on the input data set there are obvious
trade-offs, as in the case of GPUs, which despite their poor
cache performance are able to hide the latency by perform-
ing more computation simultaneously while waiting for the
data to be available.

An FPGA implementation with a single pair of accel-
erators (one accelerator for each OpenCL kernel) offers
performance worse even than that of the single-threaded
Opteron 6272 execution (FPGA C1). This is attributed
mainly to the complex FP operations FPGAs are notoriously
inefficient at. Multiple instances of these pairs of accelera-
tors (five pairs in FPGA C2) can process parts of the grid
independently, bringing FPGA performance close to that
of multicore CPUs. Different work-groups access separate
portions of memory, hence multiple accelerators instances
access different on-chip memories, keeping accelerators
isolated and self-contained.

7.4 Graph Traversal: Breadth-First Search (BFS)

Graph traversal algorithms entail traversing a number of
graph nodes and examining their characteristics. As a graph
traversal application, we select a BFS implementation. BFS
algorithms start from the root node and visit all the immedi-
ate neighbors. Subsequently, for each of these neighbors the
corresponding (unvisited) neighbors are inspected, eventu-
ally leading to the traversal of the whole graph. BFS’s com-
putation pattern can be observed through a simple example
(Fig. 8), as well as by its host and device side pseudocode.
The BFS algorithm’s computation pattern is characterized
by an imbalanced workload per kernel launch that depends
on the sum of the degrees deg(vi) of the nodes at each
level. For example (Fig. 8), deg(v0)=3, so only three work-
items perform actual work in the first invocation of kernel2.
Subsequently, kernel1 has three work-items, as well. Sec-
ond invocation of kernel2 performs work on three nodes
again (deg(v1) + deg(v2) + deg(v3) = 8, but nodes v0, v1, v2
have already been visited, so effective deg(v1) + deg(v2) +
deg(v3) = 3). Computation itself is negligible, being reduced
to a simple addition with respect to each node’s cost.

The way the algorithm works might lead to erroneous
conclusions, if only occupancy and ALU utilization is taken
into account, as in all three GPU cases it is over 95 % and
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Figure 8 BFS.

88 %, respectively (for both kernels). The problem lies in
the fact that not all work-items perform useful work, and
the fact that the kernels are characterized by reduced com-
pute intensity (Fig. 8). In such cases, up to a certain degree
of problem size or for certain problem shapes, the number
of compute units or frequency are not of paramount impor-
tance and high-end cards, like HD 7970 are about as fast
as an integrated GPU (e.g., HD 7660D). The above is high-
lighted by the hardware performance counters that indicate
poor ALU packing (e.g., 36.1 % and 38.9 % for the two BFS
OpenCL kernels, on HD 7660D). Similarly, for HD 7970,
the vector ALU is busy only for 5 % (approximate value
across kernel iterations) of the GPU execution time, even if
the number of active vector ALU threads in the wave is high
(VALUUtilization: 88.8 %).

For similar reasons, CPU execution performance is
capped on Opteron 6272, which performs only marginally
better than A8-3850. It is interesting to see that A10-5800K
and even Xeon Phi, with 8- and 16-way SIMD are character-
ized by lack of performance scalability. Why performance
of A10-5800K is not at least similar to that of A8-3850
could not be pinpointed during profiling. However, in both
A10-5800K and Xeon Phi cases, we found that the OpenCL
compiler could not take advantage of the 256- and 512-
bit wide vector unit, because of the very nature of graph
traversal.

With respect to data accesses, BFS exhibits irregular
access patterns. Each work-item accesses discontiguous
memory locations, depending on the connectivity proper-
ties of the graph, i.e, how nodes of the current level being
inspected are being connected to other nodes in the graph.
Figure 8 is not only indicative of the resource utilization
(work-items doing useful work), but of the inherent irregu-
larity of memory accesses that depend on run-time assessed
multiple levels of indirection, as well. Available caches’ size

define the cache hit rate, even in these cases, so HD 7970,
which provides larger amounts of cache memory provides
higher cache hit rates compared to the HD 7660D (varying
for each kernel iteration, Fig. 9). The FPGA implemen-
tation of BFS (FPGA C1) is the fastest across all tested
platforms. While kernel1 is not as fast as in the fastest of
our GPU platforms, minimal execution time for kernel2 and
data transfer time render it the ideal platform for graph
traversal, despite the irregular, dynamic memory access pat-
tern (which causes the input streaming unit to be merged
with the data path, eliminating the possibility of aggressive
data prefetching). In the SOpenCL-produced FPGA imple-
mentation, data for the graph nodes and edges is stored in
the on-chip FPGA BRAMs, which are characterized by very
fast (single-cycle) latency. By generating multiple memory
addresses in every clock cycle, graph nodes can be accessed
with minimal latency (provided there are no conflicts to the
same BRAM) contributing to overall faster execution times.

Figure 9 BFS cache performance comparison between HD 7970 and
HD 7660D.
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Figure 10 CRC pseudocode
and a simple traceable example.

7.5 Combinational Logic - Cyclic Redundancy Check
(CRC)

Cyclic Redundancy Check (CRC) is an error-detecting code
designed to detect errors caused by network transmission
(or any other accidental error on the data). On a higher
level, a polynomial division by a predetermined CRC poly-
nomial is performed on the input data stream S and the
remainder from this division constitutes the stream’s CRC
value. This value is typically added to the end of the data
stream as it is transmitted. At the receiver end, a division of
the augmented data stream with the (same, pre-determined)
polynomial, will yield zero remainder on successful trans-
mission. CRC algorithms that perform at the bit level are
rather inefficient and many optimizations have been pro-
posed that operate in larger units, namely 8, 16 or 32 bits.
The implementation in OpenDwarfs follows a byte-based
table-driven approach, where the values of the look-up
table can be computed ahead of time and reused for CRC
computations. The algorithm we use exploits a multi-level
look-up table structure that eliminates the existence of an
additional loop, thereby trading-off on-the-fly computation
with the need for pre-computation and additional storage.
Figure 10 shows the pseudocode of this implementation
and provides a small, yet illustrative example of how the
algorithm is implemented in parallel in OpenCL: the input
data stream is split in byte-chunked sizes and each OpenCL
work-item in a work-group is responsible for performing
computation on this particular byte. The final CRC value
is computed on the host once all partial results have been
computed in the device. Figure 11 supplements Fig. 10
by illustrating how multi-level look-up tables used in the

kernel work and their specific values for the example
at hand.

CRC, being a representative application of combinational
logic algorithms is characterized by abundance of simple
logic operations and data parallelism at the byte granular-
ity. Such operations are fast in most architectures, and can
be typically implemented as minimal-latency instructions,
in comparison to complex instructions (like floating point
division) that are split across multiple stages in modern
superscalar architectures and introduce a slew of complex
dependencies. Given the computational pattern of the CRC
algorithm at hand, which is highly parallel, we are not
surprized to observe high speedups for multi-threaded exe-
cution, in all platforms. For instance, in the Opteron 6272
CPU case, we observe a 12.2-fold speedup over the single-
threaded execution. Similarly, Xeon Phi execution for the
OpenCL kernel reaches maximum hardware thread utiliza-
tion, according to our profiling results. The integrated GPUs
in our experiments, which belong to the same architecture
family, exhibit performance that is analogous to their num-
ber of cores and threads per core (as defined in Table 3). HD
7970, is a representative GPU of the AMD GCN (Graphics
Core Next) architecture and bears fundamental differences
to its predecessors, which may affect performance, as we
see below.

With respect to the algorithm’s underlying communica-
tion patterns, memory accesses in CRC are affine functions
of a dynamically computed quantity (tmp). Specifically, as
we see in Fig. 10, inner-loop, cross-iteration dependen-
cies due to stored state in variable tmp, cause input data
addresses to the multi-level look-up table to be runtime-
dependent. Obviously, this implies lack of cache locality,
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Figure 11 CRC look-up table semantics.

is detrimental to any prefetching hardware utilization and
hence results to poor overall cache behavior. The effect of
such cache behavior is highlighted by our findings in profil-
ing runs across our test architectures. All three GPUs suffer
from cache hit rates that range from 5.48 to 7.13 %. Depend-
ing on the CRC size, such precomputed tables may be able
to fit into lower level caches. In such cases, more efficient
data communication may be achieved, even in the adverse,
highly probable case of consecutive data accesses spanning
multiple cache lines. CRC is yet another dwarf that benefits
from fast cache hierarchies.

Of course, in algorithms like this where operations take
place on the byte-level the existence of efficient methods for
accessing such data sizes and operating on them is imper-
ative, if one is to fully utilize wider than 8-bit data-path,
bus widths, etc. Such an example is SIMD architectures
that allow packed operations on collections of different data
sizes/types (such as bytes, single or double precision float-
ing point elements). CPU and GPU architectures follow a
semantically similar approach.

Profiling for Xeon Phi corroborates a combination of
the above claims. For instance, vector intensity is 14.4
close to the ideal value (16). This metric portrays the ratio
between the total number of data elements processed by
vector instructions and the total number of vector instruc-
tions. It highlights the vectorizability opportunities of the
CRC OpenCL kernel, and helps quantify the success of the
Intel OpenCL compiler’s vectorization module in producing
efficient vector code for the MIC architecture.

L1 compute to data access ratio is a mere 2.45. The
ideal value would be close to the calculated vector intensity
(14.4). This metric portrays the average number of vector
operations per L1 cache access and its low value high-
lights the irregular, dynamic memory access pattern’s toll in
caching. In this case vector operations, even on high-width
vector registers will not benefit performance being bounded
by the time needed to serve consecutive L1 cache misses.

On the FPGA, the SOpenCL implementation cannot dis-
associate the module that fetches data (input streaming unit)
from the module that performs computations (data path),
hence, reducing the opportunity for aggressive prefetching.
A Processing Element (PE) is generated for the inner for-
loop (FPGA C1). This corresponds to a “single-threaded”
FPGA implementation. If multiple FPGA accelerators are
instantiated and operate in parallel, the execution time is
better than that of the lower-end HD 6550D GPU. The num-
ber of accelerators that can “fit” in an FPGA is a direct func-
tion of available resources. In our case, up to 20 accelerators
can be instantiated in a Virtex-6 LX760 FPGA, each read-
ing one byte per cycle from on-chip BRAM (FPGA C2).
The area of accelerator can be reduced after bitwidth opti-
mization. Utilization of fully customized bitwidths results
to higher effective bandwidth between BRAM memory
and the accelerators, which in turn translates to perfor-
mance similar to that of HD 7970, with a more favorable
performance-per-power ratio (FPGA C3).

7.6 Sparse Linear Algebra - Compressed Sparse Row
Matrix-Vector Multiplication (CSR)

CSR in OpenDwarfs calculates the sum of each of a matrix’s
rows’ elements, after it is multiplied by a given vector. The
matrix is not stored in its entirety but rather in a compressed
form, known as compressed row storage sparse matrix for-
mat. This matrix representation is very efficient in terms
of storage when the number of non-zero elements is much
smaller than the zero elements.

Figure 12 provides an example of how a “regular” matrix
corresponds to a sparse matrix representation. Specifically,
only non-zero values are stored in Ax (thus saving space
from having to store a large number of zero elements).
Alongside, Aj[i] stores the column that corresponds to the
same position i of Ax. Ap is of size num rows+1 and each
pair of positions i, i+1 denote the range of values for j where



J Sign Process Syst

Ax[j] belongs to that row. The pseudocode of CSR and a
small, traceable example is depicted in Fig. 12.

In this particular implementation of sparse matrix-vector
multiplication, a reduction is performed across each row, in
which the results of the multiplication of that row’s non-
zero elements are summed with the corresponding vector’s
elements. Such operations’ combinations, which are typ-
ical in many domains, such as digital signal processing,
can benefit from specialized Fused multiply-add (FMADD)
instructions and hardware implementations thereof. This is
yet another example where a typical, recurring combina-
tion of operations in a domain is realized in a fast, efficient
way in architecture itself. FMADD instructions are avail-
able in CPUs, GPUs, and Intel Xeon Phi alike. OpenDwarfs,
based on the dwarfs concept that emphasizes such recurring
patterns, seeks to aid computer architects in this direction.

CSR is memory-latency limited and its speedup by acti-
vating multiple threads on the two CPUs is low (5-fold
and 1.8-fold for 16 and 4 threads on the Opteron and
Llano CPUs, respectively). While performance in abso-
lute terms is better in HD 7970 and Xeon Phi, its bad
scalability is obvious and speedups compared to the CPU
multithreaded execution are mediocre. As we can see in
Fig. 12, data parallelism in accessing vector x is based on
indexed reads, which limits memory-level parallelism. As
with other dwarfs, such runtime-dependent data accesses
limit the efficiency of mechanisms like prefetching. Indeed,
in contrast to dwarfs like n-body the number of prefetch
instructions emitted in all three CPUs, as well as in Xeon Phi
are very low. Gather-scatter mechanisms, on the other side,
are an important architectural addition that alleviates the

effects of indirect addressing that are typical in sparse linear
algebra. Especially in sparse linear algebra applications, the
problem is aggravated from the large distance between con-
secutive elements within a row’s operations (due to the high
number of - conceptual - zero elements in the sparse matrix)
and elements across rows (depending on the parallelization
level/approach, e.g., multithreading, vectorization). In these
cases, cache locality is barely existent and larger caches
may only prove of limited value. Overall cache misses are
less in Opteron 6272 that employs a larger L2 cache and an
L3 cache, compared to the rest of the CPUs. On the GPU
side, we have similar observations: HD 7970 13.27 % cache
hit rate, followed by 4.3 % and 3.93 % in HD 7660D and
HD 6550D, respectively. The memory unit is busy (MemU-
nitBusy and FetchUnitBusy counters for HD 7990 and HD
6550D/HD 7660D) for most of the kernel execution time
(reaching 99 % in all the GPU cases). Any cache or mem-
ory effects are taken into account and the above indicates
the algorithm in GPUs is fetch-bound.

VALUBusy and ALUBusy counters indicate a reciprocal
trend of low ALU utilization, ranging from 3–6 %. Even
during this time, ALU vector packing efficiency, especially
n Llano/Trinity is in the low 30 %, which indicates ALU
dependency chains prevent full utilization. The case is not
much different in Xeon Phi, where the ring interconnect
traffic becomes a serious bottleneck, as L1 and L2 caches
are shared across the 61 cores.

In the FPGA implementation of sparse matrix-vector
multiplication, cross-iteration dependence due to y[row]
causes tunnel buffers to be used to store y[row] values.
Tunnels are generated wherever a load instruction has a

Figure 12 CSR representation
and algorithm.
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read-after-write dependency with another store instruction
with constant cross-iteration distance larger than or equal to
one (FPGA C1). Allowing OpenCL to fully unroll the inner
loop dramatically improves FPGA performance by almost
23-fold because it reduces iteration interval (II) from 8 down
to 2 (FPGA C2).

8 Conclusions and Future Work

In this paper we presented the latest release of OpenDwarfs,
which provides enhancements upon the original OpenD-
warfs benchmark suite. We verified functional portability
of dwarfs across a multitude of parallel architectures and
characterized a subset’s performance with respect to spe-
cific architectural features. Computation and communica-
tion patterns of these dwarfs lead to diversified execution
behaviors, thus corroborating the suitability of the dwarf
concept as a means to characterize computer architectures.
Based on dwarfs’ underlying patterns and profiling we
provided insights tying specific architectural features of dif-
ferent parallel architectures to such patterns exposed by the
dwarfs.

Future work with respect to the OpenDwarfs is multi-
faceted. We plan to:

(a) Further enhance the OpenDwarfs benchmark suite by
providing features such as input dataset generation,
automated result verification and OpenACC imple-
mentations. More importantly, we plan to genericize
each of the dwarfs, i.e., attempt to abstract them on
a higher level, since some dwarf applications may be
considered too application-specific.

(b) Characterize more architectures including Altera
FPGAs by using Altera OpenCL SDK, evaluate dif-
ferent vendors’ OpenCL runtimes and experiment with
varying size and/or shape of input datasets.

(c) Provide architecture-aware optimizations for dwarfs,
based on existing implementations. Such optimizations
could be eventually integrated as compiler back-end
optimizations after some form of application signature
(i.e., dwarf) is extracted by code inspection, user-
supplied hints, or profile-run data.
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