
12

Significance-Aware Program Execution on Unreliable Hardware

KONSTANTINOS PARASYRIS, VASSILIS VASSILIADIS,
CHRISTOS D. ANTONOPOULOS, SPYROS LALIS, and NIKOLAOS BELLAS,
Centre for Research and Technology, Hellas & University of Thessaly

This article introduces a significance-centric programming model and runtime support that sets the supply
voltage in a multicore CPU to sub-nominal values to reduce the energy footprint and provide mechanisms to
control output quality. The developers specify the significance of application tasks respecting their contribu-
tion to the output quality and provide check and repair functions for handling faults. On a multicore system,
we evaluate five benchmarks using an energy model that quantifies the energy reduction. When executing
the least-significant tasks unreliably, our approach leads to 20% CPU energy reduction with respect to a
reliable execution and has minimal quality degradation.

CCS Concepts: � Computer systems organization → Reliability; � Theory of computation →
Program semantics;

Additional Key Words and Phrases: Significance aware computing, unreliable hardware, energy efficiency,
quality of output

ACM Reference Format:
Konstantinos Parasyris, Vassilis Vassiliadis, Christos D. Antonopoulos, Spyros Lalis, and Nikolaos Bellas.
2017. Significance-aware program execution on unreliable hardware. ACM Trans. Archit. Code Optim. 14,
2, Article 12 (April 2017), 25 pages.
DOI: http://dx.doi.org/10.1145/3058980

1. INTRODUCTION

The scalability of semiconductor manufacturing process, as predicted by Moore’s law,
has been the driving force of the increase in the capabilities of computer systems. How-
ever, scaling transistors to lower geometries tends to amplify the effects of manufac-
turing variability, resulting in less deterministic electrical—and thus performance and
power—transistor characteristics. The stochasticity of transistor characteristics leads
to reduced chip yields and increased voltage and frequency guard bands. These guard
bands are pessimistic, as they have to compensate for the worst-case scenarios and
combinations of non-determinism, switching patterns, temperature and aging effects.
According to Das et al. [2006] the average power cost of guard bands is roughly 35%.
However, most of the time, these guard bands represent mere overhead, as worst-case
scenarios and combinations will appear very seldom during application execution.

The main reason for having these pessimistic guard bands and energy inefficiency
is that modern computing systems execute programs under strict correctness require-
ments. But in several application domains, it is not the precise result that matters to

This work is supported by the FP7/FET Open research programme of the European Commision, under grant
agreement FP7- 323872, project SCoRPiO.
Authors’ addresses: K. Parasyris; email: koparasy@inf.uth.gr; V. Vassiliadis; email: vasiliad@inf.uth.gr; C. D.
Antonopoulos; email: cda@inf.uth.gr; S. Lalis; email: lalis@inf.uth.gr; N. Bellas; email: nbellas@inf.uth.gr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1544-3566/2017/04-ART12 $15.00
DOI: http://dx.doi.org/10.1145/3058980

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

http://dx.doi.org/10.1145/3058980
http://dx.doi.org/10.1145/3058980

12:2 K. Parasyris et al.

the user but rather an approximation of the output [Doucet et al. 2000; Goiri et al.
2015]. For example, for big data analytics performed in large-scale clusters, one may
be interested in rough data classification rather than the exact value of the end result.
More generally, within each program, all computations are treated as equally impor-
tant for the quality of the end result, although in most cases this assumption is not
true.

Approximate computing has recently attracted the interest of the research commu-
nity as a means to improve the energy efficiency of such computations [Sampson et al.
2011; Baek and Chilimbi 2010]. The basic idea is to introduce simpler and less accurate
versions of the less-significant parts of the application to trade off output quality with
faster and thus more energy-efficient execution. The notion of significance is seman-
tically defined in Vassiliadis et al. [2016]. In this work, less-significant parts of the
application are executed on lower-power yet unreliable hardware. The crucial differ-
ence to approximate computing is that such unreliable execution can lead to arbitrary
errors, which are not easily controllable and may cause large disruptions to the output
or even crash the application program. This necessitates mechanisms to isolate/protect
unreliable computations from reliable ones, in conjunction with methods for detecting
and correcting severe and silent errors.

Based on these observations, we introduce a framework for expressing and exploit-
ing application-level knowledge about the significance of different parts of a program.
Developers use a task-based programming model to declare the significance of com-
putations, depending on how strongly they contribute to the quality of the result. A
suitable runtime system executes less-significant tasks on unreliable but lower-power
cores. To contain errors and silent data corruptions that may occur due to the unreli-
able execution of non-significant tasks, the developer can provide result-check functions
that are called by the runtime when task execution completes (or fails) to inspect the
task status and produced output and, if needed, take corrective action.

There has already been extensive work on error-tolerant and approximate comput-
ing. Our work proposes a new framework that exploits algorithmic significance in con-
junction with suitable system software mechanisms to reduce the energy footprint of
applications by purposefully driving hardware operation beyond the pessimistic guard
bands and dealing with potential errors in a controlled way.

The main contributions of this article are the following: (i) We introduce a
significance-centric programming model and runtime system, which allows compu-
tations to be executed on potentially unreliable but low-power hardware in a controlled
way to trade off output quality for greater energy efficiency. (ii) We introduce a single
knob, called ratio, to trade off quality for energy gains in a flexible way. The ratio can
be set at execution time, thereby allowing the user or a higher-level framework to con-
trol the energy/quality tradeoff to meet dynamically varying application requirements.
(iii) We evaluate our framework using five benchmarks with different computational
characteristics and significance patterns. (iv) We study the effectiveness of the ratio
knob and the different error detection and protection/repair mechanisms provided by
our framework and the respective energy gains that can be achieved as a function of
output quality degradation.

The rest of the article is structured as follows. Section 2 introduces the programming
model, and Section 3 discusses the supporting runtime system. Section 4 presents the
application benchmarks used to evaluate our framework, while Section 5 provides an
overview of the evaluation approach. Section 6 describes and validates the performance
and energy models. Section 7 describes the fault model and fault injection approach
used in the evaluation. Section 8 presents the evaluation experiments and discusses the
results. Section 9 provides an overview of related work. Finally, Section 10 concludes
our article and presents directions for future work.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

Significance-Aware Program Execution on Unreliable Hardware 12:3

2. SIGNIFICANCE-CENTRIC, FAULT-TOLERANT, TASK-BASED PROGRAMMING MODEL

Our programming model can develop applications that target unreliable hardware,
without uncontrolled degradation of the quality. The features are the following:

Significance characterization: The developer can specify the significance of the
computations based on how strongly they contribute to the quality or correctness of the
result. Significant computations need to be executed correctly on reliable hardware,
while non-significant ones may be executed on potentially unreliable hardware.

Error isolation and control: During unreliable execution, errors that manifest
on non-significant tasks should not propagate to the rest of the computation in an
uncontrolled way. Moreover, the developer can provide application-specific code for
checking and repairing the output of the parts that are executed unreliably.

Exploitation of unreliable cores: It is possible to exploit cores configured to op-
erate beyond their nominal guard bands to improve the energy efficiency of the non-
significant parts of the computation at the cost of potential unreliability.

We adopt a task-based paradigm in the spirit of the latest version of the OpenMP
standard, where task boundaries and task synchronization are expressed using using
#pragma compiler directives. We extend these directives so the programmer can specify
task significance, task result-checking, and relaxed task synchronization. Apart from
expressing parallelism and data dependencies, tasks are a natural unit for structuring
code for containing, checking and repairing errors explicitly. The #pragma directives
also facilitate non-invasive and progressive code transformations, without requiring a
complete code rewrite, which is important when targeting existing code.

2.1. Task Definition and Significance Characterization

Tasks are defined using the task directive (Listing 1). The significance() clause specifies
the significance of the task and takes values in the range [0.0, 1.0], indicating the
importance of the task with respect to the output quality/correctness of the result.
Depending on their significance, tasks may be executed on top of reliable or unreliable
hardware. The significance expression is evaluated at execution time, thus allowing
the programmer to parameterize task significance with user input.

The taskcheck() clause specifies a result-check function, which is invoked only if the
task is executed unreliably. The result-check function is always executed reliably and
can be used by the developer to (i) inspect the task status to see if it completed its execu-
tion normally or has crashed, (ii) assess whether the task output is wrong, (iii) assign
meaningful default values to the task output, and (iv) request a re-execution of the
task. The result-check function has implicitly access to all arguments of the corre-
sponding task and may return either TRC SUCCESS or TRC REDO to the runtime.
In the latter case, the task is re-executed reliably.

Finally, the programmer can define the inputs and outputs of the task via the in()
and out() clauses, respectively. This information can be used by the runtime to infer
task dependencies and schedule tasks accordingly.

Listing 1. #pragma omp task.

2.2. Synchronization

Explicit barrierlike synchronization is achieved via the taskwait directive (Listing 2).
This is used to wait until all tasks that have been created so far are run to completion.

The taskwait can be used to control the degree of reliable (and unreliable) task
execution. Specifically, via the ratio() clause, the developer specifies the minimum

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

12:4 K. Parasyris et al.

Listing 2. #pragma omp taskwait.

percentage of tasks that should be executed in a reliable way, while respecting task
significance—that is, a less significant task will not be executed reliably at the expense
of a more significant task being executed unreliably. The task ratio takes values in the
range [0.0, 1.0] and serves as a knob to control the quality of the result. Small ratios
give the runtime energy reduction opportunities but with a loss in the quality.

Given that some of the non-significant tasks may be executed unreliably, taskwait
also allows for a more relaxed synchronization. Namely, the programmer can use the
time() clause to define a timeout after which execution will continue, provided that
the most significant tasks (as per the ratio() setting) have completed. If some non-
significant tasks have not completed their execution yet, then they are stopped, and
the respective result-check functions are invoked (requests to re-execute a task are
ignored). Note that such timeouts are task dependent as is the case in most soft real-
time applications. The programmer may introduce a result-check function for all tasks
that have been created so far via the groupcheck() clause. This function is called when
the conditions of taskwait are fulfilled to perform checks and repairs on the aggregate
output produced by the tasks.

2.3. Example

Listing 3 presents a task-based implementation of Discrete Cosine Transform (DCT)
using our programming model. Line 15 defines a task to compute the frequency coeffi-
cients of a specific 2×4 sub-block. All tasks created in this loop have varying significance
depending on their position in the 8×8 block: Upper left sub-blocks have higher signif-
icance than lower right, as encoded in the sgnf array. In line 15, dct taskrescheck() is
specified as the result-check function. This function checks whether the task crashed
(Line 2) or whether its output is wrong (Line 4). In both cases, a the corrections sets
the respective coefficients to 0. Since this correction does not require task re-execution
the function returns TRC SUCCESS (Line 6).

Listing 3. Programming model use case: DCT pseudo-code.

In Line 18 of Listing 3, the barrier for all dct tasks is specified with a timeout of
16 ms; this corresponds to a target frame rate of 30fps, assuming DCT corresponds
to almost 50% of the computation time for each frame. Note that the taskratio is an
open parameter that is supplied when the program is invoked. In effect, it serves as

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

Significance-Aware Program Execution on Unreliable Hardware 12:5

a knob to set the “borderline” between the most-significant sub-blocks that have to be
computed reliably and the less-significant sub-blocks that may be computed unreliably.
No group-level result-check function is used in the example, because task-level result
checks and repairs are sufficient.

2.4. Programmer Insight

The programming model assumes that the developer is sufficiently familiar with the
application to take good decisions as to how to structure the computation in tasks,
which tasks to characterize as more significant, and which result-check functions to
provide. Similarly to parallelism, significance is a key algorithmic aspect that requires
the programmer’s full attention, but, unlike parallelism, task significance is orthogonal
to the underlying platform architecture.

A formal definition of significance can be provided as follows. Assuming that a task
implements the function y = f (x), where x is the vector of task inputs, the significance
of x to the output y can be defined using interval arithmetic [Moore et al. 2009] and
first-order adjoint analysis. The range of possible input values is the input interval
vector [x] = [x, x] = {x ∈ IRn|x ≤ x ≤ x}, and an evaluation of f in interval arithmetic
is obtained by replacing all variables and intermediate elementary functions φ with
their interval version. The significance of an input element xi ∈ x to the final result y
is equal to

Sy(xi) = w([xi] · ∇[xi][y]),

where w(·) is the width of the interval. The first-order derivative ∇[xi][y] = ∂ f [xi]
∂[xi]

is
the derivative of the function result [y] with respect to the input variable [xi]. In
other words, the bounds of interval derivative ∇[xi][y] are the steepest downward and
upward slopes, respectively, of y = f (x) in the interval [xi], which quantify the impact
of all possible values from [xi] on the final result y. If the range (width) of Sy is large,
then xi strongly affects the value of y. As such, the code that produces the value of
xi is highly significant for the accuracy of the final output y. More information on the
algorithmic property of significance and a methodology for determining the significance
of computations automatically can be found in Vassiliadis et al. [2016].

Choosing result-check functions is also important. If the result-check function is too
complex, then it is practically useless, as the same result could be achieved simply
by declaring the task as significant and executing it reliably in the first place. If too
simple, then the result-check function may erroneously mis-characterize and destroy
good task output, possibly deteriorating the end result of the computation.

Finally, task granularity is an important parameter that should be considered when
using this programming model. Fine-grained tasks may allow for a richer (more diverse)
significance characterization, which in turn can be exploited to achieve a smoother
degradation of output quality at increased energy gains. The downside is that having
many small tasks will also increase the task management overhead of the runtime
system in terms of both time and energy consumption.

2.5. Application Characteristics

Several application domains offer the opportunity to trade off quality of output for
significant improvements in energy consumption. Visualization applications are
amenable to approximations, because their output is typically consumed by humans.
The correction part of the result-check function can exploit the perceptual limitations
of the human eye to approximate computations without inflicting noticeable quality
degradation to their output. In our evaluation, we use two benchmarks from this
category: DCT and Sobel. Streaming applications are inherently amenable to approx-
imations, since they do not maintain a large state. They consume input data, perform

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

12:6 K. Parasyris et al.

computations, and produce output data. If an error occurs during the computation of
a specific output data batch, then the next batch will not be severely affected. In that
sense, streaming applications inherently exhibit computational isolation. Blackscholes,
one of the benchmarks used in the experimental evaluation, falls into this category.
Some iterative methods tend to be self healing. For example, in the presence of er-
rors, Monte Carlo simulations or iterative numerical methods still tend to converge to
a correct solution but will typically require more iterations. Such applications in our
evaluation are Jacobi and k-means. We wish to clarify that the proposed significance-
based computing model does not fit all applications. For instance, task significance
may be highly input dependent, hard to specify at design time, and difficult or costly
to extract even at runtime. Also, some programs may require all tasks to be executed
without any inaccuracy or any chance of data corruption.

3. SIGNIFICANCE-AWARE RUNTIME SYSTEM

The runtime system is designed for a multicore shared memory platform, in which
cores can be set to operate in various voltage-frequency configurations (V, f), even
in ones below nominal values. Unsafe settings only apply to the cores of the Central
Processing Unit (CPU), including the integer and Floating Point Unit (FPU) pipeline
logic as well as the L1 and L2 caches. Modules critical to the correct operation of all
cores, such as buses, memory controllers, and cache coherence mechanisms, are set to a
safe setting and thus always operate reliably. Our power model takes this into account,
and all reported energy gains are gained from undervolting the core part. A user-level
library implements the runtime system and runs on top of the Linux operating system.
A source-to-source compiler, which we developed based on Zakkak et al. [2012], lowers
programs that use the primitives of our programming model to code with calls to the
runtime system API. Finally, the produced source code is compiled into machine code
using the standard gcc tool chain.

3.1. Runtime Execution Management

We consider three different configurations, FastRel, SlowRel, and FastUnRel. The
FastRel configuration is a high-performance nominal point of operation, with high volt-
age/frequency (Vh, fh), where a core executes code fast, whereas SlowRel is a slower
nominal operation point, with lower voltage/frequency (Vl, fl). Furthermore, cores can
be set in the non-nominal and unsafe FastUnRel configuration (Vl, fh), with the same
(low) voltage as SlowRel and the same (high) frequency as FastRel. Code execution in
FastUnRel is equally fast as in FastRel yet more energy efficient. At the same time,
execution is potentially unreliable due to timing faults, since FastUnRel is outside the
nominal range of operation. We assume that the runtime system can switch the opera-
tion of cores dynamically. Due to the difference in their voltage, the transition between
FastRel and SlowRel requires a voltage and frequency scaling step, which introduces
significant delay. In contrast, given that SlowRel and FastUnRel have the same volt-
age, the transition between them can be done quickly via clock stretching [Constantin
et al. 2015]. Figure 1 illustrates the principle of operation.

The main application thread and the master runtime thread are executed reliably in
the FastRel configuration. The tasks of the application can be executed reliably in the
FastRel configuration, or unreliably in the FastUnRel configuration, depending on their
relative significance and the user-supplied task ratio (see Section 2). Task execution is
done using separate worker threads, with each worker being placed in a different core.
To reduce the number of voltage transitions, task scheduling is done in two alternating
phases. In the first phase, workers are configured to operate in FastRel, and the master
thread schedules all the tasks in the ready list that have been flagged for reliable
execution. Before the second phase starts, all workers soft-checkpoint crucial context

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

Significance-Aware Program Execution on Unreliable Hardware 12:7

Fig. 1. The configurations FastRel, SlowRel, and FastUnRel used by the runtime system to reduce the energy
footprint by exploiting the significance of computations. Our approach exploits non-nominal configurations,
that are energy efficient but unreliable.

information to use it to recover in case of corruption from faults.1 Afterwards, the
main thread requests the memory allocator (discussed in Section 3.2) to protect all
the memory pages as well as the stack of the main application thread. This actually
forces all data, including non-significant output data, to a read-only state. Reliable task
input/output data can be mixed with unreliable input/output data in the same memory
page. However, the Operating System (OS) assigns privileges at the granularity of a
page; therefore, when locking a page to a read-only state, even unreliable tasks cannot
write to their output data locations. To overcome this, each worker allocates extra
memory in which the non-significant tasks will store their results. These memory
locations have read-write permissions.

At this point the second phase starts. Workers switch from FastRel to SlowRel,
and the master thread proceeds with the scheduling of all the tasks that have been
flagged for unreliable execution. When a worker is assigned with a task, it switches to
the FastUnRel configuration and executes the task. If during task execution an event
causes the OS to take over (e.g., an I/O event), then the worker switches to SlowRel prior
to executing the kernel code and switches back to FastUnRel mode when it resumes
the execution of the application task. When the task completes or crashes, the core is
switched back to SlowRel, the previously saved state is restored, and the result-check
function of the task is invoked.

If the result-check function requests task re-execution, then the worker repeats the
execution but maintains the core in the reliable SlowRel configuration. When all tasks
have finished their execution or the synchronization timing constraint is reached, the
main thread requests from the allocator to revert the protected memory privileges to
their previous state. Afterwards, the main thread copies the computed output data
from unreliable tasks back to their original memory locations. In case the group result-
check function requests re-execution of the task group, the master thread configures
all workers to operate in FastRel. Then all tasks in the group that have been flagged
for unreliable execution are re-scheduled from scratch and are executed reliably. The
overhead of switching to a different voltage level is amortized by the execution of a
large number of tasks.

1We use the Linux getcontext() function. The state is copied to a read-only memory page to prevent it from
being written accidentally.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

12:8 K. Parasyris et al.

The runtime supports the following levels of protection:
No Protection (NP): The runtime system does not employ any error detection/

correction mechanism or programmer-supplied significance information. All tasks of
the application are executed unreliably (FastUnRel configuration) and are susceptible
to faults. A task crash leads to the abrupt termination of the entire application.

Basic Protection (BP): All applications tasks are executed unreliably as in NP,
but the runtime system identifies and handles errors using the standard processor/OS
protection mechanisms, including the internal soft-checkpointing of critical state and
the memory protection mechanism. As a result, task crashes are properly caught.
However, the programmer-supplied result-check functions are ignored.

Basic & Result Checking (B-RC): In addition to BP, when an application task com-
pletes its execution normally or crashes, the runtime system invokes the programmer-
supplied result-check function to detect and correct possible errors.

Basic & Significance (B-SF): On top of BP, the runtime system takes into account
the programmer-supplied significance of tasks and ratio and schedules them for exe-
cution accordingly. As a consequence, the most significant tasks are executed reliably
(in the FastRel configuration), while the less-significant tasks are executed unreliably
(in the FastUnRel configuration). Task crashes are caught and handled as in BP, and
the programmer-supplied result-check functions are ignored.

Full System (FS): The entire protection arsenal is employed, including basic run-
time system protection, task scheduling based on the programmer-supplied significance
information, and invocation of the result-check functions for unreliable tasks.

Full System & Re-Execution (FS-RE): Like FS, but if the task result-check func-
tions detect a task crash or invalid output, then they request a full task re-execution
rather than try to repair the task output.

3.2. Memory Management

Our framework has been developed on a shared memory system, which is the worst-case
scenario in terms of reliability. Erroneous stores by code that executes on an unreliable
core may affect global data structures or the memory of significant computations.

The runtime system utilizes a custom dynamic memory manager that requests mem-
ory slabs from the OS at the granularity of pages and serves dynamic allocations from
either the application or the runtime system. When switching to an unreliable execu-
tion phase, the memory manager assigns read-only privileges to all used heap pages to
protect them from rogue stores from tasks executed on non-reliable cores. Should such
a store be attempted, it leads to an exception that is handled accordingly by the run-
time system. Besides the heap, faults can also corrupt the stack. The runtime system
allocates its internal data structures dynamically, and thus there is no information
within the stack or the global data space to be protected from application faults. All
memory pages used as stack by the main application thread are also set to be read-only
prior to executing unreliable code. The current framework does not implement any
global data protection as this requires compiler support.

4. BENCHMARKS

We calibrated, validated, and evaluated our models as well as the significance cen-
tric framework on top of a Intel Quad Core i7 IvyBridge CPU platform. We use five
benchmarks listed in Table I.

We apply three different methodologies to perform significance characterization on
these benchmarks. In DCT, we use domain expertise to identify the significance of
different parts of the computation. The tasks that compute low-frequency coefficients
are close to the upper left corner of each 8 × 8 frequency block and are more significant
than the ones computing coefficients towards the lower-right corner of the block. In

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

Significance-Aware Program Execution on Unreliable Hardware 12:9

Table I. Lines of Code (LOC) for the Tasks and Corresponding Result-Check and
Correction Functions for Each Benchmark. The Result-Check Functions Are

Implemented Based on the Original Task Code, Which Was Modified
to Reduce Its Computational Complexity

Lines of Code
Benchmark Domain Sgnf. Characterization Task TRC function
DCT Multimedia Domain expertise 39 34
Sobel Image Filter Randomly 54 42
Blackscholes Finance Profile-driven 117 105
K-means Data mining Profile-driven 141 57
Jacobi Numerical Solver Profile-driven 62 39

Blackscholes and the iterative benchmarks k-means, Jacobi we employed a profile-
driven approach. More specifically, in Blackscholes we injected bitflips in the input data
and observed the output quality. All parts of the code appear to be equally significant,
since faults had similar manifestations regardless or task computations. Therefore, all
tasks are assigned equal values of significance, since all stock options are considered
equally important. In Jacobi and k-means, we injected bit-flips in the input data of
a randomly chosen iteration and compared the relative error of the faulty execution
with an error-free one. In both Jacobi and k-means, we observe that errors in the last
few iterations tend to severely reduce the output quality and thus infer that these are
the most significant ones. Finally, in Sobel, we exploit the perceptual properties of the
human eye and randomly distribute the significance among tasks. This way errors
are spread across the entire output image and the loss of quality is not clustered in a
specific area of the image.

In all benchmarks, we used a very simple result-check function. The result-check
function of DCT detects errors in the task output via a heuristic out-of-bounds check;
coefficients that do not respect the bounds are set to zero. In Sobel, the task result-
check function corrects only tasks that crashed during their execution by running an
approximate version of the Sobel filter, using a lightweight stencil with just 2/3 of
the filter taps. Blackscholes is a benchmark of the Parsec suite [Bienia et al. 2008].
Results are checked with the isfinite() macro. This is a glibc floating point classification
macro; it returns a non-zero value if the value under inspection is not NaN or infinite.
If the check fails, then the function uses a faster implementation of the Blackscholes
formula by substituting costly mathematical operations (such as expr(), sqrt(), log())
with approximate versions. In k-means, the result-check function of non-significant
tasks is minimalistic, exploiting the error-tolerant nature of this iterative application:
If a point attempts to subscribe itself to cluster but miscalculates the cluster’s id, then
it reverts to its previous cluster. Also, if the runtime system reports an error, then all
points computed by the task are subscribed back to their previous clusters. In Jacobi,
it is hard to create an error detection mechanism, since assessment of the quality of
results is associated with the application in which the solver is used. We implement a
simple result-check function that uses the glibc isfinite() macro to detect obvious errors
to the output of tasks. In the event of detecting such an error, the current solution
estimate is replaced with that of the previous iteration.

In our benchmarks, the result-check part was simple, mostly based on range checks.
For the correction part, we reused the original task code and modified it to perform
the computation approximately. Table I shows that result-check functions are almost
as big as the tasks themselves. Nevertheless, since we heavily reused the existing task
code, the actual effort to implement the result-check function was minimal.

5. EVALUATION METHODOLOGY

Commercially available platforms do not allow individual cores to be operated below
nominal settings and hence cannot be used to support the runtime model that was

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

12:10 K. Parasyris et al.

Fig. 2. Evaluation approach: we build the performance, energy and fault models (left), and use these models
to drive experiments and estimate energy consumption (right).

described in Section 3. We note that operation in sub-nominal (V, f) values is possible
in x86 CPUs using BIOS settings but only for the entire CPU. This is not useful for
the purposes of our work, because at least one core has to always work reliably to boot
the machine and safely run the OS and the runtime system. As a consequence, we
cannot take real measurements on the performance, energy consumption, and fault
rate/behavior of the system.

To evaluate our framework, we use a suitable model for estimating the execution time
and energy consumption of a computation as a function of the voltage-frequency set-
tings of the FastRel, SlowRel, and FastUnRel configurations and the tasks that are exe-
cuted in these configurations. The model also takes into account the task management
overheads of the runtime system, as well as the cost for performing the voltage and
frequency scaling steps needed for a switch between FastRel and SlowRel/FastUnRel.
This allows us to run computations on a real platform, trace its execution, profile the
performance and power parameters used as input to the model for the FastRel and
SlowRel configurations, and extrapolate estimates for the FastUnRel configuration.
The performance model is described in detail in Section 6.

However, this performance modeling is insufficient. When executing in the
FastUnRel configuration, the hardware may experience timing errors, which in turn
trigger the respective runtime protection mechanisms. A major challenge is to associate
the operation in the FastUnRel configuration with the probability of hardware faults
due to timing violations. Another issue is how to assess the impact of such faults to
the actual execution and outputs of a given task, which is entirely application specific.
We use a model that estimates the fault rate as a function of the voltage-frequency
setting of FastUnRel. We use a combination of simulation-based and software-based
fault injection to observe the impact of faults on the benchmarks.

Figure 2 illustrates the workflow of our evaluation approach, which is split into two
phases. During the model building (offline) phase, we run the benchmarks in the GemFI
simulator (see Section 7.2) to obtain the probability of crash (Pcrash). We also perform
native executions and measure the number of reliable and unreliable tasks (Nr, Nu),
the number of transitions from FastRel to SlowRel and vice versa (NF R−SR, NSR−F R),
the average time required to perform a voltage and frequency transition from FastRel to
SlowRel and vice versa (TF R−SR, TSR−F R), the length (in cycles) of a task (C), the length
of its result-check function (Cdc), the total energy and power consumption (Etotal, Ptotal)
of the program, as well as its total execution time (Ttotal). We create the energy model
using the above information, as well as the operating frequency (f), the supply voltage
(V), and the number of cores (c). The energy model input parameters are the number

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

Significance-Aware Program Execution on Unreliable Hardware 12:11

of reliable/unreliable tasks (Nr, Nu), the number of active cores (c), the number of
voltage and frequency transitions (NF R−SR, NSR−F R), and the supply voltage and the
operating frequency of all configurations. Its goal is to estimate the energy cost of
an unreliable execution. We model application error resiliency via simulation-based
fault injection combined with observations in the literature. The fault model input
arguments are the supply voltage of the FastRel and the FastUnRel configuration.
The energy and fault models are discussed in more detail in the following sections.
During the execution phase, the models are used to inject errors and to estimate the
energy consumption of the execution. After each execution, the system reports the
values for the number of tasks that were executed reliably (Nr) and unreliably (Nu)
and the number of transitions between the FastRel and SlowRel/FastUnRel (NF R−SR
and NSR−F R) configurations. Using these data, we estimate the energy footprint of the
computation.

6. EXECUTION TIME AND ENERGY CONSUMPTION MODEL

We introduce an analytical model for the performance and energy consumption of a
program as a function of the core frequency, the voltage, the number of tasks that are
executed reliably and unreliably, and the number of voltage and frequency transitions.
Our model is agnostic to the CPU structure and captures the execution phases of an
application. Therefore, it accounts for both the core and uncore components of the
CPU. The model is validated for our CPU platform, where it predicts the actual energy
consumption of our benchmark applications with high accuracy over a wide range of
different (nominal and thus reliable) core configurations.

6.1. Execution Time Modeling

As discussed, the runtime uses three different voltage/frequency configurations,
FastRel = (Vh, fh), SlowRel = (Vl, fl), and FastUnRel = (Vl, fh). Equation (1) ex-
presses the time for executing a given piece of code N times, where C denotes the
number of cycles spent for code execution and f is the frequency of the core depending
on its configuration setting (fh for FastRel/FastUnRel and fl for SlowRel),

T (N, f, C) = C
f

× N. (1)

Tasks can be executed in parallel by the workers of the runtime system on different
cores. In addition to task execution itself, the system software spends additional time
to schedule tasks and to manage unreliable task execution. Equations (2) give the total
execution time of an application,

TFastRel = T (Nr, C, fh), TSlowRel = T (Nu, Cdc, fl), TFastUnRel = T (Nu, C, fh)
Tv f s = NF R→SR × TF R→SR + NSR→F R × TSR→F R

TT otal = Workers
max

i=1

(
TFastReli

) + Workers
max

i=1

(
TSlowReli + TFastUnReli

) + Tv f s.

(2)

The execution time for each worker in each configuration is expressed by TFastRel,
TSlowRel, and TFastUnRel. Variable C is the average number of cycles required to execute
a task in FastRel/FastUnRel, while Cdc is the average number of cycles required by
the runtime system to prepare for an unreliable task execution and to execute the
result-check/repair function in the SlowRel configuration. Variables Nr and Nu express
the number of reliable and unreliable tasks executed by the worker, respectively. Tv f s
captures the time required to switch between the FastRel and SlowRel configurations.
Variable NF R→SR denotes the number of times the runtime system switches from the
FastRel to SlowRel, and TF R→SR is the average time required to perform this transition.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

12:12 K. Parasyris et al.

Similar parameters apply for the reverse direction. Finally, the total execution time of
the application is the maximum execution time among all workers for the first task
scheduling phase (in the FastRel configuration), plus the maximum execution time
among all workers for the second task scheduling phase (in the SlowRel/FastUnRel
configurations), plus the time spent on the respective voltage and frequency transitions.

6.2. Power and Energy Modeling

The total power dissipation of a CMOS circuit is given by Equations (3). Pdyn is the
dynamic power dissipation, Pleak is the power dissipation due to transistor leakage
current, and PshortC is the power dissipation due to the short circuit formed when
both the PMOS and NMOS transistor tree momentarily conduct current during CMOS
switching. Since modern fabrication technologies that use high-k dielectric materials
can control leakage current, it is the Pdyn component that dominates power dissipation.
Therefore, our model considers the idle power consumption of a processor as a constant
Pidle and equal the sum of Pleak and PshortC . The uncore power consumption of the
CPU is included in Pidle. Since the Pidle is a constant, all the energy gains are a result
of the undervolted core part of the CPU. Pdyn is the product of the supplied voltage
squared (V 2), the frequency (f), and the activity factor A(�c). We have observed that the
activation of a new core in our multicore platform results to power steps. The number
of cores used by the application are captured via vector �c, where �c[n] is 1 if n cores are
active , else 0. A(�c) is the dot product of �c and a vector �w containing per-core switching
capacitance values that are obtained via regression.

PT otal = Pidle + Pdyn, Pidle = Pleak + PshortC

Pdyn(�c, V, f) = A(�c) × V 2 × f, A(�c) = �c · �w.
(3)

The total energy dissipation ET otal is given by Equations (4). In general, this depends
on the hardware/core configuration and the time spent to execute the runtime man-
agement functions, the application tasks, and their result-check/repair functions, as
discussed above,

EFastRel = P(�c, Vh, fh) × Workers
max

i=1

(
TFastRel

)
, EFastUnRel = P(�c, Vl, fh) × Workers

max
i=1

(
TFastUnRel

)

ESlowRel = P(�c, Vl, fl) × Workers
max

i=1

(
TSlowRel

)

Ev f s = NF R→SR × TF R→SR × P(Vh, fh) + NSR→F R × TSR→F R × P(Vl, fl)
ET otal = EFastRel + ESlowRel + EFastUnRel + Ev f s.

(4)

6.3. Calibration and Validation

We calibrate and validate the timing and energy models based on measurements taken
on our platform for the benchmarks presented in Section 5. The parameters fh and fl
are known while Nr, Nu, NF R→SR, NSR→F R can be measured. C and Cdc are profiled
using likwid [Treibig et al. 2010] by accessing the x86 performance counters. Simi-
larly, TF R→SR and TSR→F R are profiled using the FTaLaT tool [Mazouz et al. 2014].
Finally, the transition overhead between the SlowRel and FastUnRel configurations is
negligible, since clock adjustment is very fast.

As a first step, we execute all tasks of each application reliably under different
configurations V, f, �c, and measure the power consumption. We then perform linear
regression using least-squares to derive the parameters �w and Pidle of the power model.
Finally, we validate the accuracy of our model by forcing the runtime system to execute
tasks in different (V, f) configurations. To this end, we execute half of the tasks of

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

Significance-Aware Program Execution on Unreliable Hardware 12:13

Fig. 3. Relative error for the execution time and energy as predicted by our model vs. a real execution for our
application benchmarks when half of the tasks execute in the FastRel = (3.7(GHz), 1.06V) configuration and
the other half in a lower-power SlowRel configuration. All SlowRel configurations are shown in the x-axis.

each application in the FastRel = (1.06V, 3.7GHz) configuration and the other half in
various lower power but still reliable configurations. The latter are different candidates
for SlowRel. Cores enter these configurations, which correspond to different P-states,2
by applying a software-driven voltage and frequency transition.

Figure 3 depicts the relative error of model-based estimates vs. the execution time
and energy that was measured using likwid. Our model closely matches the real num-
bers for various SlowRel configurations, with the relative error ranging from 0.004%
to 2.7%. In Jacobi, the increased error is due to load-balancing issues. Different exe-
cutions of the benchmark result in different tasks to worker assignment. This impacts
the execution time of the benchmark, and hence there is an increase in the relative
error.

Note that our x86 platform does not allow placing individual cores in a non-nominal
configuration, where actual timing violations and faults might occur. Thus it is impos-
sible to validate the execution time and energy consumption estimates of the model
for non-nominal FastUnRel configurations. Still, the accuracy of the model for this
wide range of real operating points gives us sufficient confidence to use the model to
extrapolate for non-nominal FastUnRel configurations as well.

7. FAULT MODEL AND FAULT INJECTION METHODOLOGY

This section introduces the fault model we use for different unreliable execution. We
discuss how we combine simulation-based and software-based fault injection to map
the fault rates derived from the model into actual errors at the application level.

Note that it was impossible to conduct our full evaluation using a purely simulated
execution platform. Given the vast number of fault injection experiments required
to acquire statistically significant results, we would have to limit executions to non-
realistic input sizes, despite using a large compute farm for the simulations. Therefore,
we adopt a hybrid approach. Initially, we use detailed simulations for injecting faults
at the architectural level of an x86 CPU model and observe the impact they have
on each of our benchmarks. Afterwards, we use these observations to drive fault-
injection via software when running the benchmarks and our runtime system natively
on our platform. The latter setup, in conjunction with the performance model discussed
in Section 6, makes it possible to evaluate the fault-tolerance mechanisms that are
provided by our framework for different SlowRel/FastUnRel configurations.

2P-states are voltage-frequency pairs that specify the performance and power consumption of a processor.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

12:14 K. Parasyris et al.

7.1. Fault Modeling

A key challenge is to associate the operation of a core in the unreliable FastUnRel
configuration with the probability of hardware faults due to timing violations. Besides
undervolting (or overclocking), the number and distribution of faults in a CPU also
depends on the type of instructions executed: Instructions that activate long paths,
which are close to the critical path, tend to fail more frequently [Rahimi et al. 2012]. The
failure probability of each instruction is also closely related to the micro-architectural
design of the CPU; optimizations used by synthesis, placement, and routing CAD
tools; the manufacturing process and process variability; ambient temperature; IR
drops; aging; and so on. Even identical chips with the same micro-architecture, using
the same technology libraries, and running identical code, can have highly different
behaviors [Das et al. 2006]. Moreover, whether a fault manifests as an error not only
depends on the paths that are activated during the current cycles but also on the paths
that were activated in previous cycles [Tziantzioulis et al. 2015].

It is almost impossible to model such complex phenomena in a practical way, as
the conclusions are specific to the particular system used to make the observations
and create the model and cannot be generalized to other systems. To the best of our
knowledge there is no modern-CPU fault model that combines all the observations in a
unified and applicable method. For these reasons, we abstract out the instruction mix
of applications by taking into account only the effects of voltage scaling.

The Point of First Failure (PoFF) is used to indicate the point at which circuits start
to exhibit massive errors (one error every ∼10 million cycles). Prior to this point, errors
still occur, however, at rates that are orders of magnitude lower [Das et al. 2006]. If
one goes beyond the PoFF, then the fault rate increases exponentially by one order of
magnitude for every 10mV drop of the supply voltage [Blaauw et al. 2008; Das et al.
2006].

To guarantee functional correctness, designers typically account for parameter vari-
ations by imposing conservative margins that guard against worst-case scenarios. The
extent of the voltage margins required for fault-free operation for all operating condi-
tions of the chip is on average around 15% [Gupta et al. 2009; Reddi et al. 2010; James
et al. 2007]. We determine the PoFF based on Equation (5), where ρ is the percentage
of the extra voltage margin to guarantee fault-free operation and Vn is the nominal
supply voltage. A CPU part with tight margins has a low ρ and, therefore, low energy
benefits when using our approach. We select the average case, ρ = 15%, which is con-
sistent with several observations in the literature [Gupta et al. 2009; Blaauw et al.
2008; Das et al. 2006]. Based on the same reports, we model the fault rate as shown
in Equation (6). The parameters are the voltage VPoFF , which can be obtained using
Equation (5) using as an input argument the nominal voltage Vn and the voltage of the
requested (unreliable) operating point Vu. In our case, Vn = Vh, the voltage setting of
FastRel, and Vu = Vl is the voltage setting of the FastUnRel configuration. Our model
obtains the constants β, γ via regression on the data provided in Blaauw et al. [2008]
and Das et al. [2006]. Note that Equation (6) is CPU agnostic,

VPoFF = (100 − ρ)
100

× Vn (5)

Err(VPoFF, Vu) = β × 10γ ∗(Vu−VPoFF) (6)

Vn(f) = δ × f + η. (7)
Finally, the nominal supply voltage Vn is linearly dependent on the operating fre-

quency, as modeled by Equation (7). Parameters δ and, η depend on the system config-
uration. We deduce their values by monitoring the supply voltage of the CPU of our
x86 platform, while commanding changes of the operating frequency.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

Significance-Aware Program Execution on Unreliable Hardware 12:15

7.2. Simulation-Based Fault Injection

We use the GemFI framework [Parasyris et al. 2014] to execute our benchmarks on
a simulated out-of-order CPU supporting the x86 Instruction Set Architecture (ISA).
GemFI injects faults at different CPU pipeline stages. In the fetch stage, a fault cor-
rupts a single bit of the instruction. In the decoding stage, the selection of registers is
corrupted so the instruction in question reads from, or writes to, a different register. In
the execution stage, faults corrupt a single bit of the computed result. Finally, faults in
the memory stage corrupt a single bit of the value being transferred from/to memory.
Even though we only inject faults to a subset of the CPU modules, these faults can be
propagated to the majority of the CPU modules. For example, when a fault is injected
during the execution stage of an integer instruction, the fault corrupts the result of the
operation. If the result is stored in a register, then the fault propagates and corrupts
the register file. Also, when injecting a fault to a memory write, the fault can corrupt
the data cache hierarchy and even propagate to the main memory. Note that we model
transient faults, that is, the injection of the fault only lasts for one clock cycle.

Simulated fault injection captures the “default” impact of faults on an application
executed on top of unreliable hardware without employing any of the protection mech-
anisms provided by our framework. Consequently, all application tasks are susceptible
to faults, and the result-check functions are ignored. The number of experiments for
each application and pipeline stage (see above) is determined based on the methodology
described in Leveugle et al. [2009] for a 99% confidence level and 1% error margin. For
the purpose of our evaluation, we categorize the outcome of program execution in three
bins: (i) crash if the program did not terminate normally, (ii) inexact if the result is not
bitwise identical to that of a reliable execution, and (iii) exact if the result is bitwise
identical to that of a reliable execution. The output of this phase is the probability for
a single fault to result in a crash (Pcrash) for each benchmark. This probability is used
by the software fault injection mechanisms during native execution.

7.3. Software-Based Fault Injection during Native Execution

For the native (fast) executions of the benchmarks on our platform, we use software-
based fault injection. This is designed to have two possible effects: (i) It forces a crash,
and (ii) it corrupts a randomly chosen register of the CPU. The former is done with the
probability Pcrash computed in the GemFI simulation, and the latter with probability
1 − Pcrash. As in the simulation experiments, all protection mechanisms are disabled,
and faults are injected in all application tasks. To validate that software-based fault
injection yields realistic results, we compare the outcome of the native executions with
the respective outcomes of simulated executions on GemFI. Figure 4, which summa-
rizes the results for all benchmarks, shows that the software-based fault injection has
practically equivalent effects to simulation-based fault injections using GemFI.

Finally, we support native execution scenarios with multiple fault injection. The run-
time selectively executes application tasks in the reliable or unreliable mode and where
the different protection mechanisms of our framework come into play. The voltage and
frequency settings for the FastRel and the FastUnRel configurations are decided as
follows. We pick fh to maximize performance and derive respective nominal voltage Vh
from Equation (7). We then set Vl = ε × Vh|ε < 1.0. Frequency fl is derived from Equa-
tion (7), and the fault rate of the FastUnRel configuration is derived from Equation (6)
using Vl and Vh as parameters. The rate increases for smaller values of ε. Given a target
fault rate, we randomly generate a set of fault injection intervals, expressed as number
of cycles between faults, using a uniform distribution with a mean value equal to the
target fault rate. We then use the performance counter infrastructure of x86 CPUs
to interrupt application execution at those intervals and invoke the software-based

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

12:16 K. Parasyris et al.

Fig. 4. Effects of single fault injection, using the GemFI simulator at the architectural CPU level, and the
software-based approach during native execution.

Fig. 5. Energy gains of a single task for Sobel ex-
ecuted at voltages Vl < Vh for constant frequency
fh = 3.7GHz.

Table II. SlowRel and FastUnRel Configuration
Settings Used in Our Evaluation, and Average
Fault Rates of the FastUnRel Configurations

SlowRel FastUnRel
Freq. Voltage Freq. Voltage Fault Rate

1.67 GHz 0.90V 3.7 GHz 0.90V 10−7

1.54 GHz 0.89V 0.89V 10−6

1.41 GHz 0.88V 0.88V 10−5

fault-injection logic. For each application, combination of protection mechanisms, and
voltage level (fault rate), we perform 10,000 multiple fault injection experiments for a
confidence interval of 95% and an error margin of 2.5%.

8. EXPERIMENTAL RESULTS

We study the behavior of benchmarks for the different protection levels supported by
our runtime system (Section 3) using the methodology discussed in Section 5 on our
CPU clocked up to 3.70GHz. We fix the FastRel configuration to the highest perfor-
mance configuration, with Vh = 1.06V, fh = 3.7GHz. To determine proper FastUnRel
configurations, we run our benchmarks for different values for Vl while keeping fre-
quency to fh, observe their behavior, and compute the corresponding energy gains.

Figure 5 demonstrates the energy gains for a single task of Sobel when executed at
different FastUnRel configurations in comparison with an execution in the FastRel con-
figuration. The “sweet spot” is around 0.88V. If we further undervolt, inducing faults
at higher rates, then tasks are practically certain to crash the CPU. This increases the
overhead due to the activation of protection and task correction mechanisms in the
SlowRel configuration and cancels any energy gains. In contrast, when a core operates
in voltage regions higher than the PoFF, the failure rate is very small, and the func-
tionality of our framework is rarely activated. Since these effects are observed in all the
application benchmarks in our evaluation, we focus on the “promising” voltage range
from 0.88V to 0.90V. In our evaluation, we set FastRel = (1.06V, 3.7GHz). Table II
summarizes the configurations used in our experiments.

Figure 6 breaks down the execution time of a task for each benchmark using a fixed
frequency of 3.7GHz. The time spent by the runtime system to create and schedule

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

Significance-Aware Program Execution on Unreliable Hardware 12:17

Fig. 6. Breakdown of task execution time for each
benchmark.

Table III. Average Task Execution Time in Cycles
(Thousands), Number of Tasks Executed

Reliably/Unreliably, and Number of Voltage and
Frequency Transitions for Each Benchmark

Bench. C Nr Nu NF R→SR NSR→F R

DCT 133K 4096 28672 1 1
Sobel 50K 410 3684 1 1
Blscls 197K 90 10 1 1

Kmeans 283K 1500 13500 83 83
Jacobi 594K 830 7470 83 83

tasks, to protect the memory, and to checkpoint the state of each task before execution
is less than 5% of the total task execution time. Task creation and scheduling overhead
is practically constant, at about 5,000 cycles. The same applies to checkpointing, which
costs approximately 2,000 cycles. Noticeably, in Sobel and Blackscholes, the overhead of
correction is comparable with the task execution time. These two benchmarks execute
an approximate version of the computation as a correction heuristic, whereas the rest
simply discard the computed erroneous solutions, which incurs almost zero overhead.

Figure 7 summarizes our experimental results for a range of voltage settings and
protection mechanisms. For each benchmark, we present two diagrams. The left one
depicts the cumulative distribution function (CDF) of the percentage of experiments
(y-axis) achieving a specific quality threshold (x-axis) under different protection mech-
anisms (different lines). For the media benchmarks (DCT, Sobel) the quality metric
is Peak Signal To Noise Ratio (PSNR) (higher value is better). For the remaining
benchmarks, quality is quantified by the relative error w.r.t the fully reliable execution
(lower value is better). The two extreme bins of the x-axis correspond, on the one side,
to experiments that resulted in bitwise exact results and, on the other side, to experi-
ments producing very bad output quality. The percentage of crashed experiments can
be deduced by subtracting the percentage of worst-quality experiments from 100%. The
percentage of experiments that resulted in bitwise exact results are equal to the per-
centage of experiments that provide the best quality in the CDF. For a specific quality
target, the height of each CDF line at the specific quality corresponds to the percentage
of experiments that achieve the specific quality of results. Intuitively, the sooner (to the
left) and the higher the lines raise, the better the respective protection configurations.

The diagrams to the right depict the average energy gains against a fully reliable
execution (FastRel state) using our runtime in the NP configuration. The number of
voltage and frequency transitions, the average execution time of a task in cycles, as well
as the number of reliable and non-reliable tasks are given in Table III. In all scenarios
where task significance information is taken into account, the task ratio is fixed to
10%, except DCT, in which the requested ratio is 13%. In DCT, all tasks that compute
the upper-left coefficient corner need to be executed reliably. These tasks correspond
to the 13% of the total number of tasks. In scenarios that do not exploit significance
information, all tasks are executed unreliably.

When no protection mechanism is active, all experiments result in crashes. Basic
protection eliminates crashes and can even lead to satisfactory behavior as long as the
fault rate remains moderate. As expected, error resilience increases as more protection
mechanisms are employed. As an exception, result-check functions (B-RC) may produce
worse results compared with BP by discarding partially good results produced by tasks
before they crash. On the other hand, energy gains are typically reduced as the amount
of protection increases. Therefore, we select naive result check (RC) functions, which do
not spend a lot of time to detect and correct an error. This increases the energy gains;

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

12:18 K. Parasyris et al.

Fig. 7. Experimental results for different Vl values for the SlowRel and FastUnRel configurations. Percent-
age of experiments that achieved a certain quality (left), and energy gains with each protection scenario
(right).

however, it decreases the quality of the end result. Another interesting observation
is that task re-execution (FS-RE) does not guarantee perfect results, as is clearly
visible from the CDFs in Figure 7. A task is re-executed reliably only if it crashes
or the result-check function requests a re-execution. Since the result-check functions
are simple, they miss silent data corruptions, which in turn lead to imperfect results.
Finally, when combining all protection mechanisms, the application error resiliency is
pushed to significantly higher fault rates. In the following paragraphs, we discuss the
behavior of each application in more detail.

The two image processing benchmarks demonstrate a similar behavior. The tran-
sition from NP to BP completely eliminates any program crashes. However, there is

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

Significance-Aware Program Execution on Unreliable Hardware 12:19

Fig. 8. DCT output at 0.89V, with one fault injected every 100,000 cycles. The images correspond (from left
to right) to the BP, B-RC, B-SF, and FS protection configurations, resulting in PSNRs of 12-, 13-, 15-, and
37dB, respectively. A fault free execution leads results in a PSNR of 43dB. NP deterministically leads to
crashes.

no guarantee for the quality of the output. The produced outputs are of unacceptable
quality when executed in all FastUnRel configurations. Even the addition of a result-
check function (B-RC) does not increase the quality; the same is observed for the B-SF
scenario. In DCT B-RC, the detection part of the result-check function is able to detect
many errors; however, when errors corrupt tasks that should had been significant,
there is no efficient way to correct them. This motivates the usage of the significance
information by our runtime system. On the other hand, in Sobel, the detection part
is incapable of detecting many errors. In the B-SF scenario, significant tasks are pro-
tected by the software stack; however, there is no increase in the quality of the output.
In the case of DCT, the absence of a result-check function allows faults that manifest
on non-significant tasks to negatively impact the end quality. Figure 8 illustrates the
output of four protection configurations (excluding NP and FS-RE) for the DCT bench-
mark. The corrupted images show the effect of faults when protection is not adequate,
while the rightmost image shows that even in a highly faulty environment, our ap-
proach almost eliminates visible artifacts. In Sobel, the significance characterization of
tasks simply spreads unreliability uniformly within the output; however, PSNR does
not capture such effects. It is interesting to note that for Sobel at 0.88V, the B-RC leads
to smaller energy gains than B-SF. Under such high error rates, tasks tend to crash
frequently, which is detectable by the runtime system and therefore the correction part
is invoked. However, in Sobel, the correction part of the result-check function is almost
as costly as the task itself (Table III), so correcting a large number of tasks incurs
excessive overhead. The combination of the result-check function with the significance
values (FS scenario) results in increased quality. Even in the highest fault rates, the FS
scenario delivers quality higher than 35dB for DCT and 30dB for Sobel, respectively,
for all experiments. Similar behavior is observed for the FS-RE scenario. In the case
of Sobel, the detection part of the result-check function is unable to detect most faults
except the ones that lead to task crashes. Therefore the correction part (re-execution
in FS-RE) is rarely executed. Consequently, the negative (energywise) impact of the
re-execution is not captured in this benchmark.

In the FS configuration when the voltage is decreased from 0.90V to 0.88, the energy
gains of DCT slightly increase from 18% to 21%, whereas in Sobel the energy gain is
reduced from 20.0% to 16.0% The result-check function of DCT sets a default value (0) to
the faulty output. For Sobel, an approximate version of the task is executed. Therefore,
the energy gains due to undervolting are eliminated by executing the result-check
function more frequently due to the higher fault rate. A similar trend is observed for
DCT in the FS-RE configuration. Re-executing the entire task every time its output is
detected as erroneous outweighs all energy savings and results in energy losses.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

12:20 K. Parasyris et al.

Fig. 9. Quality vs. energy tradeoffs using the ratio parameter in the FS configuration.

The computationally intensive Blackscholes uses mathematical functions, such as
logarithms, square roots, and so on, that return Not A Number (NaN) or inf when ar-
guments are outside their definition range. Detecting such errors is easy. Since many
faults can be detected, FS-RE computes exact outputs 24% of the time when oper-
ating at 0.90V. The resulting output quality is exceptional with a relative error less
than 0.03% across all experiments. However, at high fault frequencies, the application
results in energy losses, since a large number of tasks need to be re-executed in the
SlowRel domain.

k-means and Jacobi demonstrate similar characteristics. At 0.90V, in all protection
scenarios, both applications result in a relative error less than 10−6%. In k-means,
the quality decreases rapidly for higher fault rates. Neither the result-check function
nor the significance values increase output quality. The result check function has no
efficient way to correct errors, and the small subset of the last significant iterations is
unable to assign the points to the correct centers. For Jacobi, at 0.89V BP has better
quality than B-RC. In B-RC, when an error is detected, the current solution estimate
is replaced with that of the previous iteration. At high error rates, faults are frequently
detected, and therefore the respective iterations are discarded. In Jacobi, it is better to
rely on the self-healing attributes than correct the result.

Figure 9 presents experiments in which we vary the ratio parameter and record the
energy savings and output quality for different values for the Sobel and Blackscholes
benchmarks under the FS configuration. The ratio knob allows the user to select the
percentage of reliably executed tasks and can effectively control the tradeoff between
energy savings and quality loss. A similar behavior is observed in all benchmarks.

Note that energy gains are best obtained when shaving voltage guard bands to
the point of first failure. More aggressive voltage scaling diminishes improvements in
energy efficiency due to the overhead of error detection and correction.

9. RELATED WORK

In this section, we review the research effort on software and hardware techniques to
detect platform errors and alleviate their effects on functionality and performance.

Topaz [Achour and Rinard 2015] is a task-based framework that executes computa-
tions unreliably. An online outlier detection mechanism detects and then re-computes
unacceptable task results reliably. Chisel [Misailovic et al. 2014] selects approximate
kernel operations to minimize an application’s energy consumption while satisfying
its accuracy specification. Our framework can dynamically operate at different energy
gain/output qualities configurations using the ratio knob to gracefully trade off output
quality with energy reduction.

Rinard et al., in one of the chronologically earlier efforts on task-based error-tolerant
computing, propose a software mechanism that allows the programmer to identify

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

Significance-Aware Program Execution on Unreliable Hardware 12:21

task blocks and then creates a profile-driven probabilistic fault model for each task
[Rinard 2006]. This is accomplished by injecting faults at task execution and observ-
ing the resulting output distortion and output failure rates. Task Level Vulnerability
(TLV) [Rahimi et al. 2013] captures dynamic circuit-level variability for each OpenMP
task running in a specific processing core TLV meta-data are gathered during execution
by circuit sensors and error detection units to provide characterization at the context
of an OpenMP task. Based on TLV metadata, the OpenMP runtime apportions tasks
to cores aiming at minimizing the number of instructions that incur errors. TLV does
not consider error recovery and user-specified approximate execution paths.

Rehman et al. present a framework for reliable code generation and execution using
reliability driven compilation [Rehman et al. 2016]. A compiler generates multiple,
functionally equivalent, versions of a given function that differ in terms of vulnera-
bility and execution time. On profiling the versions, the runtime system selects one
that both increases the reliability of the system and meets the application’s real-time
constraints. Their work enforces functional correctness but does not exploit the al-
gorithmic characteristic of significance. Salehi et al. [2015] introduces a system that
selects a reliability robustness mechanism (Triple or Double Modular Redundancy,
Dual Modular Redundancy (DMR)/Triple Modular Redundancy (TMR)) as well as the
CPU operating voltage and frequency. Its goal is to minimize power consumption while
achieving the reliability and timing requirements of the system. In our work, we do
not seek functional correctness, but we offer a mechanism to exploit the algorithmic
significance to allow errors to manifest only on non-significant computations. [Rehman
et al. 2011] introduces the instruction vulnerability index (IVI) for software reliability
estimation. Vulnerability indexes at the granularity of the function and the application
is computed based on IVI. Given a user-specified tolerable performance overhead con-
straint, they perform compiler transformation to enhance code reliability. In our work,
we do not take into account the instruction vulnerability. We consider the algorith-
mic property of significance to steer application execution on reliable and unreliable
cores. Relax is an architectural framework that lets programmers turn off the recovery
mechanism as well as annotate regions of code for which hardware errors can occur [de
Kruijf et al. 2010]. The hardware supports error detection and a C/C++ language-level
recovery mechanism provides error recovery from hardware faults at different levels
of code granularity.

An example of a domain-specific approach to improve fault resiliency is described
by Schmoll et al. [2013]. Algorithmic and static analysis is performed to detect which
variables must be computed reliably and which variables can be computed approxi-
mately in an H.264 video decoder. Correction techniques are applied at execution time
only to errors that have been predetermined to have the largest impact to the output
result. We follow a domain-agnostic approach in our article, yet we provide sufficient
abstraction for implementing domain-specific approximation methods.

Hardware support for error-tolerant and approximate computing spans designs to
novel architectures. Razor is a processor design that is based on dynamic detection
and correction of timing failures of the critical paths due to below-nominal supply
voltage [Ernst et al. 2003]. The key idea is to tune supply voltage by monitoring the
error rate during operation using shadow latches controlled by delayed clocks.

The observation that the sequence of instructions in an application binary can have
a significant impact on timing error rate is studied in Hoang et al. [2011]. A number of
simple, yet effective, code transformations that reduce error rate are introduced.

In Iyer et al. [2005], a hardware module monitors the processor pipeline and
checks for possible control flow violations (infinite loops). This module is used by the
OS/compiler/application to detect errors and take corrective action. ERSA is a multicore
architecture where cores are either fully reliable or have relaxed reliability [Leem et al.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

12:22 K. Parasyris et al.

2010]. ERSA uses an explicit and application-specific mapping of code to cores with dif-
ferent levels of reliability. Our work follows a different approach, the programmer uses
significance to indicate code with relaxed correctness semantics, and the framework
implements error detection and recovery, potentially approximating the task output.

EnerJ proposes a programming model that explicitly declares data structures that
may be subject to unreliable computation in return for increased performance or
fault tolerance [Sampson et al. 2011]. EnerJ allows operations to be computed in
aggressively voltage-scaled processors and data structures to be stored in DRAM with
low refresh rate and SRAM with low supply voltage. Exposing such computing to the
programmer requires expanding the processor ISA with instructions that offer only
an expectation, rather than a guarantee, that a certain operation will be performed
correctly [Esmaeilzadeh et al. 2012]. Contrary to our framework, EnerJ specifies signif-
icance in the granularity of data, whereas we use as a vehicle the granularity of a task.

Approximate computing refers to the deliberate and controllable injection of impre-
cise computations aiming at energy and performance improvements.

Vassiliadis et al. [2015] exploit the significance of task-based computations by ex-
ecuting approximate alternatives of the least-significant ones. Their work focuses on
approximate computing in which the task execution semantics are fully controllable:
The runtime system can execute a task, or a approximate version of the task, or even
drop the task altogether. In this article, we study how task significance can be exploited
to run tasks unreliably and present a different programming model and runtime sys-
tem, designed to operate on top of unreliable hardware and gracefully tolerate faults
that may mainifest due to unreliable task execution. Green allows the programmer to
write several versions of a single function with varying precision [Baek and Chilimbi
2010]. A runtime system then monitors the application’s quality online to select the
degree of approximation that meets a target Quality Of Service (QoS) level. Sloan
et al. provides manual code transformation guidelines for approximate computing and
fault recovery [Sloan et al. 2012]. These frameworks rely on application-specific invari-
ants. In our case, the programmer uses a higher level of abstraction for fault detection
and recovery, namely computational significance and result-check functions, while the
runtime system supports error recovery mechanisms.

ApproxIt is a framework for approximate computation of iterative-based methods,
based on a lightweight quality control mechanism [Zhang et al. 2014]. The error-
resilient and error-sensitive parts of each application are identified during an offline
phase. Then, at the online stage, reconfiguration of approximation modes are performed
at certain iterations considering the time-varying resiliency requirements of each ap-
plication and respecting the user-specified output quality. Unlike our work, ApproxIt
uses approximation at the level of one loop iteration and not at the task level.

Laurenzano et al. [2016] describe input responsive approximation. A canary input
(a much smaller representation of the full input) is used to dynamically predict the
accuracy and speedup characteristics of the full input for a number of approximation
options. Using the canary input, they can easily explore all approximate options and
choose the fastest option that achieves the desired level of accuracy.

There has been a considerable amount of work on compilers to trade off accuracy
for other benefits such as reduced energy consumption. Loop perforation is a compiler
technique that drops non-critical loop iterations. It considers critical those that have
to be always executed for the application to produce an acceptable quality [Sidiroglou-
Douskos et al. 2011]. Our approach corrects an error using a variety of user-provided
methods that differs from just skipping erroneous or insignificant loop iterations.

Ringenburg et al. [2015] introduces offline debugging and online monitoring mecha-
nisms for approximate programs. The offline mechanisms detect correlations between
Quality Of Result (QoR) and approximate operations to evaluate the degree to which

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

Significance-Aware Program Execution on Unreliable Hardware 12:23

approximate operations affect approximate variables. The online mechanisms consist
of verification functions that detect and compensate QoR loss while maintaining en-
ergy gains. Khudia et al. [2015] present an output-quality monitoring and management
technique that meets a given output quality threshold based on the observation that
simple prediction approaches can predict approximation errors. The authors use an
error detection module that tracks predicted errors to find the elements that need
correction. The recovery module, which runs in parallel to the detection module, re-
executes the iterations that lead to high errors. Lightweight checks are available for a
set of benchmarks [Kadric et al. 2014]. When the checks detect a fault, the results are
re-computed. Our work is complementary to theirs; the proposed result-check functions
can be realized through the use of the aforementioned frameworks.

10. CONCLUSIONS

In this article, we introduce and evaluate a framework that enables execution on
platforms operating unreliably, outside their normal voltage/frequency envelope, to
aggressively reduce energy consumption. We present a programming model for the
development of error-resilient programs in a disciplined manner. Our model exploits
programmer wisdom to characterize task significance to provide checks and repair
mechanisms to the outputs of tasks that are executed unreliably. We evaluate the effec-
tiveness of different protection mechanisms. We show that traditional system software
protection mechanisms are not adequate; however, their combination with program-
mer wisdom provides effective protection against crashing and silent data corruptions,
while enabling considerable energy gains. Interestingly, modern processors with the
assistance of our framework can produce acceptable results until they reach the Point
of First Failure. Below that point, either additional energy gains are too low or massive
failure rates defeat any software-based realistic protection mechanism.

A key direction for future work is to investigate significance in conjunction with par-
allelism. The approach supports parallel execution. Sometimes, significance is expected
to be orthogonal with parallelism; however, equally often significance and parallelism
may be conflicting concerns (in terms of task creation). Optimizing programs to si-
multaneously address both concerns is an open problem. Introducing parallelism also
opens research directions in the areas of runtime policies for resource management
and system configuration provisioning, depending on the dynamic requirements of
applications (number and requirements of significant and non-significant tasks).

REFERENCES

Sara Achour and Martin C. Rinard. 2015. Approximate computation with outlier detection in topaz. In
Proceedings of the ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications.

Woongki Baek and Trishul M. Chilimbi. 2010. Green: A framework for supporting energy-conscious program-
ming using controlled approximation. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The parsec benchmark suite:
Characterization and architectural implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques.

David Blaauw, Sudherssen Kalaiselvan, Kevin Lai, Wei-Hsiang Ma, Sanjay Pant, Carlos Tokunaga,
Shidhartha Das, and David M. Bull. 2008. Razor II: In situ error detection and correction for PVT
and SER tolerance. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC),
Digest of Technical Papers.

Jeremy Constantin, Lai Wang, Georgios Karakonstantis, Anupam Chattopadhyay, and Andreas Burg. 2015.
Exploiting dynamic timing margins in microprocessors for frequency-over-scaling with instruction-based
clock adjustment. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

12:24 K. Parasyris et al.

Shidhartha Das, David Roberts, Seokwoo Lee, Sanjay Pant, David Blaauw, Todd Austin, Krisztián Flautner,
and Trevor Mudge. 2006. A self-tuning DVS processor using delay-error detection and correction. IEEE
J. Solid-State Circ. 41, 4 (2006).

Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. 2010. Relax: An architectural frame-
work for software recovery of hardware faults. In Proceedings of the 37th International Symposium on
Computer Architecture.

Arnaud Doucet, Simon Godsill, and Christophe Andrieu. 2000. On sequential monte carlo sampling methods
for bayesian filtering. Stat. Comput. 10, 3 (2000), 197–208.

Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham, Conrad Ziesler, David
Blaauw, Todd Austin, Krisztian Flautner, and Trevor Mudge. 2003. Razor: A low-power pipeline based on
circuit-level timing speculation. In Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Architecture support for disciplined
approximate programming. In Proceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems.

Íñigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D. Nguyen. 2015. ApproxHadoop: Bring-
ing approximations to mapreduce frameworks. In Proceedings of the 22th International Conference on
Architectural Support for Programming Languages and Operating Systems.

Meeta S. Gupta, Jude A. Rivers, Pradip Bose, Gu-Yeon Wei, and David Brooks. 2009. Tribeca: Design for
PVT variations with local recovery and fine-grained adaptation. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture.

Giang Hoang, Robby Bruce Findler, and Russ Joseph. 2011. Exploring circuit timing-aware language and
compilation. In Proceedings of the 16th International Conference on Architectural Support for Program-
ming Languages and Operating Systems.

Ravishankar K. Iyer, Nithin M. Nakka, Zbigniew T. Kalbarczyk, and Subhasish Mitra. 2005. Recent advances
and new avenues in hardware-level reliability support. IEEE Micro 25, 6 (2005).

Norman James, Phillip Restle, Joshua Friedrich, Bill Huott, and Bradley McCredie. 2007. Comparison of
split-versus connected-core supplies in the POWER6 microprocessor. In Proceedings of the 2007 IEEE
International. Solid-State Circuits Conference. Digest of Technical Papers.

Edin Kadric, Kunal Mahajan, and André DeHon. 2014. Energy reduction through differential reliability
and lightweight checking. In Proceedings of the 22nd IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines.

Daya S. Khudia, Babak Zamirai, Mehrzad Samadi, and Scott Mahlke. 2015. Rumba: An online quality
management system for approximate computing. SIGARCH Comput. Archit. News 43, 3 (2015).

Michael A. Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke, Jason Mars, and Lingjia Tang. 2016.
Input responsiveness: Using canary inputs to dynamically steer approximation. In Proceedings of the
27th ACM SIGPLAN Conference on Programming Language Design and Implementation.

Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn A. Jacobson, and Subhasish Mitra. 2010. ERSA: Error
resilient system architecture for probabilistic applications. In Proceedings of the Conference on Design,
Automation and Test in Europe.

Régis Leveugle, A. Calvez, Paolo Maistri, and Pierre Vanhauwaert. 2009. Statistical fault injection: Quanti-
fied error and confidence. In Proceedings of the 2009 Design, Automation & Test in Europe Conference &
Exhibition.

Abdelhafid Mazouz, Alexandre Laurent, Benoı̂t Pradelle, and William Jalby. 2014. Evaluation of CPU fre-
quency transition latency. Comput. Sci. 29, 3–4 (2014), 187–195.

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. 2014. Chisel: Reliability-
and accuracy-aware optimization of approximate computational kernels. SIGPLAN Not. 49, 10 (2014).

Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. 2009. Introduction to Interval Analysis (1st ed.).
Society for Industrial and Applied Mathematics.

K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas. 2014. GemFI: A fault injection tool for
studying the behavior of applications on unreliable substrates. In Proceedings of the 2014 44th Annual
IEEE/IFIP Int. Conference on Dependable Systems and Networks (DSN).

Abbas Rahimi, Luca Benini, and Rajesh K. Gupta. 2012. Analysis of instruction-level vulnerability to dy-
namic voltage and temperature variations. In Proceedings of the 2012Design, Automation & Test in
Europe Conference & Exhibition (DATE).

Abbas Rahimi, Andrea Marongiu, Paolo Burgio, Rajesh K. Gupta, and Luca Benini. 2013. Variation-tolerant
OpenMP tasking on tightly-coupled processor clusters. In Proceedings of the Conference on Design,
Automation and Test in Europe.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

Significance-Aware Program Execution on Unreliable Hardware 12:25

Vijay Janapa Reddi, Svilen Kanev, Wonyoung Kim, Simone Campanoni, Michael D. Smith, Gu-Yeon Wei,
and David Brooks. 2010. Voltage smoothing: Characterizing and mitigating voltage noise in production
processors via software-guided thread scheduling. In Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture.

Semeen Rehman, Kuan-Hsun Chen, Florian Kriebel, Anas Toma, Muhammad Shafique, Jian-Jia Chen, and
Jörg Henkel. 2016. Cross-layer software dependability on unreliable hardware. IEEE Trans. Comput.
65, 1 (2016), 80–94.

Semeen Rehman, Muhammad Shafique, Florian Kriebel, and Jörg Henkel. 2011. Reliable software for
unreliable hardware: Embedded code generation aiming at reliability. In Proceedings of the 7th
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis.

Martin Rinard. 2006. Probabilistic accuracy bounds for fault-tolerant computations that discard tasks. In
ICS’06. 324–334.

Michael Ringenburg, Adrian Sampson, Isaac Ackerman, Luis Ceze, and Dan Grossman. 2015. Monitoring
and debugging the quality of results in approximate programs. In Proceedings of the 20th International
Conference on Architectural Support for Programming Languages and Operating Systems.

Mohammad Salehi, Mohammad Khavari Tavana, Semeen Rehman, Florian Kriebel, Muhammad Shafique,
Alireza Ejlali, and Jörg Henkel. 2015. DRVS: Power-efficient reliability management through dynamic
redundancy and voltage scaling under variations. In Proceedings of the IEEE/ACM International Sym-
posium on Low Power Electronics and Design.

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman.
2011. EnerJ: Approximate data types for safe and general low-power computation. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design and Implementation.

Florian Schmoll, Andreas Heinig, Peter Marwedel, and Michael Engel. 2013. Improving the fault resilience
of an H.264 decoder using static analysis methods. ACM Trans. Embedded Comput. Syst. 13, 1s (2013).

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. 2011. Managing perfor-
mance vs. accuracy trade-offs with loop perforation. In Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software Engineering.

Joseph Sloan, John Sartori, and Rakesh Kumar. 2012. On software design for stochastic processors. In
Proceedings of the 49th Annual Design Automation Conference.

Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A lightweight performance-oriented tool
suite for x86 multicore environments. In Proceedings of the 2010 39th International Conference on
Parallel Processing Workshops.

G. Tziantzioulis, A. M. Gok, S. M. Faisal, N. Hardavellas, S. Ogrenci-Memik, and S. Parthasarathy. 2015. b-
HiVE: A bit-level history-based error model with value correlation for voltage-scaled integer and floating
point units. In Proceedings of the 52nd Annual Design Automation Conference.

Vassilis Vassiliadis, Charalampos Chalios, Konstantinos Parasyris, Christos D. Antonopoulos, Spyros Lalis,
Nikolaos Bellas, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. 2015. A significance-driven pro-
gramming framework for energy-constrained approximate computing. In Proceedings of the 12th ACM
International Conference on Computing Frontiers.

Vassilis Vassiliadis, Jan Riehme, Jens Deussen, Konstantinos Parasyris, Christos D. Antonopoulos, Nikolaos
Bellas, Spyros Lalis, and Uwe Naumann. 2016. Towards automatic significance analysis for approximate
computing. In Proceedings of the Internationla Symposium on Code Generation and Optimization.

Foivos S. Zakkak, Dimitrios Chasapis, Polyvios Pratikakis, Angelos Bilas, and Dimitrios S. Nikolopoulos.
2012. Inference and declaration of independence: Impact on deterministic task parallelism. In Proceed-
ings of the 21st International Conference on Parallel Architectures and Compilation Techniques.

Qian Zhang, Feng Yuan, Rong Ye, and Qiang Xu. 2014. ApproxIt: An approximate computing framework for
iterative methods. In Proceedings of the 51st Annual Design Automation Conference 2014 (DAC’14).

Received August 2016; revised February 2017; accepted February 2017

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 2, Article 12, Publication date: April 2017.

