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Abstract—In this paper, we propose algorithms for presynthe-
sis estimation of hardware cost of a streaming accelerator. Our
proposed estimation method helps to accelerate the design-space-
exploration phase by orders of magnitude by eliminating the need
to perform logic and physical synthesis in each iteration. We
present algorithms to perform early cost estimation of resources
that are specific to a streaming accelerator, and we evaluate our
techniques using an industrial tool flow and a set of streaming
benchmarks. For the register-queue sizes, our estimations are
in the range of 28%–9% of actual synthesis results on average,
depending on the given resource constraints, while the datapath
area estimations are within 14%. A typical estimation requires less
than a minute, while generating the configuration bitstream of a
streaming accelerator can take as much as 30 min according to
our experiments. Considering several repetitions of the synthesis
stage for the design space exploration, our estimation framework
yields an order of magnitude speedup.

Index Terms—Design automation, field-programmable gate ar-
rays (FPGAs), high-level synthesis, reconfigurable architectures.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate-array (FPGA)-based
accelerators are becoming increasingly attractive, par-

ticularly in response to the growing importance of performance-
per-watt efficiency of multicore systems-on-chip (MCSoCs).
Such systems can benefit from the extensive parallelism
possible through the use of reconfigurable accelerator hard-
ware. The streaming programming model is an emerging
embedded domain in which an application can be viewed as
a collection of independent kernel computations that com-
municate over explicit data channels [1]. Stream kernels exhibit
large degrees of data and task level parallelism, with regular
or even statically defined communication patterns. Therefore,
the input and output data for each kernel can be prefetched
and delivered from/to a stream register file instead of the main
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memory. This model decouples the datapath from the memory
unit and enables extensive parallelism and heavy pipelining.

Processor architectures following this computation paradigm
have been developed recently. Bellas et al. [2] have recently
proposed an automated design flow to customize hardware
accelerators which allows prototyping of streaming accelerators
on FPGAs. The datapath of the streaming accelerators can be
characterized by a template, consisting of a set of functional
units (FUs). In order to achieve high throughput, modulo
scheduling is used to exploit instruction level parallelism. In
this template, register queues at the outputs of FUs is one of the
major building blocks that enable communication between FUs
and maintain intermediate results. The third major component
in this template is the network of multiplexers enabling the
routing of data among various FUs.

Automated design flows have proven effective for rapid pro-
totyping of accelerators on reconfigurable logic. On one hand,
the process of identifying the optimal configuration of this well-
defined template presents a perfect opportunity for automation.
On the other hand, this requires a design space search involving
multiple iterations of the time-consuming logic and physical-
synthesis stages.

In this paper, we propose presynthesis cost-estimation al-
gorithms for the fundamental building blocks of the acceler-
ator template. Our estimation techniques enable the designer
to quickly assess the hardware cost of a certain template
configuration without actually performing the time-consuming
synthesis and physical-mapping steps.

The problem of automating the design flow for template-
based streaming accelerators poses unique opportunities and
challenges. The process of identifying the optimal configura-
tion of this well-defined template presents a perfect oppor-
tunity for automation, as demonstrated by earlier work. The
reconfigurable accelerator will be customized by a design-
space-exploration tool, where several kernels extracted from
a complex application need to be evaluated for their potential
speedup if implemented with this accelerator. This requires a
fast comparison of expected hardware cost for numerous can-
didate kernels. In addition, for each individual kernel, further
dimensions need to be explored such as different resource con-
straints (RCs) (i.e., different allocation of FUs). Logic-synthesis
and physical-design stages combined constitute an excessively
lengthy process, and it may not be possible to synthesize all
plausible solutions in the solution space in a reasonable amount
of time. For example, if we target a Xilinx Virtex-II XC2VP2
FPGA for mapping streaming accelerators for two image-
processing applications hpf_med_cc and lpf_gc_rgb (these ap-
plications are described in Section V), none of the applications
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will fit in the device. This FPGA has only 1408 slices, while
hpf_med_cc and lpf_gc_rgb require more than 4000 slices in
the template configuration targeting highest bandwidth. In such
cases, it is very useful to have an early estimate of the resources
required because the synthesis of each of these applications
starting from scheduling to logic synthesis and placement and
routing can run in the range of a couple of hours. After synthesis
fails, the designer has to reiterate the entire procedure to check
whether the resource requirements are met. On the other hand,
our proposed early cost estimation takes only a few minutes
for these benchmarks. Thereby, if the estimated resources do
not meet the requirements, the designer can simply change
the user-constraints and reestimate again. When the estimate
finally meets the capacity of the FPGA device, the designer can
proceed with synthesis. Therefore, in our proposed framework,
there is only one synthesis run as opposed to the multiple
synthesis runs for the traditional approach.

Since our area estimation method precedes modulo schedul-
ing, our methodology will abstract out any heuristics that a
modulo scheduler may potentially be using, only keeping the
fact that the schedule will optimize for throughput and will
attempt to minimize the iteration interval (II). This postulate
does not limit generality, since high throughput is the main
objective in most streaming applications. The estimated area
of the streaming accelerator is a random variable whose sample
space is defined by the RCs set by the user and by the streaming-
accelerator template.

The remainder of this paper is organized as follows. We
overview related work in Section II. In Section III, we delineate
the streaming-accelerator template architecture, and we present
a brief overview of the CAD tool for streaming-accelerator
synthesis. Section IV describes the proposed prescheduling
register-queue estimation and the FU area-estimation tech-
niques. In Section V, we present our experimental methodology
and results. Section VI summarizes our conclusions.

II. RELATED WORK

A compile-time FPGA area estimation approach is proposed
by Kulkarni et al. [12], where the compiler user is provided
with feedback on the area complexity. Hardware compilers
apply extensive transformations that exploit parallelism, and
their area estimation approach takes into account such compiler
optimizations. Brandolese et al. [5] presented a parametric
area estimation method at System-C level for FPGA-based
designs. Their goal is to reduce the effort of the area estimator
to adapt to the changes in the EDA design environments.
An area estimation of look-up table (LUT)-based designs is
proposed by Hamed et al. [9], where VHDL is transformed
into a Boolean network, and then, upper and lower bounds on
the number of required LUTs are estimated. Area, time, and
power estimation methodologies by Bilavarn et al. [4] convert
a behavioral description in C to a hierarchical control/data-
flow graph (HCDFG). Area estimation from MATLAB code
is presented in [15]. A macromodel-based area estimation is
presented by Jiang et al. [11]. Another high-level FPGA area-
estimation technique is proposed by Enzler et al. [8] targeted
for telecommunication and multimedia applications. However,

all these work primarily focus on the area of FUs only and do
not take into consideration the area of the register queues at
the output of the FUs—a major building block for streaming-
accelerator architecture. Moreover, in most of these work,
bitwidth of FUs are also not considered with some exceptions
[8], [11], [15]. Moreno et al. [14] proposed a register-estimation
method for unscheduled DFGs. Memory-unit estimation in
addition to FU area has also been addressed for technologies
other than FPGAs [7]. Finally, we have presented a queue-size-
estimation algorithm for streaming accelerators in our previous
work [13]. This paper only addressed the streaming queues of
the accelerator architecture and did not provide any methods or
results for other components. Furthermore, we did not evaluate
the impact of the estimation on the design space exploration
concerning the configuration of the template for a kernel.

In this paper, we propose a unified framework for estimating
both the register requirements and the FU area at the presynthe-
sis stage. Prior work in area cost estimation for reconfigurable
hardware generally assumes a one-on-one mapping of tasks
from the intermediate representation (DFG, control DFG) to
FUs [9], [11], [12]. This paper distinguishes itself in the fact
that our estimation techniques can take a given RC into account.
Thereby, our estimation is sensitive to the impact of resource
binding and resource sharing onto hardware cost. In addition,
we provide additional estimation techniques to account for
building blocks specific to streaming architectures, namely, the
data buffers attached to FUs. We also evaluate the impact of our
estimation technique on the runtime of the overall architectural
exploration phase for the streaming accelerators.

III. ARCHITECTURAL SYNTHESIS OF

STREAMING ACCELERATORS

In this section, we will present an overview of the
stream-processing paradigm and the streaming-accelerator
architecture. We will also describe the industrial synthesis tool
flow, which automatically generates template-based streaming
accelerators. Our estimation framework has been integrated
into this flow.

A. Stream Processing

Stream processing exploits the “arithmetic intensity” [1] of
very large scale integration technology by clustering execu-
tion units together and exposing data movement and staging
to the programmer. Streaming applications are characterized
by a high degree of spatial locality but rather poor temporal
locality of data streams. Moreover, data access patterns in
most streaming applications are often known in advance, which
allows prefetching of data streams ahead of computations.
These distinctive features of streaming data are the key to an
effective streaming-vector architecture design. Such streaming
applications are often represented as streaming DFGs (sDFGs),
which are DFGs where I/O and internal communication edges
are data streams and not just simple variables. The operations
and the dependences among them are represented in just the
same manner as a DFG representation. Each node in the sDFG
represents basic arithmetic and logical operations, and the
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Fig. 1. Streaming accelerator template including the stream unit and the
datapath.

directed edges represent the dependence of one operation on
the output of a previous operation. Each node in the sDFG is
denoted by a descriptor, which specifies the operation type, the
precision of the output, and whether the operation is signed or
unsigned.

Input data streams are represented by stream descriptors. A
stream descriptor is comprised of a tuple (Type, Start_Address,
Stride, Span0, Skip0, Span1, Skip1, and Size). The Stride,
Span, Skip, and Type fields define the shape of the data stream
in the main memory layout. Start_Address points to the location
of the first data element in the memory. Each such stream passes
through the Stream Unit and, after the final data alignment
stage, gets presented at the input queues of FUs in the datapath.

Fig. 1 shows the template of the underlying streaming-
accelerator architecture. In this paper, this architecture template
and the industrial automated synthesis tool are used to generate
accelerators as a reference of comparison for our early estima-
tion tool [2].

The two main partitions of the architecture of Fig. 1 are as
follows: 1) the streaming interface unit and 2) the datapath
unit. The streaming interface consists of the address generation
unit, the address-line and bus-line buffers, and a stream buffer.
The major components of the datapath unit are the FUs, the
associated multiplexers at their inputs, and the register queues at
their outputs. Note that, in Fig. 1, the datapath contains two FUs
for illustrative purposes. The datapath may contain an arbitrary
number of FUs.

The stream unit transfers streams from a system memory, or
peripheral, through a system bus and presents them in order to
the accelerator. It also transfers processed output streams back
to the memory. The stream buffer and the data-alignment unit
store the incoming stream data and present them to the datapath
in order. The number of storage elements, their size, and their
interconnect depend on the stream shape and the requested

bandwidth of the data. Efficient memory-bandwidth usage by
the streaming interface is ensured by prefetching vector streams
from the system memory (or peripherals).

Our estimation framework focuses at the datapath unit shown
in Fig. 1. The area complexity of each stream unit does not
change considerably across different sDFGs and can, therefore,
be approximated as a constant regardless of the functionality of
the sDFG.

Fig. 2 shows a sequence of representations of a quantization
function which may be part of a video-compression algorithm
like MPEG-4 encoding. As shown in Fig. 2(b), the input and
output streams are denoted with the “vld” and “vstr” (load and
store actions) operations, corresponding to nodes v1 and v0 in
the sDFG. Internal operation nodes represent computation such
as extracting the sign of a number, subtraction, multiplication,
and arithmetic shift. In this particular example, if we assume
that the architecture template will contain one ALU, one multi-
plier, and one shifter, the organization of these resources could
be depicted as shown in Fig. 2(d). The ALU used for sign check,
subtraction, and addition.

If the RC is given as one multiplier, one ALU, and one
shifter, a mapping of this sDFG onto the streaming accelerator
would be able to achieve an II of two cycles. The resulting
implementation is shown in Fig. 2(d). Each FU is supported
with an output queue of size one. The shared resources have
multiplexers at their input ports.

Our aim is to estimate the area complexity of the resulting
accelerator shown in Fig. 2(d) (minus the I/O stream units),
given the user RCs, without resorting in expensive synthesis
and physical mapping in an FPGA fabric (for more information
on the architecture of the streaming-accelerator architecture, the
interested reader should consult prior literature [2], [6]).

B. Tool Flow for Area Estimation

The presynthesis area estimation procedure is an integral
part of an automatic generation tool, Proteus [2], which
produces synthesizable accelerators from the streaming
representation (Fig. 3). The synthesis tool selects designs
from a well-engineered framework, instead of generating the
given hardware from a generic representation of a high-level
language. The main points of the tool flow are the following:

1) a common template based on a simple data flow architec-
ture that processes streaming data (Fig. 1);

2) an iteration engine that instantiates designs based on
system parameters that meet system and user constraints
to initiate the next iteration of space search;

3) a scheduler that performs sDFG scheduling and
hardware;

4) an RTL constructor engine that produces optimized
Verilog code for the datapath and the stream interface
modules;

5) an evaluation phase that synthesizes the designs in an
FPGA and produces quality metrics such as area and
clock speed.

A set of DFG type of constructs are identified in the appli-
cation algorithms, and these portions of the code are targeted
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Fig. 2. C quant function is transformed to an sDFG and finally to a streaming accelerator. Note that only the code within the while loop is mapped into hardware.
(a) C code. (b) sDFG text code. (c) sDFG graphical representation. (d) Resulting streaming accelerator. RCs: 1 ALU, 1 MUL, 1 shifter. II II = 2.

Fig. 3. Presynthesis area estimation as part of the architectural generation
tool flow.

to run on the reconfigurable accelerator, while the rest of the
code executes on a scalar processor. The DFGs are passed
through the Proteus modulo scheduler along with resource- and
system-bandwidth constraints. The output of the scheduler is a
detailed hardware description of the datapath and the control
path, which is then run through the hardware generator tool,

which creates Verilog code. The design is then synthesized and
mapped onto the reconfigurable fabric.

The area-estimation function is used to replace the upper
part of Fig. 3, thus driving a faster architectural exploration
closure. As shown in Figs. 1 and 2, the datapath consists of an
interconnect of FUs, queue registers, and multiplexers. We will
examine the contribution of each one of these elements to the
area complexity of a streaming accelerator in the next section.
Given an unscheduled sDFG, G = (V,E), where V is the set
of nodes and E is the set of data dependences between nodes,
and a set of RCs R, our goal is to estimate the total number of
registers in the output queues of all the FUs (Section IV-A) and
the area of the FUs and associated multiplexers (Section IV-B).

IV. PRESYNTHESIS AREA ESTIMATION

In the following, we describe our proposed presynthesis
cost-estimation algorithms for different building blocks of the
streaming accelerator.

A. Queue Registers Area Complexity

Since the actual queue sizes at the outputs of FUs depend
on the scheduling and binding of sDFG operations, the presyn-
thesis area complexity is considered a random variable. Fig. 4
shows our register-queue-estimation flowchart. In the rest of
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Fig. 4. Flow of the register-queue-size-estimation tool.

Section IV-A, we will discuss the steps in our queue-estimation
technique in detail.

1) II Estimation: The first step of our estimation scheme is
to determine the II of an sDFG based on the RCs defined by the
user and the structure of the sDFG. One iteration of the sDFG
corresponds to one iteration of the corresponding loop kernel
in the behavioral specification. For the quant function shown in
Fig. 2, this would correspond to one iteration of the while loop.
The lower bound of the II is estimated based on the technique
presented by Hwang et al. [9]. As aforementioned, we assume
that any scheduler will be able to achieve this throughput, even
if the particular distribution of operations within the interval
may differ for each scheduler.

Let Ni be the number of operations in the sDFG that can be
implemented using a FU of type i, li be the latency to start a
new operation for each resource type i,1 and Mi be the number
of available FUs of type i. The lower bound of the II for an
acyclic graph IIac, given t types of FUs, is calculated as

IIac = max
1≤i≤t

(⌈
liNi

Mi

⌉)
. (1)

In the presence of cycles in the sDFG, the II also depends
on the maximum latency among all cycles in the graph. Let an
instance of operation opi at iteration ItA be denoted by opi at ItA
and li be its latency. In addition, let di be the associated weight
label of each edge e(opi, opj), which is the number of iterations
after which the result produced by opi will be consumed by opj.
In a given sDFG, if there are k such cycles c1, c2, . . . , ck, then
IIcyc will be given by

IIcyc = max
1≤i≤k

(⌈
Li

Di

⌉)
(2)

where

Li =
∑

opm∈ci

lm Di =
∑

edgem∈ci

dm.

1Also known as initiation interval of a functional unit.

Essentially, Li is the summation of operation latencies
around a cycle ci, and Di is the summation of edge weights
around the cycle ci. Finally, the value of the II will be given by

II = max(IIac, IIcyc). (3)

Although this is the minimum attainable II IImin, we will be
using this value with the understanding that any scheduler that
optimizes throughput will be able to obtain such a schedule.

An example illustrating the computation of the II lower
bound is shown in Fig. 5. There are two loop-carried depen-
dences in this example: one having an iteration distance of
two and the other having an iteration distance of one. Two
cycles, c1 and c2, are formed due to these loop dependences.
Assuming the latency of the nonpipelined multiplier to be two
cycles and that of an adder to be one cycle, L1 would be equal to
(1 + 1 + 2) = 4. L2 would be equal to (2 + 1) = 3. Similarly

D1 = (0 + 0 + 2) = 2 D2 = (0 + 1) = 1.

As a result

IIcyc = max
(⌈

4
2

⌉
,

⌈
3
1

⌉)
= 3.

The computation of IIacwould be as follows:

IIac = max
(⌈

1 × 3
2

⌉
,

⌈
2 × 2

2

⌉)
= max(2, 2) = 2.

As a result, the lower bound on the II would be determined as
max{IIac, IIcyc} = max{2, 3} = 3. A possible schedule obey-
ing the RCs and achieving this II is shown in Fig. 5(c).

2) Estimation of Initial Lower Bounds for Queues: The next
step is to determine a lower bound for the number of the queues
based only on the as-soon-as-possible (ASAP) and as-late-as-
possible (ALAP) schedules of the given sDFG (V,E). We
have used the ASAP latency of the sDFG as the upper bound
latency for the ALAP schedule. Note that computing the earliest
and latest start times of operations (i.e., ASAP and ALAP
schedules) is a significantly simpler task than actual resource-
constrained scheduling, which will take place during synthesis
and will employ a much more complex optimizing heuristic
to solve the intractable resource-constrained scheduling. Let
ASAPv and ALAPv be the ASAP and ALAP times of node
v ∈ V . Once we have both the ASAP and ALAP schedules,
we designate a lower bound on queue sizes to each edge of
the sDFG

Qedge
min (eij) = ASAPj − ALAPi − li (4)

where i, j ∈ V , and eij ∈ E. It may so happen that ASAPj is
actually less than ALAPi + li, which yields a negative queue
size for edge eij . However, queue sizes cannot be negative, and
there must be a queue at the output of every FU. Therefore, in
general, we have

Qedge
min (eij) = max {(ASAPj − ALAPi − li), 1} . (5)

The lower bounds on the queue sizes assigned to each
edge in this step are not very tight. The remainder of our
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Fig. 5. (a) Cyclic sDFG, where operations a and d have a data dependence with an iteration distance of two iterations and operations c and e have a dependence
for each iteration of the loop. The dotted loop edges are annotated with weights corresponding to these interiteration distances. (b) Edges (a, b), (b, d), and (d, a)
form a cycle. The edges (c, e) and (e, c) form a second cycle in the graph. These cycles are denoted as c1 and c2. (c) For the RC of two multipliers and two adders,
the cyclic graph can be scheduled with an II of three control steps.

efforts in queue-size estimation will be devoted to further
tighten these lower bounds as described in the following
sections.

3) Refinement of Queue Sizes of Edges: Our main tool is
based on the likelihood estimation that the source node may
actually be producing data before its ALAP time, and likewise,
the sink node may actually be consuming data after its ASAP
time. The likelihood of the source and sink nodes of an edge
being moved up and down, respectively, during the actual
scheduling depends primarily on RCs of the design and critical-
ity of the nodes. In addition, it will be affected by the heuristics
that a particular scheduler applies to optimize the throughput
by reducing the register or interconnect pressure. We propose
a probabilistic push-and-pull approach, which estimates the
amount by which a sink node is expected to be pushed down and
the source node to be pulled up for an edge during scheduling
due to RCs.

This will denote an increase in the initial lower bound of
queue size assigned to each edge. For each edge eij ∈ E, we
define Δi as the number of cycles by which node i is expected
to be pulled up, and similarly, Δj as the number of cycles by
which node j is estimated to be pushed down.

Pull margin and Δi computation: Fig. 6 shows the
probabilistic push-and-pull queue expansion of an edge,
where each node v is marked with a set of values
{ASAPv, ALAPv,mobilityv}, and mobilityv is given by
{ALAPv − ASAPv}.

Now, let us consider node i shown in Fig. 6. Node i can be
pulled up by the scheduler because it may actually be scheduled
earlier, therefore, producing data before its ALAP time. Let
Pi(k) be the probability that node i is scheduled in cycle k.

Fig. 6. Probabilistic queue expansion by push-and-pull.

Therefore, assuming that node i can be maximally pulled up
only up to ASAPi, we have

ALAPi∑
k=ASAPi

Pi(k) = 1

Pi(k) = 0 ∀k : k < ASAPi ∨ k > ALAPi.
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If the scheduler primarily tries to optimize latency, it will
try to pull up node i as high as possible from its ALAP cycle.
But, due to the RCs, it can pull up node i only by a certain
extent, depending upon the number of more critical nodes in
the interval and the number of similar operations in each cycle
of the ALAP schedule in that interval. On the other hand, the
scheduler will try to reduce the register burden by trying to
schedule node i as close as possible to its ALAP cycle. These
two counteracting forces ultimately determine the total pull
margin observed on node i.

Node i is more critical than a node j if mobilityi <
mobilityj . Let Ri be the number of nodes that are more
critical then node i in the interval [ASAPi, ALAPi] of the
ALAP schedule, and let Mi be the number of FUs available to
implement the operation performed by node i; then, we define
Ci as the cycle up to which node i can be pulled up from its
ALAP cycle as follows:

Ci = min
{(

ASAPi +
⌊

Ri

Mi

⌋)
, ALAPi

}
(6)

since node i cannot be scheduled beyond ALAPi.
In Fig. 6, we have Ci equal to three, because nodes a and b

are more critical than node i, assuming we have only one FU
that can implement operations a, b, and i. Since node i cannot
be pulled up any further above than cycle three, both Pi(1) and
Pi(2) are equal to zero, because our technique assumes that
cycles one and two are reserved for nodes a and b.

Note that a node with large mobility may be artificially
constrained closer to its ALAP cycle even if it can normally
be scheduled closer to its ASAP cycle, if there are enough
open slots. We chose to simplify the determination of the
available scheduling cycles by making this assumption, rather
than having to consider the relative positions of all overlapping
nodes.

Next, we will calculate Pi(k) for each k within the interval
[Ci, ALAPi]. The probability that node i would be scheduled in
cycle k depends on the contention for resources within cycle k.

Let Ni(k) be the number of operations of the same type as
node i in cycle k of the ALAP schedule, then the pull margin
on node i by cycle k is defined as

Pulli(k) =
(k − Ci + 1)
Ni(k) + 1

. (7)

The pull toward earlier cycles tends to increase if the node i
were to be scheduled closer to its ALAP value, since the number
of available cycles in this case is larger. This means that there
is a larger space above operation i, which would be sufficient
to satisfy all resource contention caused by other competing
(more critical) nodes. As a result, operation i may actually have
a chance to be placed earlier in time in the actual schedule. The
likelihood of an operation actually being scheduled earlier (i.e.,
being moved up in time) by the scheduler is small if we are
considering the possibility of moving an operation from just one
cycle below its ASAP time. On the other hand, the possibility
would be higher, if we consider a pessimistically late (closer
to the ASAP time) time for the same operation. This is cap-
tured by (7).

Using the concept of the Pulli(k) for each potential sched-
ule step, we compute Pi(k) as a summation of progressive
likelihoods of observing displacement between the start times
of what is predicted about an operation and what the actual
scheduler may decide. This is shown in

Pi(k) =
Pulli(k)

ALAPi∑
m=Ci

Pulli(m)

. (8)

Pi(k) essentially represents the likelihood of an operation to
be placed in a particular control step by the actual resource-
constrained scheduler. By using Ci, we further limit the range
of such possible steps, which now falls between the interval
defined by Ci and ALAPi.

Finally, the expected value of Δi is computed as the expected
number of cycles that node i will be pulled up, based on
Pi(k) as

E[Δi] =
ALAPi−Ci∑

m=1

mPi(ALAPi − m). (9)

The overall meaning of Δi is to provide an estimate for the
impact of RCs and scheduling on the final timing of the
operation start times. Δi represents symmetrically the second
component of this consideration.

Push margin and Δj computation: Now, let us consider
node j shown in Fig. 6. Node j can be pushed down by the
scheduler due to RCs and, hence, consume data after its ASAP
time. Let Pj(k) be the probability that node j is scheduled in
cycle k. We assume that node j can be pulled down by up to
cycle ALAPi + II − 1, and therefore

ALAPj+II−′∑
k=ASAPj

Pj(k) = 1

Pj(k) = 0 ∀k : k < ASAPj ∨ k > ALAPj + II − 1.

Let Rj be the number of nodes that are more critical then
node j in the [ASAPj , ALAPj + II − 1] interval of the ASAP
schedule, and let Mj be the number of FUs available to imple-
ment the operation performed by node j. We define Cj as the
cycle up to which node j is estimated to be delayed from its
ASAP cycle

Cj = min
{(

ASAPj +
⌊

Rj

Mj

⌋)
, ALAPj + II − 1

}
(10)

since node j cannot be scheduled after ALAPj + II − 1.
By similar arguments, for the push margin, we calculate

Pj(k) for each k within the interval [Cj , ALAPj + II − 1] as

Pushj(k) =
(ALAPj + II − k)

Nj(k) + 1
(11)

Pj(k) =
Pushj(k)

ALAPj+II−1∑
m=Cj

Pushj(m)

. (12)
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Finally, we compute the expected value of Δj, which is the
number of cycles that node j will be pushed down as

E[Δj] =
ALAPj+II−1∑

m=Cj−ASAPj

mPj(ASAPj + m).

The new expanded queue size for each edge eij will then be

Qedge(eij) = Qedge
min (eij) + E[Δi] + E[Δj]. (13)

From the queue sizes of the edges, we determine the queue size
of nodes. The expanded queue size of each node will simply
be the maximum queue size among all outgoing edges of that
node, i.e.,

Qnode
max (ni) = max {Q(eij) : ∀eij ∈ E} .

The Qnode
max (ni) will be reduced by a factor of II, because of

the effect of the II. If II equals one, i.e., a new iteration starts
every cycle, the queue sizes are at their maximum. If II equals
two, then a new iteration starts every other cycle, and in that
case, the required queue size of all nodes are halved and so on.
Therefore, the final queue size of a node i is given by

Qnode(ni) =
⌈

Qnode
max (ni)

II

⌉
. (14)

4) Final Refinement by RCCF: Because of RCs, more than
one node of the sDFG may be mapped onto a single FU. Again,
let Ni be the number of operations in the sDFG, that can be
implemented using a FU of type i, and let Mi be the number
of available FUs of type i. Then, the average number of nodes
mapped in a FU of type i will be Ni/Mi. When multiple nodes
are mapped onto a single FU, the queue at its output is also
shared by the nodes.

With resource sharing, the queue size of an FU will be
determined by the Qnode values of the nodes mapped onto
that FU. Therefore, queue size of an FU has to be at least the
maximum of Qnode values and, at most, the sum of the Qnode

values.
However, there are two counteracting factors that determine

the actual queue size of a FU. First, with fewer available FUs,
there will be less queues, because a queue can only be attached
to the output of a FU. Second, as resources become scarce,
there will be more contention for resources, and hence, the
result produced by a node has to reside in the queue for a
longer duration before it can be consumed. This denotes an
increase in the queue size of a FU. Based on these observations,
we experimented with various RCs to determine a resource-
constraint correction factor (RCCF) for type t of FU, given by

RCCFt =
1

ln
(⌊

Nt

Mt

⌋
+ e

) . (15)

The natural logarithmic base e is introduced in the equation
earlier to make sure that RCCF is at most one, which is the case
when there are more resources available than operations.

Fig. 7. FU area-estimation flowchart.

Since our estimation is at a prescheduling stage, it is not
known how the nodes are distributed among the FUs. Therefore,
we estimate Qtotal, which is the total queue size of all FUs. The
total queue size of all FUs of a particular type is determined by
the sum of all nodes of that type multiplied by the RCCF of that
type. Finally, the total queue size for all FUs is simply the sum
of queue sizes of all such types of FUs

Qtotal =
t∑

i=1

⎛
⎝RCCFi

Ni∑
j=1

Qnode(j)

⎞
⎠ . (16)

B. FU Area Complexity

Similar to the queue-size-estimation technique, the input to
the FU area estimation is also an sDFG and a set of RCs.
Fig. 7 shows our FU area-estimation methodology. The library
database contains information on the area complexity of a
(relatively small) number of FUs with selected parameters. The
library is used to interpolate the area complexity of FUs of
arbitrary parameter settings based on the area of neighboring
data points.

1) Library Creation: The first step of our FU area estima-
tion is to create a library that contains the area cost informa-
tion of different operations. The entries in the library file are
obtained by synthesizing designs that only use that particular
resource for which we are trying to estimate the area. For
example, to estimate the area of a FU that performs an add oper-
ation, we synthesize a hardware description of the adder block
(and associated internal registers, if any) using Xilinx ISE 8.1
for various bitwidths.

Although each operation is synthesized for different
bitwidths of the inputs, synthesizing each operation for all
possible bitwidths will require substantial amount of time and
resources. Therefore, whenever the estimation tool does not find
a corresponding entry in the library, it interpolates the resource
usage. For example, if the library has entries for 16- and 24-b
add operation, but an estimate is needed for 20 b, the tool
interpolates the number of required FPGA slices from the
16- and 24-b add entries.
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The estimation of multiplexer area is more complicated
because the number of FPGA slices depends not only on the
bitwidth and the number of inputs but also on the number of
don’t care inputs (nops). Therefore, synthesizing multiplexers
to create library entries with all these variations is time con-
suming and inefficient. Hence, to estimate multiplexer area, we
resorted to a standard curve-fitting technique. The number of
FPGA slices for multiplexers is generated by a least-square
curve-fitting function based on the input size, bitwidth, and the
number of nops. This method is described in more detail in the
Appendix.

2) Estimation of FU Area Complexity: In the first phase of
our FU area estimation, we estimate the II of the given sDFG
based on the given RCs, as described in Section IV-A1. Then,
we estimate the number of FUs of each type that is required. Let
Ni and Mi have the same definitions as in the previous sections.
Then, the estimated number of FUs mi of type i is given by

mi =
⌈

Ni

II

⌉
∀i, 1 ≤ i ≤ t, mi ≤ Mi. (17)

Once we estimate the number of required FUs, the sDFG
is scanned to gather information about what operations are
performed and their bitwidths. Note that the input sDFG is
annotated with required bitwidths of individual operations. In
many synthesis flows, bitwidth allocation is performed first to
achieve minimal operator bitwidths for the required compu-
tation accuracy. Such an optimization pass would already be
applied to the input sDFGs before starting our estimation phase.

We categorize operations into a small number of subsets
based on their bitwidths. For instance, we partition operations
into four groups in terms of their bitwidths (1–8, 9–16, 17–24,
and 25–32 b). Next, we estimate what sizes of FUs are likely to
be used by the scheduler to map these operations from these
categories. The estimated number of FUs mi is distributed
proportionately among each such bitwidth group. The rationale
behind this is to emulate the bitwidth-aware optimization that
will be performed by the actual scheduler. When mapping an
sDFG onto reconfigurable logic, the scheduler takes advantage
of the fact that on reconfigurable logic bitwidths of individual
FUs can be customized in order to create an area-efficient de-
sign. To achieve this, the scheduler will try to group operations
of similar bitwidths together and assign them to the same FU.

In our streaming architecture, a single type of FU can imple-
ment several types of operations. Each of these operations will
have different resource requirements when mapped to a FU,
depending on their complexity. However, at the prescheduling
stage, it is not known which particular FU will perform which
set of compatible operations. Therefore, in order to make an
area estimation of a particular type of FU, we use the maximum
area usage among all operations of an sDFG that can be mapped
onto that FU.

For example, Table I shows the four operations that are
implemented by the ALU. The number of slices depends on
the number of inputs of the operation and their bitwidths (16-b
in this case). As seen from Table I, operation vneg requires only
8 slices, whereas the vsub operation requires 24 slices.

TABLE I
RESOURCE REQUIREMENTS FOR DIFFERENT OPERATIONS

In cases in which a FU implements more than one operation,
we choose the one with the largest number of slices for our
estimation. For example, if a FU implements vadd and vabs
operations, we estimate the area of that FU as 16 slices.

3) Estimation of Multiplexer Area Complexity: Next, we
estimate the size of the multiplexers at the inputs of the FUs,
as well as the multiplexers used for the control of each FU
to select between the various operations performed in different
cycles. In total, we need n + 1 multiplexers for an n-input FU.
As stated in Section IV-B, the area of multiplexers is based on
three parameters: 1) number of inputs, 2) bitwidth of inputs, and
3) number of nops.

We start our analysis with the input multiplexers. The number
of inputs of a multiplexer will be equal to the II because, in each
cycle of the II, the multiplexer has to choose the appropriate
input from a set of available signals. Therefore, the number of
inputs of each multiplexer mux is IPmux = II, and the number
of selector bits for the multiplexer is SBmux = �log2 II�.

The bitwidth of the multiplexers at the inputs of a FU FUt of
type t will be determined from the bitwidth specification of the
operations as specified in the sDFG.

Since we do not know which operations are mapped to which
FUs, we assume uniform distribution of operations among FUs.
Therefore, for Nt operations of type t in the sDFG and mt FUs
of type t, we assume that each FUt implements Nt/Mt oper-
ations. The number of nops among the inputs of multiplexer
mux is

noopsmux = max
{(

IPmux −
⌊

Nt

Mt

⌋)
, 0

}
. (18)

The area of a multiplexer at the inputs of a FU of type t is
estimated as a function f of these three parameters. Likewise,
the area of the multiplexers to control the operation of the
FUs is defined by a function, with the parameters IPmux,
BWcntMux, and noopsmux. The bitwidth of the control multi-
plexer BWcntMux is given by

BWcntMux =
⌈
log2

Nt

mt

⌉
. (19)

The analytical form of the function f is a curve-fitting
polynomial with three independent variables based on a set of
data points. The data points (or samples) are the area of various
multiplexers synthesized with Xilinx ISE 8.1. The Appendix
provides additional information on the details of the regression
analysis to obtain a closed form of the function f .
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Finally, the total area of the FUs and the multiplexers will be
given by

t∑
i=1

mi (AFUi
+ nAinMuxi

+ AcntMuxi
) . (20)

V. EXPERIMENTAL RESULTS

The effectiveness of the proposed estimation paradigm is
evaluated for a set of streaming applications from the multi-
media domain. This benchmark suite includes various video-
and image-compression algorithms, such as the column and
row DCT filters (dctCol, dctRow) and quantization func-
tions (quant). The image-processing filters hpf_med_cc and
lpf_gc_rgb implement pipelines of simpler filters such as high-
pass filter, median filter and color correction and low-pass filter,
gamma correction, and RGB-to-YUV conversion, respectively.
Finally, the benchmarks include an imaging filter (open filter)
and a series of smaller imaging filters used in a license-plate-
recognition application (lpr) [3]. Table II shows the number
of nodes for each benchmark. We compare our estimates for
both the steps in our framework with the corresponding results
generated by synthesis using the Proteus architectural synthesis
tool to create synthesizable Verilog that is given as input to
the Xilinx ISE 8.1 tool flow. In the following, we present our
experimental results for each estimation method.

A. Queue-Size-Estimation Results

We have evaluated our queue-size-estimation technique on a
set of industrial multimedia applications. For each application,
we have chosen three different sets of RCs. Table II shows our
results. In Table II, RC set 1 corresponds to unlimited resources
(and, thus, II = 1). The resources become scarce progressively
as we move to the right of Table II, so that the RC set 3 provides
only one instance for a resource from each type (one ALU, one
multiplier, etc.), whereas the RC set 2 is equivalent to the re-
sources available in the reconfigurable streaming vector proces-
sor (RSVP) architecture [6]. From Table II, we observe that
as the amount of available resources decreases (from RC set 1
to RC set 3); the queue sizes also decrease. As we discussed in
Section IV, there are two counteracting factors determining the
relationship between queue sizes and amount of FUs available.
On one hand, since each resource will have one queue attached
at its output, more FUs directly indicate more queues; hence,
the total size of the queues will increase. On the other hand,
with fewer FUs, the scheduler will resort to more resource
sharing. While the number of FUs might be less, the average
length of each queue might be higher as a result. Here, in this
set of experimental results, we observe that the former aspect
has a larger influence. With less stringent resource sets (i.e.,
more resources available), the total queue size increases. This
is because, when there are plenty of resources (e.g., RC set 1),
each node (operation) of the sDFG is assigned its own FU, and
there is no sharing of the queue at the output of the FU. If the
architecture is not taking advantage of sharing of the queues,
the resulting hardware overhead becomes larger.

Moreover, our methodology is less accurate when there are
plenty of resources, and II = 1. For instance, Table II shows
that, in that case, the average estimation error is 28.67%,
whereas it is only 9.14% when there is a single resource for
each FU type. When there are infinite resources, the algorithm
assumes that a node is less constrained and can be scheduled
in the whole [ASAP, ALAP] space as shown in (6). Therefore,
there is more uncertainty on where an operation will actually be
scheduled, which accounts for the larger error. As the resources
become progressively more scarce, the accuracy of the method
improves.

B. FU Area-Estimation Results

For the FU area estimation, we have evaluated our results by
comparing the area obtained by our estimation to that generated
by the industrial hardware generator tool [2]. The Verilog code
generated is synthesized using Xilinx ISE 8.1 and mapped onto
Virtex 4 XC4VLX100 FPGA. Table III shows our estimation
results. The results presented in Table III correspond to the
same set of RCs as in RC set 3 in Section V-A, which is the
default configuration of the RSVP architecture [6].

As seen from Table III, for the application hpf_med_cc,
the estimation error cannot be calculated because the design
could not be synthesized on any Xilinx Virtex 4 device. The
Virtex 4 XC4VLX100 has 49 152 slices and 960 user I/Os,
which is the maximum I/O capability provided in this family of
devices. However, this particular application requires more than
960 I/Os, and the synthesis process fails at the mapping stage
as the device was overmapped. The I/O usage is one aspect that
cannot be captured in our estimation framework in its current
form, since we focus on area cost estimation. For the remainder
of the applications, our estimation is accurate and with an
average error of 14.2%. Previous work by Kulkarni et al. [12]
reports results that are about 10% better than ours. However,
their estimation is based on a one-to-one mapping of nodes of
the DFG to resources. Our estimation is trying to capture a more
general case by taking RCs and sharing into account.

One of the important factors affecting accuracy for FU area
estimation is the sharing of resources for different operation
types. Our scheme is based on assuming the worst case, i.e.,
if a resource can be shared across multiple operation types, it
will attain the largest area required for executing all operation
types. In some benchmarks, such as dctRow, different types
of operations that could possibly share a FU end up being
scheduled such that they are assigned to distinctly unique
resources. In those cases, the FUs tend to perform a single
task uniformly; whereby, their area cost does not approach the
worst-case estimation.

C. Impact on the Runtime of the Design Space Exploration

The total amount of time required by the complete de-
sign flow depends on various factors, such as the particular
benchmark under consideration, other modules that exist in the
FPGA (processors, peripherals, buses, etc.), and the resource
capacity (number of CLBs) of the target FPGA device. If an
FPGA is almost full and the benchmark is large, it may take
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TABLE II
QUEUE-SIZE-ESTIMATION RESULTS

TABLE III
FU AREA ESTIMATION

hours to synthesize, place, and route the whole SoC. The same
benchmark will take minutes if the FPGA is large and/or there
are no other modules in the FPGA.

In our experiments, we chose a target FPGA for which the
utilization would not be pushed to extreme limits. Even in that
case, the largest benchmark took close to 30 min to get past the
Proteus tool (i.e., schedule and generate Verilog), and then, do
synthesis, Place&Route through the Xilinx ISE tool.

If we have to explore 100 of these configurations, we would
need 100∗30 = 3000 min = 50 h for just one kernel (and there
may be five to six kernels per application). One estimation run
requires less than 1 min for the benchmark kernels. Hence,
evaluating 100 configuration would take 100 min, followed by
one synthesis run, totaling 130 min, which is more than an order

of magnitude less than repeating the entire synthesis flow for
each configuration.

VI. CONCLUSION

In this paper, we have presented a framework to provide
early estimates of the implementation cost of reconfigurable
streaming accelerators. Our estimation methodology has two
steps: 1) a probabilistic push-and-pull approach to determine
the register-queue size at the outputs of FUs; and 2) a library-
based approach to estimate the FU area incorporating bitwidth
awareness. We evaluated our estimation results based on syn-
thesized designs using an industrial-template-based tool flow
for a set of multimedia applications. For the register-queue
sizes, our estimations are within 10.4% on an average. For
the register-queue sizes, our estimations are in the range of
28%–9%. The amount of time required to perform the esti-
mation is negligible in comparison to one full synthesis run.
Considering a case where a large number of configurations
need to be evaluated, utilizing our proposed estimation frame-
work can help provide speedups by more than an order of
magnitude.

APPENDIX

We seek to find an analytical polynomial form of the contin-
uous function A = f(x, y, x) given the values of f in a discrete
set of independent data points (xi, yj , xk). The unisolvence
theorem states that, given a set of (N1 + 1) × (N2 + 1) ×
(N3 + 1) such data points, polynomial interpolation defines a
linear bijection.

Ln : KN1+1 × KN2+1 × KN3+1 → ΠN1×N2×N3 , where∏
N1×N2×N3

is the vector space of polynomials of three
independent variables with degree (N1, N2, N3) or less, for
each one of the three independent variables.
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Suppose that the polynomial p is in the form

p = aN1N2N3x
N1yN2zN3 + aN1N2N3−1x

N1yN2zN3−1 + · · ·

+ aN1N20x
N1yN2 + aN1N2−1N3x

N1yN2−1zN3 + · · ·

+ aN1N2−10x
N1yN2−1 + · · · + a002z

2 + a001z + a000.

If we substitute the (N1 + 1) × (N2 + 1) × (N3 + 1)
known data values in the polynomial equation, the resulting
function value will satisfy f(xi, yj , xk) = p(xi, yj , xk), since
the polynomial is, by definition, equal to the function f in these
data points.

Based on this property, we construct and solve a system
of (N1 + 1) × (N2 + 1) × (N3 + 1) linear equations with as
many unknowns, the polynomial parameters being

ai,j,k : 0 ≤ i ≤ N1, 0 ≤ j ≤ N2, 0 ≤ k ≤ N3.

For our specific case, the independent variables are the
number of inputs to the multiplexer, the bitwidth of the inputs
(assuming that all inputs have the same bitwidth), and the
number of nop operations. To keep the size of problem, and
thus the size of the linear system to be solved, small, we only
synthesize multiplexers whose parameters have the following
restrictions: The number of inputs to the multiplexer (which
equals the II) as well as the number of nops are in multiples
of four and do not exceed 16 {1, 4, 8, 12, 16}. The bitwidth can
only be in the set of {8, 16, 32}.

A system of 75 equations with 75 unknowns is constructed
based on the results of the synthesis tool and solved to obtain
the analytical form of the function f .

REFERENCES

[1] S. Amarasinghe and B. Thies, “Architectures, languages, and compilers
for the streaming domain,” Tutorial, Int. Conf. Parallel Architectures
Compilation Tech., 2003.

[2] N. Bellas, S. Chai, M. Dwyer, and D. Linzmeier, “Template-based genera-
tion of streaming accelerators from a high level presentation,” in Proc. Int.
Symp. Field-Programmable Custom Comput. Mach., 2006, pp. 345–346.

[3] N. Bellas, S. Chai, M. Dwyer, and D. Linzmeier, “FPGA implementation
of a license plate recognition SoC using automatically generated stream-
ing accelerators,” in Proc. Reconfigurable Architectures Workshop, 2006,
pp. 2–8.

[4] G. Bilavarn, J.-L. Gogniat, and L. Philippe, “Low complexity design
space exploration from early specifications,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 25, no. 10, pp. 1950–1968, Oct. 2006.

[5] C. Brandolese, W. Fornaciari, and F. Salice, “An area estimation method-
ology for FPGA based designs at system-C level,” in Proc. Des. Autom.
Conf., 2004, pp. 129–132.

[6] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette,
and A. Saidi, “The reconfigurable streaming vector processor (RSVP),” in
Proc. Int. Conf. Microarchitecture, 2003, pp. 141–150.

[7] J. P. Diguet, D. Chillet, and O. Sentieys, “A framework for high level
estimations of signal processing VLSI implementations,” J. VLSI Signal
Process. Syst., vol. 25, no. 3, pp. 261–284, Jul. 2000.

[8] R. Enzler, T. Jeger, D. Cottet, and G. Troster, “High-level area and perfor-
mance estimation of hardware building blocks on FPGAs,” in Proc. Int.
Conf. Field-Programmable Logic, 2000, pp. 525–534.

[9] B. A. Hamed, A. Salem, and G. M. Aly, “Area estimation of LUT
based designs,” in Proc. Int. Conf. Elect., Electron., Comput. Eng., 2004,
pp. 39–42.

[10] C. T. Hwang, Y. S. Hsu, and Y. L. Lin, “PLS: A scheduler for pipeline syn-
thesis,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 12,
no. 9, pp. 1279–1286, Sep. 1993.

[11] T. Jiang, X. Tang, and P. Banerjee, “Macro models for high level power
and area estimation in FPGAs,” in Proc. ACM Great Lakes Symp. VLSI,
2004, pp. 162–165.

[12] D. Kulkarni, W. Najjar, R. Rinker, and F. Kurdahi, “Fast area estimation to
support compiler optimizations in FPGA-based reconfigurable systems,”
in Proc. Int. Symp. Field Programmable Custom Comput. Mach., 2002,
p. 239.

[13] S. Mondal, S. O. Memik, and N. Bellas, “Pre-synthesis area estimation of
reconfigurable streaming accelerators,” in Proc. Int. Conf. Field Program-
mable Logic Appl., 2006, pp. 1–4.

[14] R. Moreno, R. Hermida, and M. Fernandez, “Register estimation in un-
scheduled dataflow graphs,” ACM Trans. Design Autom. Electron. Syst.,
vol. 1, no. 3, pp. 396–403, Jul. 1996.

[15] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, “Accurate area and
delay estimators for FPGAs,” in Proc. Des. Test Eur., 2002, p. 862.

Seda Ogrenci Memik (M’98–SM’05) received the
B.S. degree in electrical and electronic engineering
from Bogazici University, Istanbul, Turkey, and the
Ph.D. degree in computer science from the Univer-
sity of California at Los Angeles, Los Angeles.

She is currently an Assistant Professor with the
Electrical Engineering and Computer Science De-
partment, Northwestern University, Evanston, IL.
Her research interests include embedded and recon-
figurable computing, thermal-aware design automa-
tion, and thermal management for high-performance

microprocessor systems.
Dr. Memik has served as technical program committee member, organizing

committee member, and subcommittee chair of several conferences, including
the International Conference on Computer-Aided Design, Design, Automation
and Test in Europe, International Conference on Field Programmable Logic and
Its Applications, and Great Lakes Symposium on Very Large Scale Integration.
She is currently serving on the Editorial Board of the IEEE TRANSACTIONS ON

VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. She was the recipient
of the National Science Foundation Early Career Development (CAREER)
Award in 2006.

Nikolaos Bellas (M’93) received the Diploma de-
gree in computer engineering and informatics from
the University of Patras, Patras, Greece, in 1992
and the M.Sc. and Ph.D. degrees from the Electrical
and Computer Engineering Department, University
of Illinois at Urbana–Champaign, Urbana, in 1995
and 1998, respectively.

From 1999 to 2007, he was a Principal Member
of the technical staff with the Embedded Imaging
Systems Laboratory, Motorola Inc., Schaumburg, IL,
where he worked on chip design for multimedia

processors and CAD tools for architectural synthesis. He is currently an
Associate Professor with the Computer and Communication Engineering De-
partment, University of Thessaly, Volos, Greece, where he is currently working
in the area of reconfigurable computing, embedded systems, and computer ar-
chitecture. He has lead research projects on developing CAD tools to automate
the design of complex SoCs and has seen his work being used in a number of
industrial products. He has published numerous papers and patents on a variety
of research subjects.

Dr. Bellas is a member of the Technical Chamber of Greece.

Somsubhra Mondal received the B.E. degree (with
honors) in electrical engineering from Jadavpur Uni-
versity, Calcutta, India, in 1997, the M.S. degree in
electrical engineering from Michigan Technological
University, Houghton, in 2002, and the Ph.D. degree
in computer engineering from the Northwestern Uni-
versity, Evanston, IL, in 2007.

He was an Engineering Intern at the Embedded
Imaging Systems Laboratory, Motorola Inc., during
the summers of 2005 and 2006. His research primar-
ily focused on architectural optimizations and CAD

tools for power-aware FPGA design and synthesis of reconfigurable streaming
accelerators. He has over four years of experience in the software industry. He is
currently a Software Engineer with Neokast Inc. LLC, Evanston, IL, an Internet
video broadcasting startup.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


