
TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

33

Enhancing Design Space Exploration by Extending CPU/GPU 1
Specifications onto FPGAs 2

MUHSEN OWAIDA, University of Thessaly 3
GABRIELFALCAO and JOAO ANDRADE, University of Coimbra 4
CHRISTOS ANTONOPOULOS and NIKOLAOS BELLAS, University of Thessaly 5
MADHURA PURNAPRAJNA, DAVID NOVO, GEORGIOS KARAKONSTANTIS, 6
ANDREAS BURG, and PAOLO IENNE, EPFL 7

The design cycle for complex special-purpose computing systems is extremely costly and time-consuming. 8
It involves a multiparametric design space exploration for optimization, followed by design verification. 9
Designers of special purpose VLSI implementations often need to explore parameters, such as optimal 10
bitwidth and data representation, through time-consuming Monte Carlo simulations. A prominent example 11
of this simulation-based exploration process is the design of decoders for error correcting systems, such as 12
the Low-Density Parity-Check (LDPC) codes adopted by modern communication standards, which involves 13
thousands of Monte Carlo runs for each design point. Currently, high-performance computing offers a wide 14
set of acceleration options that range from multicore CPUs to Graphics Processing Units (GPUs) and Field 15
Programmable Gate Arrays (FPGAs). The exploitation of diverse target architectures is typically associated 16
with developing multiple code versions, often using distinct programming paradigms. In this context, we 17
evaluate the concept of retargeting a single OpenCL program to multiple platforms, thereby significantly 18
reducing design time. A single OpenCL-based parallel kernel is used without modifications or code tuning 19
on multicore CPUs, GPUs, and FPGAs. We use SOpenCL (Silicon to OpenCL), a tool that automatically 20
converts OpenCL kernels to RTL in order to introduce FPGAs as a potential platform to efficiently execute 21
simulations coded in OpenCL. We use LDPC decoding simulations as a case study. Experimental results 22
were obtained by testing a variety of regular and irregular LDPC codes that range from short/medium (e.g., 23

(8, 000bit)tolonglength(e.g.,

64,800 bit) DVB-S2 codes. We observe that, depending on the design parameters to be simulated, on the 24
dimension and phase of the design, the GPU or FPGA may suit different purposes more conveniently, thus 25
providing different acceleration factors over conventional multicore CPUs. 26

Categories and Subject Descriptors: B.8.2 [Performance and Reliability]: Performance Analysis and 27
Design Aids 28

General Terms: Design, Algorithms, Performance 29

Additional Key Words and Phrases: Design space exploration, simulation tools, parallel computing, FPGAs, 30
GPUs, OpenCL 31

This work was partially supported by the Portuguese Fundação para a Ciência e Tecnologia (FCT) under the
FCT project PEst-OE/EEI/LA0008/2013 and by grant SFRH/BD/78238/2011. It was also supported by the
EC Marie Curie International Reintegration Grant (IRG) 223819.
Authors’ addresses: M. Owaida, C. Antonopoulos, and N. Bellas, Department of Computer and Com-Q1
munications Engineering, University of Thessaly, Volos, Greece; G. Falcao and J. Andrade, Instituto de
Telecomunicações, Department of Electrical and Computer Engineering, Faculty of Science and Technology
of the University of Coimbra, Portugal; M. Purnaprajna, D. Novo, G. Karakonstantis, A. Burg, and P. Ienne,
École Polytechnique Fédérale de Lausanne, Switzerland.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1539-9087/2014/12-ART33 $15.00

DOI: http://dx.doi.org/10.1145/2700098

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

http://dx.doi.org/10.1145/2700098

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

33:2 M. Owaida et al.

ACM Reference Format:32
Muhsen Owaida, Gabriel Falcao, Joao Andrade, Christos Antonopoulos, Nikolaos Bellas, Madhura33
Purnaprajna, David Novo, Georgios Karakonstantis, Andreas Burg, and Paolo Ienne. 2014. Enhancing de-34
sign space exploration by extending CPU/GPU specifications onto FPGAs. ACM Trans. Embedd. Comput.35
Syst. 14, 2, Article 33 (December 2014), 23 pages.36
DOI: http://dx.doi.org/10.1145/270009837

1. INTRODUCTION38

The design of special-purpose computing systems involves balancing a diverse set of39
performance criteria such as throughput, power consumption, and resource efficiency.Q240
To achieve a balanced design, the evaluation of these characteristics often requires41
compute-intensive Monte Carlo simulations for design-space exploration because the42
complex and unpredictable input or environment of many real-world systems defies43
a straightforward closed-form performance analysis even for simple individual algo-44
rithms. Such simulations are often extremely time-consuming. For example, commu-45
nication systems consist of multiple, complex signal processing tasks and blocks that46
must be optimized carefully through numerous Monte Carlo simulations to balance the47
complexity-performance tradeoff that governs the system design and implementation48
process. Due to the short design cycle of modern consumer electronics products, there49
is a strong need to provide tools and methodologies to accelerate such simulations.50
However, at the same time, acceleration must not come at the expense of additional51
design effort to develop dedicated simulation models for each block under considera-52
tion. Ideally, a single model lends itself to various stages in the design process where53
rapid simulation turn-around times are beneficial at early stages, with their results54
being confirmed and refined by more in-depth, yet more time-consuming simulation55
runs during later stages [Rupp et al. 2003].56

Simulation systems have typically been processor-based. Algorithm programming57
and mapping on such systems have been simplified over the years; however, the prolif-58
eration of multicores introduced new complexity because algorithms had to be rewritten59
to take into account new concerns such as data dependencies, load balancing, and syn-60
chronization. However, conventional multicores offer rather limited opportunities for61
parallelism exploitation. In the manycore era, GPU-based acceleration is gaining pop-62
ularity in simulation platforms [Falcao et al. 2011; Falcao et al. 2012], mostly due to the63
high number of computational cores that these unconventional parallel architectures64
offer. Unfortunately, programming these systems involves, beyond explicitly identify-65
ing parallelism, expressing it using appropriate programming models and languages66
that are often architecture-specific. The Compute Unified Device Architecture (CUDA)67
[NVIDIA 2007] programming model is a typical example for NVidia GPUs.68

On the other side, Field Programmable Gate Arrays (FPGAs) are also popular as69
computation accelerators [Smith et al. 2011] because of the extremely parallelism-70
aware exploitation opportunities they offer at an arbitrarily fine granularity and the71
possibility to adapt the whole architecture according to algorithmic needs. However,72
application mapping on FPGAs can be a laborious and time-consuming task. Moreover,73
it involves a completely new paradigm shift: moving from sequential programming74
to parallel HDL-based designs. Consequently, although FPGAs and GPUs appear as75
promising platforms for simulation-based explorations, the requirement of remapping76
and recoding the simulation on each of these platforms limits their potential.77

As a step toward the goal of efficient multiplatform simulations, this work proposes78
and evaluates a unified framework that runs on top of different computational sub-79
strates. The envisioned environment is depicted in Figure 1. We exploit the OpenCL80
[Khronos 2010] programming model for expressing simulations that are expected to be81
executed on different platforms. OpenCL emerged as an open computing programming82

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

http://dx.doi.org/10.1145/2700098

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

Enhancing Design Space Exploration by Extending CPU/GPU Specifications onto FPGAs 33:3

Fig. 1. Proposed flow to shorten VLSI design time through multiplatform simulation with a portable OpenCL
golden-model.

Fig. 2. Message passing illustrating the flow of communications between adjacent bit (BN) and check nodes
(CN) of the Tanner graph.

model supported by some of the most important computer manufacturers such as Ap- 83
ple, Intel, AMD, ATI, NVIDIA, and others. It allows developing parallel kernels that 84
are portable across several multicore and manycore platforms. Beyond code-portability, 85
OpenCL promises a good level of performance portability as well. 86

In our experimental exploration, we use the example of the Forward Error Correc- 87
tion (FEC) module—one of the most computationally intensive and widely researched 88
components of communication systems. As a case study, we evaluate the decoder for 89
regular and irregular, short-length and very-long-length Low-Density Parity-Check 90
(LDPC) codes [Gallager 1962]. Although limited to a single type of algorithm, we be- 91
lieve that the LDPC case has characteristics of a rather tough example of large classes 92
of modern DSP applications and can be considered a worst-case scenario for functional 93
and performance portability on different substrates using a single codebase. The com- 94
plicated computation pattern between different modules of LDPC decoders (depicted 95
in Figure 2) represents a particular challenge for accelerators: In GPUs, it leads to 96
predictable yet irregular communication between different kernels, whereas in FPGAs 97
it causes considerable routing overhead. 98

We exploit different parallel computing platforms (CPUs, FPGAs, and GPUs) for sim- 99
ulating system behavior. We experiment with different configurations for parameters 100
that are critical for system performance, such as bitwidth, number of iterations, and 101

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

33:4 M. Owaida et al.

algorithmic variations. We target not only short and regular codes but also the more102
demanding irregular and long-length LDPC code scenarios that are adopted in real103
communication systems. However, similar principles can be naturally applied to the104
design of other hardware systems not related to telecommunications.105

The contributions of this article can be summarized as follows: (i) We show quan-106
titatively that, through OpenCL, two acceleration platforms (GPUs and FPGAs) are107
equally competitive to execute simulations of very complex coding algorithms in view108
of their later hardware implementation. In particular, we show that FPGAs can be109
a prime computing platform without any ad hoc source code twisting. (ii) Triggered110
by the scale of the experiments we conduct, we describe improvements to the FPGA111
compilation process that significantly improve the results and are key in achieving the112
above-mentioned goal. For example, we discuss grammar-driven instruction cluster-113
ing, a technique necessary to enable the mapping of complex OpenCL kernels, such as114
those used in DVB-S2 LDPC decoding, on FPGAs. Given the capability to easily exe-115
cute simulation code on different architectures, we compare and quantify the relative116
performance of those platforms.117

2. BACKGROUND AND MOTIVATION118

2.1. Motivation119

Computationally intensive Monte Carlo simulations require methods for acceleration120
that should be generic and easy to use, without the need for rewriting of early-stage121
simulation code. Using application-specific acceleration, such as designing custom cir-122
cuits (ASICs) or Application-Specific Instruction Set Processors (ASIPs) is not feasible123
in this domain because of the effort and cost involved and the time necessary for124
design and verification. In a simulation environment, various configuration schemes125
and parameters of the algorithm necessitate modifying the input source code interac-126
tively. Mapping such an application on a conventional processor or GPU is considerably127
faster than on an FPGA, where development still requires using Hardware Description128
Languages (HDLs), skills usually only accessible to experienced hardware designers.129
Nevertheless, FPGAs provide the possibility of exploring higher degrees of parallelism130
and provide application-level customization during device deployment. In such a sce-131
nario, it becomes important to be able to quickly retarget a given application with a132
single specification language.133

2.2. The OpenCL Parallel Programming Model134

OpenCL [Khronos 2010] is a programming model for heterogeneous systems that may135
comprise conventional chip multiprocessors such as CPUs, GPUs, and various other136
forms of accelerators such as DSPs. Recent developments by co-authors of this work137
have led to the introduction of FPGAs as potential target platforms for OpenCL as well138
[Owaida et al. 2011b, 2011a].139

OpenCL is based on a platform model that comprises a host processor and a number140
of computing devices. Each device consists of a number of compute units, which is141
subsequently divided into a number of processing elements. An OpenCL application is142
based on a host program and a number of kernel functions. The host part executes on143
the host processor and submits commands that can refer to compilation and execution of144
a kernel function or to the manipulation of memory objects. A kernel function contains145
the computational part of an application at a fine-granularity level of parallelism and146
is executed on the compute devices. The work corresponding to a single invocation of a147
kernel is called a work-item (i.e., the equivalent of a thread). Multiple work-items are148
organized in work-groups. OpenCL allows for geometrical partitioning of the grid of149
computations to an N-dimensional space of work-groups, with each work-group being150
subsequently partitioned to an N-dimensional space of work-items, where 1 ≤ N ≤ 3.151

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

Enhancing Design Space Exploration by Extending CPU/GPU Specifications onto FPGAs 33:5

A work-item is identified by a tuple of IDs defining its position within the work-group 152
and by the position of the work-group within the computation grid. Based on the ID, a 153
work-item is able to access different data or follow a different path of execution. 154

A distinct feature of OpenCL is that it facilitates exposing parallelism at a fine 155
level of granularity, thus making it suitable for hardware generation at different levels 156
of granularity. Another favorable characteristic is the explicit yet not overly detailed 157
expression of data movement in the form of buffer transfers between host and compute 158
devices. 159

2.3. Related Work 160

The idea of using various platforms as computational substrates to meet computational 161
demands and comparing their performance and efficiency is certainly not a new one. 162
Weber et al. [2011] use CPUs, GPUs, and FPGAs to execute a Quantum Monte Carlo 163
application. They compare the application’s performance and programmability on a 164
variety of platforms, including CUDA with Nvidia GPUs, Brook+ with ATI graphics 165
accelerators, OpenCL running on both multicore and graphics processors, C++ running 166
on multicore processors, and a VHDL implementation running on a Xilinx FPGA.Cope 167
et al. [2010] present a systematic approach for the comparison of GPUs and FP- 168
GAs. They apply three performance drivers to heuristically identify which accelerator 169
platform is the most appropriate for a given application domain in an implementation- 170
agnostic way. Both studies reach interesting conclusions in terms of the relative per- 171
formance of CPUs, GPUs, and FPGAs. The use of a different source code base for each 172
platform in Weber et al. [2011] introduces, however, the hazard of potentially unfair 173
platform comparisons because it is not guaranteed that all implementations benefited 174
from the same level of developer expertise and optimization effort. 175

Simulation frameworks are typically part of the software domain. In order to ef- 176
fectively introduce FPGAs as potential substrates for the execution of simulations, 177
hardware accelerators have to be automatically generated from software descriptions. 178
Methods following this direction have exploited high-level language to hardware trans- 179
lations. The PICO-NPA system translates C functions written as perfectly nested loops 180
into a systolic array of accelerators [Kathail et al. 2002]. The LegUp synthesis tool gen- 181
erates a hybrid architecture comprising a MIPS processor and hardware accelerators 182
to speed up performance-critical C code [Canis et al. 2011]. The hardware accelerator 183
generation utilizes conventional HLS techniques for resources allocation, scheduling, 184
and binding. The OpenRCL platform utilizes OpenCL to schedule fine-grain parallel 185
threads to a large number of MIPS-like cores [Lin et al. 2010]. OpenRCL does not gen- 186
erate customized hardware accelerators, although each MIPS core can be configured 187
to match application characteristics. The AutoPilot Compiler [Zhang et al. 2008] gen- 188
erates RTL descriptions for each function in a C program. Each function is translated 189
into an FPGA core. AutoPilot provides code directives to facilitate hardware genera- 190
tion. However, the specification techniques proposed are not universally applicable to 191
CPUs, GPUs, and FPGAs. In the GPU domain, FCUDA [Papakonstantinou et al. 2009] 192
is a research effort that retargets CUDA kernels to synthesizable hardware in FP- 193
GAs. FCUDA transforms a CUDA kernel into a C function annotated with AutoPilot 194
directives and then uses AutoPilot to generate synthesizable HDL. Recent publica- 195
tions propose using GPUs to perform LDPC decoding [Falcao et al. 2011] or functional 196
programming to target LDPC codes in FPGAs [Gill et al. 2011; Smith et al. 2011]. 197

Still, none of these approaches provides a unique solution that is suitable to simul- 198
taneously target CPU, GPU, and FPGA architectures. In this article, our objective is 199
to simplify the exploration of all three target architectures for complex designs using 200
a single, unified programming model and—moving a step further—a single source 201
code. Retargeting various architectures using unmodified source code has several 202

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

33:6 M. Owaida et al.

advantages: It reduces development effort—especially when targeting hard-to-program203
architectures like FPGAs—and facilitates future modifications. At the same time,204
though, since the code is not optimized for any of the underlying architectures, our205
approach stresses the automatic optimization capabilities of the toolchains used for206
the generation of the final executables and bitstreams on each platform.207

3. LDPC DECODING: CASE STUDY ON INTENSIVE SIMULATION208

LDPC codes are linear block codes (N, K) that allow achieving excellent Bit Error Rates209
(BER) [Gallager 1962] under various channel working conditions, usually measured210
in terms of Signal-to-Noise Ratios (SNR). LDPC codes can be described by a binary H211
matrix with dimension (N − K) × N. Also, they can be represented by a Tanner graph212
defined by edges connecting two distinct types of nodes, viz. Bit Nodes (BN), with a213
BN for each one of the N variables of the linear system of equations, and Check Nodes214
(CN), with a CN for each one of the (N − K) homogeneous independent linear systems215
of equations [Wicker and Kim 2003], as illustrated in Figure 2.216

3.1. Belief Propagation and Message-Passing: The MSA217

Graphical models, and in particular bipartite Tanner graphs as the one shown in218
Figure 2, have often been proposed to perform approximate inference calculations219
[Wicker and Kim 2003]. They are based on iterative message-passing algorithms de-220
fined as Belief Propagation (BP), which is also known as the Sum-Product Algorithm221
(SPA). For certain classes of LDPC codes, in particular for long ones, the SPA requires222
a high computational effort [Falcao et al. 2011; Smith et al. 2011].223

The Min-Sum Algorithm (MSA) consists of a simplification of the SPA [Wicker and224
Kim 2003], and it is depicted in Algorithm 1. Although its workload is lower than225
the one required by the SPA, it is still quite significant if the number of nodes is226
large (in the order of thousands as it occurs in real systems [Falcao et al. 2011]).227

ALGORITHM 1: Min-Sum Algorithm

1: {Initialization} Lq(0)
nm = Lpn;

2: while (HĉT �= 0 ∧ i < I) {c – decoded word; I – max. # of iterations.}
do

3: {For all node pairs (BNn, CNm), where Hmn = 1 do:}
4: {Compute the LLR of messages sent from CNm to BNn:}

(CN Processing)
Lr(i)

mn =
∏

n′∈N (m)\n

sign
(

Lq(i−1)
n′m

)
min

n′∈N (m)\n

∣∣∣Lq(i−1)
n′m

∣∣∣ (1)

{where N (m)\n represents connect. to CNm excluding BNn.}
5: {Compute the LLR of messages sent from BNn to CNm:}

(BN Processing)
Lq(i)

nm = Lpn +
∑

m′∈M(n)\m

Lr(i)
m′n (2)

{where M(n)\m represents connect. to BNn excluding CNm.}
Finally, we compute the a posteriori LLRs:

LQn
(i) = Lpn +

∑
m′∈M(n)

Lr(i)
m′n (3)

6: {Perform hard decoding:}∀n,

ĉ(i)
n =

{
0 ⇐ LQ(i)

n > 0
1 ⇐ LQ(i)

n < 0
(4)

7: end while

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

Enhancing Design Space Exploration by Extending CPU/GPU Specifications onto FPGAs 33:7

Lpn designates the a priori Log-Likelihood Ratio (LLR) of BNn, the logarithm of 228
two complementary probabilities received from the channel [Wicker and Kim 2003], 229
and it initializes Lqnm before proceeding to the iterative body of the algorithm. The 230
MSA is mainly described by two intensive processing blocks, respectively defined by 231
Equations (1) and (2). The former calculates CN processing by producing Lrmn mes- 232
sages that indicate the likelihood of BNn being 0 or 1. The latter defines BN process- 233
ing and computes Lqnm messages. Hard decoding decision is performed as shown in 234
Equations (3) and (4), and the iterative procedure is stopped if the decoded word ĉ 235
verifies all parity check equations of the code (HĉT = 0) or a predefined maximum 236
number of iterations I is reached. 237

3.2. LDPC Codes for the Challenging DVB-S2 Case 238

Many communication standards already incorporate the use of LDPC codes. Exam- 239
ples are the Digital Video Broadcasting–Satellite 2 (DVB-S2) [EN 302 307 V1. 1.1, 240
European Telecommunications Standards Institute (ETSI) 2005], DVB-C2, DVB-T2, 241
802.16e (WiMAX), 802.11 (WiFi), CMMB, DTMB, and other emergent standards such 242
as the ITU-T G.709 used in optical communications. Currently, DVB-S2 is one of those 243
standards for which the design of LDPC decoders is particularly challenging. The dif- 244
ferent weights wc and wb of bit and check nodes, the long length N of the words to 245
be decoded, the diversity of codes and rates (21) used, and the fact that this standard 246
supports two different frame length modes increases the development complexity of 247
such systems. The periodic nature of DVB-S2 LDPC codes allows exploiting suitable 248
representations of data structures and parallelize processing for accelerating the inten- 249
sive computation required. The parity-check matrix H of DVB-S2 is based on Irregular 250
Repeat and Accumulate (IRA) codes [Eroz et al. 2004; Jin et al. 2000] of type: 251

H(N−K)×N = [
H1(N−K)×K | H2(N−K)×(N−K)

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0,0 · · · a0,K−1 1 0 · · · · · · · · · 0

a1,0 · · · a1,K−1 1 1 0
...

...
. . .

... 0 1 1
. . .

...

aN−K−2,0 · · · aN−K−2,K−1
...

. . . 1 1 0
aN−K−1,0 · · · aN−K−1,K−1 0 · · · · · · 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where H1 is sparse and has periodic properties, and H2 has a staircase lower triangular 252
profile, as shown in Equation (1). The periodicity constraints of the pseudo-random 253
generation of H1 allow a significant reduction on the storage requirements without 254
code performance loss. 255

The number of edges also changes for each code of the DVB-S2 standard. Messages 256
of type Lrmn and Lqnm circulate in each edge to update the corresponding nodes they 257
are connected to. For example, code with rate = 3/5 is represented by a Tanner graph 258
with a total of 285,120 edges. Since communications occur in both directions (first from 259
CNs to BNs, and then from BNs to CNs), this implies that, for this case, more than 219 260
messages are exchanged per iteration, which is indicative of the heavy computation 261
and high number of memory accesses required by this family of LDPC decoders. 262

3.3. Defining Fundamental Simulation Parameters 263

The optimized implementation of this algorithm depends on many different parame- 264
ters. Typically, several Monte Carlo simulations are executed in order to decide the 265
optimal configuration for these parameters that leads to a favorable design-point in 266

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

33:8 M. Owaida et al.

terms of the area, performance, and energy tradeoffs while at the same time being com-267
pliant with system requirements. The configuration metrics to manipulate are briefly268
mentioned here:269

—LDPC code and H matrix. The data structures that define the LDPC code are im-270
ported from an H matrix in the form depicted in Figure 2. It is of vital importance271
that the designer can test all the LDPC codes required by the application. LDPC272
codes can be regular or irregular, and this metric is defined by the number of ones273
per row and column, which can be constant or variable. In addition to regularity,274
different code word lengths can be tested.275

—Algorithmic variation. As mentioned earlier, there can be different variations of276
the algorithm to test and implement. In the case of LDPC decoding, these consist,277
among others, of the SPA or MSA. Different algorithms may more appropriately suit278
different system needs.279

—Number of iterations. Another metric commonly tested in this kind of applications is280
the number of iterations performed by the decoder. This metric has direct application281
in the simulation of BER curves, which are fundamental to prove that the design is282
compliant with performance and reliability requirements defined either by a stan-283
dard or client. Simulation time is linearly dependent of the number of iterations.284

—Bitwidth. Bitwidth definitions are among the most important parameters to decide285
during the design of a chip because they determine the width of the data path286
and the size of memory blocks. Moreover, they are usually directly related to the287
circuit area and its power consumption. On the other hand, the selected bitwidth288
should be compatible with BER performance requirements and expectations. When289
performing simulations, designers normally dedicate great attention to this fixed-290
point optimization parameter. In our study, bitwidth usually ranges from 5 to 8 bits.291

4. UNIFIED DEVELOPMENT FOR MULTIPLE HIGH-PERFORMANCE ACCELERATORS292

As a case study, we developed a single OpenCL representation of the LDPC simulation293
that can be executed unmodified on three distinct platforms: CPUs, GPUs, and FPGAs.294
Our goal is to allow a software developer—or ideally even a domain expert—to rapidly295
develop a single simulation code, which will then be deployed and executed on any296
available accelerator architecture. It should be noted that, given the proliferation of297
parallel platforms and especially multicore and manycore architectures, parallel pro-298
gramming tends to become mainstream. Therefore, programmers often have to develop299
code using a parallel programming model. OpenCL is one of the most popular ones,300
given its strong industry support and its promise for functional portability across a301
multitude of parallel platforms. OpenCL provides a common framework in which the302
coding constructs are almost the same throughout all supported architectures [Khronos303
2010]. In any case, the painstaking part of the development effort is often not the initial304
implementation but rather the mapping and optimization for each different platform.305
In this study, we follow a different path: We evaluate the use of a single OpenCL code306
on all platforms without any further manual mapping and optimization effort.307

4.1. Multicore CPUs and GPUs308

An OpenCL kernel typically represents the execution of a lightweight thread (work-309
item) performing computations on a single point of a two-stage 3D decomposition of310
the problem domain (a 3D organization of work-items within a work-group and a 3D311
organization of work-groups within a grid).312

In the case of LDPC code simulations, the exact parameters of the geometry (num-313
ber of work-groups and work-items per work-group) are determined at runtime, us-314
ing the device query functionality offered by OpenCL. Therefore, work partitioning315

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

Enhancing Design Space Exploration by Extending CPU/GPU Specifications onto FPGAs 33:9

automatically adapts to the capabilities of the underlying architecture. As formalized 316
in Algorithm 1, the Min-sum decoding algorithm is performed in two phases: CN and 317
BN Processing. As the minimum granularity of parallelism is adopted by the LDPC 318
decoder simulator, each work-item is assigned to process a single node of the Tanner 319
graph, represented in Figure 2. Thus, (N − K) work-items are spawned to compute the 320
CN Processing (1) and N for the BN Processing (2). This level of granularity is the 321
minimum level that guarantees an independent execution path for each work-item in 322
the same processing phase. Hard-coding finer or coarser granularity levels could poten- 323
tially penalize performance. Finer grain activity performs either redundant memory 324
accesses or imposes a non-negligible overhead on the processing since work-items need 325
to exchange data among them. Also, due to the memory hierarchy model defined by 326
the OpenCL standard, this adds constraints to the optimal size of the work-group. 327
Notwithstanding, coarser grain expression of parallelism would not allow the full ex- 328
ploitation of the computational resources available on manycore systems (e.g., GPUs) 329
for processing small to medium-sized datasets because there would not be enough 330
work-items to fully exploit all the computational resources. It should be pointed out, 331
however, that parallelism is not necessarily executed at the granularity at which it is 332
expressed. As explained in Section 4.2.1, the OpenCL compiler and runtime system 333
can collaboratively coarsen the granularity at which parallelism is actually executed 334
in order to limit the parallelism management overhead on certain architectures. 335

4.2. FPGAs 336

CPUs and GPUs have been traditional targets for OpenCL codes [Falcao et al. 2012]. In 337
this work, we introduce FPGAs as a new member of the simulation execution ecosystem. 338
We used the SOpenCL tool [Owaida et al. 2011b] to automatically generate hardware 339
accelerators using the unmodified OpenCL LDPC simulator code as input. 340

SOpenCL allows us to quickly explore different architectural scenarios and evaluate 341
the quality of the design in terms of computational bandwidth, clock frequency, and 342
size. The SOpenCL toolchain consists of two parts: a front end, mainly responsible for 343
adjusting the granularity of parallelism and transforming OpenCL to C, and a back 344
end, which performs a series of transformation and optimization passes that result in 345
the generation of a synthesizable Verilog. All transformations and optimizations have 346
been implemented as separate compiler passes in the context of the LLVM compiler 347
infrastructure [Lattner and Adve 2004]. 348

In the following subsections, we briefly outline the architecture of SOpenCL, focus- 349
ing particularly on characteristics and optimizations that have produced a profound 350
performance effect. 351

4.2.1. SOpenCL Front End. SOpenCL adjusts the granularity of parallelism of the 352
OpenCL kernel to better match the hardware capabilities of the FPGA. A straight- 353
forward approach would map a work-item to an invocation of the hardware accelerator. 354
This approach is clearly suboptimal for FPGAs because it would incur a heavy overhead 355
to initiate thousands of work-items of fine granularity. Moreover, for most applications, 356
it would be impossible to transfer data to the FPGA at the rate required for such a 357
fine-grain implementation. 358

Therefore, SOpenCL applies a series of source-to-source transformations that collec- 359
tively aim at coarsening the granularity of a kernel at a work-group level.1 The output 360
of the front end is a C function for each kernel corresponding to the invocation of the 361
kernel for a work-group. 362

1Other granularities can be supported as well.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

33:10 M. Owaida et al.

Fig. 3. Sequence of SOpenCL back-end code transformations and optimizations. Of particular interest for
LDPC application are bitwidth optimization and instruction clustering.

4.2.2. SOpenCL Back End. After the front-end OpenCL-to-C transformation, the back-363
end flow generates the synthesizable HDL of LDPC decoder accelerators. The main364
transformations shown in Figure 3 include bitwidth optimization [Stephenson et al.365
2000], predication, instruction clustering, and modulo scheduling [Llosa et al. 1996]366
and have been implemented as separate passes of the LLVM compiler. As a final step,367
the compiler back end generates the final hardware modules of the LDPC decoder368
application-specific architecture.369

Bitwidth optimization is an automated method used to minimize the number of bits370
required to represent each operand [Stephenson et al. 2000]. It uses static code infor-371
mation such as type casts, array bounds, and loop iteration counts to refine variable372
bitwidths that are unnecessarily long for the purposes of the LDPC OpenCL pro-373
gram. The scope of bitwidth optimization includes integer and fixed-point arithmetic,374
boolean operations, and bit manipulation operations, all of which are well represented375
in the LDPC application. In fact, experimental evaluation on LDPC decoding kernels376
indicates significant area and performance benefits as a result of careful bitwidth op-377
timization (see Section 5.2).378

Predication converts control dependencies to data dependences within loops, trans-379
forming the loop body into a single basic block. This is a prerequisite to applying380
modulo scheduling in subsequent steps. LDPC decoder kernels include numerous yet381
short conditional statements that create hundreds of 1-bit predicate variables.382

Instruction clustering automatically generates application-specific macro-383
instructions from a set of primitive instructions (basic arithmetic and logic operations)384
[Owaida et al. 2013]. In large-scale data paths, like LDPC, complex interconnection385
requirements limit resource utilization and often dominate critical path delay. For386
example, the area cost of a 32-bit adder with a 4-input multiplexer on each input port387
is dominated by the multiplexers tree (67% of the FPGA slices).388

Instruction clustering transforms the basic operations in an application’s Data Flow389
Graph (DFG) into a mixture of “primitive” instructions and application-specific macro-390
instructions. An application-specific macro-instruction substitutes a set of primitive391
operations and executes atomically (i.e., it appears as a single operation to the modulo392
scheduler). Regular computation patterns that appear repetitively in the DFG are393
strong candidates to be implemented as macro-instructions. The shaded subgraph A394
in Figure 4 represents a macro-instruction. Figure 4(b) shows the transformed DFG,395
which has now two primitive instructions and two macro-instructions of type A.396

The generation of application-specific macro-instructions is a two-step process in397
SOpenCL. First, we identify candidate instructions to form macro-instructions and398
then we select a subset of candidate macro-instructions to be implemented as MFUs.399
During candidate instructions generation, a space exploration of the application DFG400
results in the identification of a set of subgraphs, each representing a potential macro-401
instruction. To identify macro-instructions, we use a grammar-driven approach. Each402
“primitive” instruction corresponds to a terminal symbol of the grammar. The algorithm403
tries to hierarchically form grammar rules, which substitute frequent sequences of404
terminal and nonterminal symbols for new nonterminal symbols. Each rule of the405
generated grammar corresponds to a candidate macro-instruction.406

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

Enhancing Design Space Exploration by Extending CPU/GPU Specifications onto FPGAs 33:11

Fig. 4. Instruction clustering: (a) Portion of a program DFG. Shaded areas represent regular pattern can-
didates to be implemented as macro-instructions. (b) The DFG rewritten using two macro-instructions of
type A.

In the next step, a subset of grammar rules or, equivalently, of candidate macro- 407
instructions is selected for implementation in the form of MFUs based on a fitness 408
metric. The fitness metric targets minimizing the resources used by multiplexers and 409
maximizing the number of DFG nodes covered by the generated macro-instructions. At 410
the same time, the use of macro-instructions significantly reduces routing overhead, 411
thus enabling the placement and routing of designs that would otherwise fail, such as 412
the DVB-S2 decoder. 413

After identifying the subset of macro-instructions to be implemented as MFUs, the 414
instruction clustering pass optimizes the design of each separate MFU. More specifi- 415
cally, we refrain from adding pipeline registers (full pipelining) between each pair of 416
primitive operations within the MFU. Instead, we approximate an optimal pipelining 417
of the MFU data path by exploiting the specific features of the target FPGA device, thus 418
reducing area and latency in the process. We use an area estimation heuristic—easily 419
calibrated by a standard set of synthetic microbenchmarks on each target FPGA— 420
in order to identify consecutive operations within the MFU that can be implemented 421
on a single Lookup Table (LUT). Pipeline registers are then necessary only between 422
sequences of operations implemented on different LUTs, without any increase in the 423
critical path length. 424

Swing modulo scheduling (SMS) [Llosa et al. 1996] is used to generate a schedule 425
for the kernel. The scheduler identifies an iterative pattern of instructions and com- 426
putes a static assignment of those instructions to its Functional Units (FUs), so that 427
each iteration can be initiated before the previous ones terminates. SMS creates soft- 428
ware pipelines under the criterion of minimizing the Initiation Interval (II). II is the 429
constant time interval between launches of successive work-items measured in clock 430
ticks. Lower values of II correspond to higher throughput since more work-items are 431
initiated, and, therefore, more results are produced within a given time frame. That 432
makes II the main factor affecting computational bandwidth in modulo-scheduled loop 433
codes. 434

The inputs to the SMS scheduler are the instructions corresponding to each kernel, as 435
well as an XML-based hardware model description of the target FPGA, which specifies 436
FPGA device characteristics and resources. 437

4.3. Accelerator Architecture 438

Given the modulo-scheduled loop kernels, the compiler back end generates a modular 439
Verilog by instantiating an architectural template according to the requirements of 440
each kernel. Figure 5 depicts the architecture automatically generated for the LDPC 441

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

33:12 M. Owaida et al.

Fig. 5. Automatically generated hardware accelerator for the CN block of the LDPC decoder kernel.

CN kernel. The data path at the bottom of the block diagram executes kernel com-442
putations and generates addresses for Request Generation Units (RGUs). RGUs are443
used to coalesce incoming address requests and to interface to the memory system of444
the FPGA.445

The input stream Alignment Unit, Sin_Align, retrieves incoming data and presents446
them to the data path in the order they will be consumed. The output stream Alignment447
Unit, in turn, aligns the output data tokens coming from the data path in a set of data448
lines, each having a bitwidth equal to the bitwidth of the data bus and corresponding to449
a range of subsequent memory addresses. As soon as the FIFO is full or the incoming450
data token is out of lines, the Alignment Unit issues the write request to the Arbiter.451
The output Alignment Unit is designed to optimize the use of the bandwidth to memory.452

In addition to generating memory addresses for I/O, the data path executes the453
computationally intensive path of the algorithm, typically one corresponding to the454
innermost loop of a multilevel loop nest. The reconfigurable parameters of the data455
path are the type and bitwidth of FUs (ALUs for arithmetic and logical instructions,456
shifters, etc.), the custom operation performed within a generic FU (e.g., only addition457
or subtraction for an ALU), the number and size of registers in the queues between458
FUs, and the bandwidth to and from the streaming unit.459

Finally, Control Elements (CEs) are used to control and execute the code of outer460
loops. CEs have a simpler, less optimized architecture because outer loop code does not461
execute as frequently nor is it as performance-critical as innermost loop code.462

4.4. Memory System463

Memory transfers between the host RAM and on-chip SRAM memories (FPGA BRAMs)464
are routed through an 8x PCIe v2.1 interface, offering 4,000MB/s bandwidth on each465
direction.466

The on-chip memory subsystem needs to provide adequate bandwidth to keep the467
data path from stalling or, when this is not possible, to minimize it. For example,468
for II = 1, the implementation of the LDPC CN accelerator data path concurrently469
executes instructions from 106 successive loop iterations, requiring 392 adders, 210470
shifters, 369 logic units, and 434 comparators, as well as 994 1-bit logic units for471
predicate manipulation. The data path requires 120 bytes at the input and produces472
96 output bytes every clock cycle. Therefore, the memory system should be able to473
sustain 216 bytes/cycle to avoid stalling the accelerator.474

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

Enhancing Design Space Exploration by Extending CPU/GPU Specifications onto FPGAs 33:13

Fig. 6. System level block diagram of LDPC accelerators generated by SOpenCL with (a) CN (or BN) kernel
communicating through a single port to BRAM, (b) through three ports to the BRAMs, one for each I/O
stream, and (c) both kernels instantiated and interconnected.

SOpenCL allowed us to evaluate two different memory system designs, depicted in 475
Figure 6. The memory bank is built from FPGA BRAMs, concatenated to provide the 476
total memory space required to store all stream I/O data. In Figure 6(a), the memory 477
bank is configured as a unified single-port memory system, whereas Figure 6(b) shows 478
the memory bank configured as a distributed memory system. Figure 6(c) depicts the 479
two CN and BN kernels instantiated under the latter memory model with an arbiter 480
on each port to orchestrate requests from the two kernels. 481

Figure 6 shows the throughput required by the data path of LDPC for II = 1, as 482
well as the throughput provided by the memory system. The data path will generate in 483
parallel: 6 Addresses/Cycle (A/Cy) for ligacoesf stream, 24A/Cy for Lq, and 24A/Cy 484
for Lr. The RGU and Sout Align modules coalesce these addresses into 2 Lines/Cycle 485
(L/Cy), 6L/Cy, and 6L/Cy respectively, for a 128-bit data bus. The unified memory 486
bank will provide a throughput of one line per cycle (single 128-bit data bus), which 487
leads to stalling the data path for 14 cycles per computation/address generation cycle. In 488
the distributed memory configuration, each RGU and Sout Align module is allocated 489
a dedicated data bus (128-bit) to the memory bank with throughput 1L/Cy. In this 490
configuration, the stall time is shortened from 14 to 6 cycles. To achieve zero stall 491
cycles, the memory bank would have to provide a wider data bus, 96 bytes to Lr and Lq 492
streams and 64 bytes to ligacoesf stream. 493

It is clear that the distributed memory system configuration is more appropriate for 494
our architecture since it provides higher bandwidth to fulfill the data path require- 495
ments. It is also more suitable to the distributed nature of on-chip SRAMs in the 496
FPGA fabric. A unified single-port memory bank would unnecessarily restrict effective 497
bandwidth and severely slow down the accelerator. 498

5. EXPERIMENTAL EVALUATION 499

In this section, we evaluate the performance of LDPC decoders on the three platforms 500
described in Section 4. It should be emphasized that a single OpenCL code was used. 501
No platform-specific manual optimizations were performed to the OpenCL code at the 502
source code or at any other level. Therefore, this study can serve as a fair comparison 503
between the platforms in terms of the performance offered without platform-specific 504
optimization effort. Moreover, the study evaluates OpenCL as a portable programming 505
model in the heterogeneous architectures ecosystem. 506

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

33:14 M. Owaida et al.

5.1. Methodology507

Two different LDPC codes are profiled, namely a regular (8,000, 4,000) LDPC and a508
more complex, irregular (64,800, 32,400) LDPC code used in DVB-S2 communications,509
each running for 30 iterations. Each iteration calls the CN kernel, followed by a call to510
the BN kernel. In the regular case, each CN kernel invocation spawns N − K (4,000)511
work-items, and each BN kernel invocation spawns N (8,000) work-items, while 32,400512
and 64,800 work-items are spawned, respectively, in the irregular case.513

The OpenCL regular LDPC and DVB-S2 LDPC decoders were executed on an Intel514
Xeon E5645 6-core (12-threads) CPU system running at 2.4GHz, with 12MB of L3 cache515
and 4GB of DDR3. The CPU executable has been generated with g++ 4.4, using the516
2012 version of the Intel OpenCL SDK. The decoders were also executed on a AMD/ATI517
Radeon HD 5870 Evergreen GPU, running at 1.2GHz, with 3GB DDR5, using v 2.8 of518
the AMD APP SDK.519

Finally, we also experimented with an automatic hardware implementation of the520
decoders on a Xilinx Virtex-6 LX760 FPGA using the SOpenCL toolchain for automatic521
OpenCL to Verilog conversion and optimization, and the Xilinx ISE 12.4 toolset for syn-522
thesis, placement, and routing. LX760 contains 118, 560 slices, and each slice includes523
four LUTs and eight flip-flops. To evaluate the efficiency of the SOpenCL methodology524
we used different resource scenarios of hardware availability to guide modulo schedul-525
ing of the computational and I/O streaming kernels on an FPGA. The first scenario526
assumes that a new work-item is scheduled in every clock cycle (i.e., II = 1). In this527
case, each LLVM instruction is mapped to its own dedicated FU. Larger initiation inter-528
vals trade off throughput with resource availability and may correspond to platforms529
in which the memory system cannot sustain peak bandwidth to the accelerators.530

5.2. FPGA Experimental Results531

On FPGA-specific parts of the experimental evaluation, we focus on the automatic532
optimization techniques that proved of crucial importance for OpenCL performance533
portability on FPGAs: bitwidth analysis and instruction clustering. Both optimizations534
target the reduction of the area and the routing complexity associated with the FPGA535
designs; however, they have a direct effect on performance as well.536

We experimentally evaluated three different regular LDPC code versions, assuming537
input data (codeword elements) of 5, 6, and 8 bits, and a fourth version in which the538
size of input data is specified as a runtime input parameter to the OpenCL kernel539
(Generic row in Tables I and II). Note that since OpenCL does not support bit-level540
specification of variables, any data size less than 8 bits is emulated in the source code541
by explicit masking-off of extraneous bits. The Generic version is particularly useful in542
the context of explorative simulations since it allows testing decoder performance for543
different input bitwidths without requiring resynthesizing, replacing, and rerouting544
the FPGA design.545

We first examine the correlation of the area required for the FPGA implementations546
with respect to the value of the II targeted by the SOpenCL tool. Area costs are547
minimized when II = 1, which seems counterintuitive since this configuration requires548
a separate FU for each primitive instruction of the data path. The LDPC decoder kernel549
code consists mainly of simple operations (add, shift, logic) between a variable and a550
constant. Assigning dedicated FUs to each operation, as is the case when II = 1, forces551
one of the FU inputs to a constant value, thus providing ample opportunities for the552
synthesis tool to reduce area. When II > 1, this opportunity no longer exists since553
each FU input is driven by a multiplexer tree. In fact, configurations with larger II554
seem to be quite problematic when it comes to routing the design. Larger multiplexer555
trees cause routing congestion, which is not the case when the ISE placement tool can556
spread out FUs and make better use of routing channels.557

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

Enhancing Design Space Exploration by Extending CPU/GPU Specifications onto FPGAs 33:15

Table I. Comparing Regular LDPC CN Kernel Implementations for Different
I I = {1, 2, 8} Architecture Configurations

Freq. Latency Exec. Time
CS Slices Flip-flops LUTs (MHz) (cycles) (ms)

8 (no BW opt.) 12,061 42,718 39,594 100 102 0.48102
8 11,600 41,892 38,759 101 102 0.476257

II=1 6 11,647 35,948 33,914 103 106 0.467049
5 10,369 33,639 32,861 107 106 0.449589

Generic 24,108 101,960 80,115 91 106 0.528637
8 (no BW opt.) 25,453 64,311 92,096 88 103 0.546625

8 21,424 54,872 81,526 97 103 0.495907
II=2 6 23,632 61,035 78,884 95 110 0.506421

5 19,374 61,052 65,192 88 110 0.546705
Generic 28,432 67,307 73,212 63 110 0.763651

8 (no BW opt.) 33,213 54,749 78,266 50 210 1.2842
8 27,556 57,582 58,788 53 210 1.211509

II=8 6 27,008 56,745 64,104 50 231 1.28462
5 26,894 54,868 64,083 51 231 1.259431

Generic 36,954 58,121 79,682 51 231 1.259431
The comparison uses variable bitwidth precision with 5, 6, and 8 bits and a Generic on-
the-fly bit precision selection approach (for II = 8, Generic and 5-bit cases have the same
frequency and latency, and this is the reason that execution times are identical for both).

Table II. Comparing Regular LDPC BN Kernel Implementations for Different
I I = {1, 2, 8} Architecture Configurations

Freq. Latency Exec. Time
CS Slices Flip-flops LUTs (MHz) (cycles) (ms)

8 (no BW opt.) 7,681 28,026 25,823 152 53 0.158243
8 6,466 19,584 18,433 163 53 0.147564

II=1 6 5,891 17,746 17,001 175 57 0.137469
5 5,515 16,132 16,509 182 57 0.132181

Generic 10,572 35,865 37,056 164 61 0.146713
8 (no BW opt.) 7,134 24,332 23,482 153 54 0.157216

8 6,201 18,246 17,957 176 54 0.13667
II=2 6 5,996 17,663 17,385 171 58 0.14069

5 5,665 17,269 17,077 166 58 0.144928
Generic 8,226 27,190 27,891 164 62 0.14672

8 (no BW opt.) 8,631 20,592 22,633 151 109 0.212642
8 6,747 16,791 17,983 168 109 0.191125

II=8 6 7,032 17,524 18,697 163 120 0.197055
5 6,731 17,227 18,384 172 120 0.186744

Generic 9,963 23,946 26,683 132 127 0.243386
The comparison uses variable bitwidth precision with 5, 6, and 8 bits and a Generic on-
the-fly bit precision selection approach.

Another interesting observation for II > 1 is that shorter bitwidths (5- and 6-bit 558
data representations) in some cases require more resources than a bitwidth of 8. Our 559
analysis shows that with larger bitwidth values, most of the FUs allocated will have 560
appropriate sizes to serve a number of instructions with various bitwidths (from 5- to 561
32-bit). This will reduce the gain from custom bitwidths because the tool necessarily 562
moves toward a larger, more generic FU size with larger II. Finally, the following set 563
of operations are widely used in the code: 564

(data >> 24) & 255 For 8 bits 565
(data >> 24) & 63 For 6 bits 566
(data >> 24) & 31 For 5 bits 567

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

33:16 M. Owaida et al.

The LLVM compiler front end was smart enough to eliminate the masking operation568
for 8-bit because it is not necessary, but those operations remained for 6- and 5-bit569
kernels. This led to the use of an additional 96 masking operations in kernels with 6 and570
5 bits. These additional instructions are significantly more costly with larger II values;571
they increase the density of the input multiplexer tree and may require more FUs, thus572
introducing additional input multiplexer trees. In fact, it was more problematic to place573
and route configurations with smaller bitwidths than 8-bit configurations when II was574
large.575

For II > 2, SOpenCL automatically inserts pipeline registers between the multi-576
plexer tree and the FU inputs to reduce the critical path delay and improve routing.577
This explains why the schedule latency for II = 8 is almost twice as large as the latency578
for smaller II values. In any case, clock frequency was mainly dictated by routing de-579
lays in most configurations, especially for the CN kernel. It should be noted that, given580
the streaming nature of the application, the frequency together with the efficiency of581
the memory subsystem are the dominant factors affecting performance.582

Software developers tend to either pay minimal attention to the size of data types583
they are using or to be overly conservative. For example, quite often, a programmer584
will use an integer variable to store a boolean flag. To make the situation worse, many585
programming languages limit the granularity of standard data types to predefined586
sizes, not offering the opportunity to define arbitrary bitwidths. Hardware designers,587
on the other hand, are very sensitive to area limitations and invest significant effort in588
optimizing their designs to the minimum bitwidth required to support the data flowing589
at each level of the data path. Therefore, custom hardware synthesis driven by algo-590
rithmic descriptions in software can significantly benefit from automatic, aggressive591
bitwidth analysis and optimization.592

The results for the non–bitwidth-optimized configuration are presented in row “8593
(no BW opt.)” of Tables I and II for each target II. It is clear that bitwidth analysis594
is particularly effective in reducing area (in terms of the number of slices, flip-flops,595
and LUTs used) and increasing frequency. This is true even in the case of 8-bit input596
data. Although this may seem counterintuitive, it can be explained by the fact that the597
bitwidth analysis algorithm tries to aggressively reduce the bitwidth of internal data598
lanes and FUs of the data path whenever possible. Moreover, the Generic configuration599
is more area-demanding, which results in lower frequencies of operation (and thus600
performance) when compared to fixed bitwidth configurations. This is mainly due to601
the fact that the width of the input data is not known until runtime, thereby limiting602
the opportunities for savings with compile-time techniques. Second, the support of603
arbitrary input bitwidths requires additional logic (masking operations with unknown604
parameters at compile-time). Summarizing, the implementation of generic bitwidth605
algorithms on FPGAs presents an interesting tradeoff for designers. Data bitwidths606
can be a runtime parameter for simulations, thus allowing the evaluation of different607
bitwidths without incurring the overhead of FPGA synthesis, placement, and routing608
for each bitwidth. On the other hand, generic bitwidth implementations will require609
more area and result in lower performance.610

Instruction clustering is a powerful optimization aiming at reducing area over-611
head and routing complexity especially in computation-bound designs. The gain of612
instruction clustering is threefold: area reduction, latency reduction, and frequency613
improvement. The area reduction resulted mainly from reduced multiplexer size, which614
manifests its area as LUTs, especially for II > 1.615

Figure 7 depicts the percentage of area improvement when the instruction clustering616
optimization is applied to the 8-bit regular LDPC and irregular DVB-S2 LDPC decoder617
kernels. The area results of the corresponding versions of the algorithms without ap-618
plying instruction clustering are used as the base for comparison. In the figure, we can619

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

Enhancing Design Space Exploration by Extending CPU/GPU Specifications onto FPGAs 33:17

Fig. 7. Percentage of area difference (negative values correspond to reduction, therefore lower is better)
achieved by applying the instruction clustering optimization on regular and irregular DVB-S2 LDPC decoder
kernels, with respect to the nonoptimized versions of the benchmarks. The numbers on the bars indicate
the base area consumed by nonoptimized configurations. On the left column of diagrams, the reader can
observe the effect of instruction clustering on bitwidth-optimized kernels. The diagrams on the right column
instruction quantify the effect of instruction clustering on non–bitwidth-optimized kernels.

clearly observe that the decrease in area (slices) correlates with the decrease in LUTs, 620
whereas the amount of consumed flip-flops tends to increase in some configurations 621
(more on that shortly) and decrease in others. One can reason on that by analyzing 622
the logic slice architecture of the target FPGA device. In Virtex 6 FPGAs, a logic slice 623
includes four LUTs and eight flip-flops. Therefore, more flip-flops than LUTs can be 624
packed in the same slice; hence, the additional flip-flop overhead in the optimized 625
designs is easily outweighed by the reduction achieved by LUTs. 626

It appears that instruction clustering optimization sometimes performs poorly at 627
II = 1, as the case for the BN kernel indicates. This is expected because, in this case, 628
there are no multiplexers to optimize out. The reductions in consumed area may come 629
mainly from optimized MFU pipelines. In such cases, full logic cells (LUTs) can be 630
optimized out, and the overhead due to the increase of variables lifetime is minimized. 631

Interesting results can be observed for the DVB-S2 LDPC decoder benchmark. The 632
area results for II = 8 are missing from the diagrams because the Xilinx ISE syn- 633
thesis, placement, and routing tool failed, after 16 hours, to finish successfully with- 634
out applying the instruction clustering optimization. On the other hand, instruction 635

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

33:18 M. Owaida et al.

clustering optimized configurations finished placement and routing successfully within636
a few hours.637

Figure 8 depicts the performance (frequency and latency) effect of the instruction638
clustering optimization on the 8-bit regular and DVB-S2 irregular LDPC decoder ker-639
nels. The instruction clustering optimization succeeded in minimizing routing complex-640
ity, thus leading to an increase of frequency in all cases. It produces a compact form641
of FUs and increases the locality of interconnects between FUs. Compared to nonopti-642
mized configurations, fewer problematically long interconnect segments are generated,643
hence the interconnect delay is smaller and the frequency is higher.644

The data path latency tends to decrease using instruction clustering. The pipelining645
optimization of MFUs reduces the latency compared to fully pipelined implementations.646
As a result, the schedule latency of the data path becomes lower. However, the schedule647
latency effect on the data path throughput is very small since we pipeline the loop648
iterations that execute on the data path. As a result, as explained earlier, for high649
loop iteration counts, the II target value and the attained frequency are the main650
parameters that determine the data path throughput.651

As we observed earlier, instruction clustering may lead to an increase in the number652
of flip-flops. This can be mainly attributed to the fact that instruction clustering tends653
to increase the lifetimes of program variables. Figure 9 depicts an example of such a654
situation. Figure 9(a) shows a subgraph of a DFG, which includes a macro-instruction.655
Note that, given that macro-instructions are treated by the scheduling algorithm as a656
single instruction, all their operands need to be available before the macro-instruction657
is scheduled; in Figure 9(b), the macro-instruction is scheduled after all its operands658
(N0, N1, N2, and N3) are available (all scheduled at T = 0, with latency = 1). For659
example, N0 requires three registers to delay its value to T = 4 when N7 is scheduled.660
On the other hand, in Figure 9(c), where macro-instructions are not used and each661
instruction is scheduled individually, instruction N0 is scheduled just one cycle before662
its user, thus reducing its lifetime to just one cycle.663

Bitwidth analysis and instruction clustering act complementarily toward the goal of664
reducing the area requirements and increasing the performance of FPGA implemen-665
tations. When the SOpenCL tool targets II = 1, bitwidth analysis is most effective,666
whereas the effect of instruction clustering is limited or sometimes even results in area667
overhead. On the contrary, higher target IIs limit the benefits of bitwidth analysis but668
provide more opportunities for instruction clustering. In any case, Figures 7 and 8669
indicate that the activation of bitwidth analysis and instruction clustering is, overall,670
clearly the configuration of choice, especially when taking into account the difficulties671
of the synthesis, placement, and routing vendor toolchain with complex designs, such672
as the DVB-S2 LDPC decoder.673

5.3. Cross-Platform Comparison and Discussion674

Figure 10 depicts the performance for simulations on the three platforms using the675
same OpenCL code for all platforms. The simulations decode a stream of 16 8-bit code-676
words, applying 30 decoder iterations per codeword, on the three simulation platforms.677
On the FPGA, both bitwidth analysis and instruction clustering have been applied. The678
execution times are broken down to buffer transfers and computations. Buffer transfers679
correspond to host-to-device transfers over the PCIe interface for GPUs and FPGAs.680
On the CPUs, they can be reduced to simple memory copies by the vendor OpenCL681
runtime. It should be pointed out that the execution time of computations also includes682
the overhead of memory transfers between the device memory (main memory in the683
case of CPUs) and the execution contexts of each platform. Once again, we used both684
a regular LDPC code and an irregular DVB-S2 LDPC code as test cases of different685
nature and complexity. Since increasing the number of iterations resulted in a linear686

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

Enhancing Design Space Exploration by Extending CPU/GPU Specifications onto FPGAs 33:19

Fig. 8. Percentage of frequency (higher is better) and latency (lower is better) difference for regular and
irregular DVB-S2 LDPC decoder kernels achieved by applying the instruction clustering optimization with
respect to the nonoptimized versions of the benchmarks. The numbers on the bars indicate the base frequency
and latency achieved by nonoptimized configurations. On the left column of diagrams, the reader can observe
the effect of instruction clustering on bitwidth-optimized kernels. The diagrams on the right column quantify
the effect of instruction clustering on non–bitwidth-optimized kernels.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

33:20 M. Owaida et al.

Fig. 9. Instruction clustering effect on variables lifetime. (a) Part of a DFG with one macro-instruction.
(b) Scheduler output and FU implementation using instruction clustering. (c) Scheduler output and FU
implementation without instruction clustering. The gray rectangles represent registers.

Fig. 10. Execution time (bars) and throughput (lines) on the three target simulation platforms for regular
and irregular DVB-S2 LDPC decoders. For the FPGA case, results were obtained for a configuration that
uses II = 1 and 8 bits with BW optimization.

increase of the computation time in all platforms, as expected, we report and discuss687
the results for 30 decoding iterations. GPUs and FPGAs clearly outperform CPUs in688
terms of execution and throughput. Therefore, nonaccelerated CPU execution should689
be considered as the last resource to use in simulations for application-specific designs.690
GPUs proved to have in all cases the highest performing levels. Markedly, the profiled691
metrics show that the GPU ALUs show an SIMD packing of 63% and 89% for the CN692
and BN Processing, respectively, whereas the ratio of ALU to memory instructions is693
∼30, allowing the overlap of high-latency memory transfers and compute instructions.694
At the same time, however, FPGAs emerge as competitive programmable accelerator695
platforms, especially considering that SOpenCL alleviates the development overhead696
typically associated with FPGA designs. It should be noted that LDPC decoding imple-697
mentations on FPGAs are bandwidth limited. The memory subsystem cannot sustain698
the peak bandwidth required by the data path, introducing five stall cycles per access699
for the regular LDPC case. To overcome such penalties, a possible solution would be to700
exploit advanced compile-time memory access pattern analysis techniques to facilitate701
customized, application-specific memory subsystem designs on FPGAs. However, this702
undertaking is outside the scope of this article.703

Figure 11 outlines the throughput achieved by each of the target platforms consid-704
ering their maximum power consumption—Thermal Design Power in the case of the705
CPU and GPU, and upper bound for Virtex6 [Yu and Chakrabarti 2012]. It is clear706
that FPGAs significantly outperform both CPUs and GPUs when this metric is used707
for comparison. The throughput performance versus power consumed analysis is an708
indicator of the capability of each platform to exploit the potential parallelism of the709
application in a power-efficient manner. Unfortunately, FPGA performance is limited710

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

Enhancing Design Space Exploration by Extending CPU/GPU Specifications onto FPGAs 33:21

Fig. 11. Throughput versus power consumption (higher is better) for the apparatus defined in Section 5.1
for the CPU, GPU, and FPGA using regular and irregular DVB-S2 LDPC decoders as test cases.

Fig. 12. BER curves simulation for 6- and 8-bit variable width precision for a given target error floor. A few
quick GPU simulations at SNR = −0.5dB allow finding the necessary bitwidth precision (the GPU allows
faster recompilation times than FPGAs).

by the low frequencies that FPGA designs typically achieve. For example, the CPU and 711
GPU used in the experimental evaluation are clocked at 2.4 and 1.2GHz, respectively, 712
whereas FPGA designs were limited to frequencies below 200MHz. This is due to a 713
combination of factors beyond the complexity of each individual hardware design: limi- 714
tations of the current technology at the hardware level and the degree of sophistication 715
of synthesis, placement, and routing tools. 716

Other optimizations can be exploited together with the right choice of platforms 717
and parameters for different phases of the design. For example, if a BER < 10−10 718
target error floor at SNR = −0.5dB is given as an input parameter specification, an 719
inspection of Figure 12 illustrates how a quick simulation performed on the GPU 720
(where algorithmic changes are recompiled faster and do not require resynthesis, as 721
in the FPGA case) would allow concluding that 6 bits are not enough to represent 722
data and that at least 8 bits should be considered. Then, at different phases of the 723
design process, other platforms could be used (FPGAs or GPUs) as accelerators to 724
estimate the complete BER plots. This approach makes even more sense because ex- 725
tremely time-consuming error floors in the order of 10−15 are now being adopted by 726
emergent standards, as is the case of LDPC codes from the ITU-G.709 standard for 727
optical communications, in which each BER plot estimate can take months to compute 728
[Smith et al. 2011]. 729

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

33:22 M. Owaida et al.

6. CONCLUSION730

In this article, we studied the use of a single, generic OpenCL source code in order to ex-731
ecute simulations on heterogeneous systems with diverse architectures. This approach732
is substantially more efficient than developing the simulation code on each platform,733
often using a separate programming model. More specifically, not only did we target734
CPUs and GPUs, but we also introduced FPGAs as a first-class choice for the acceler-735
ation of simulations without incurring the development overhead typically associated736
with FPGA prototyping. We used LDPC decoders as a case study, experimenting with737
various codes, both regular and irregular.738

If coordinated appropriately, different phases of the design can either individually or739
concurrently exploit the particular features of distinct multicore platforms in order to740
accelerate the global processing of computationally intensive Monte Carlo simulations741
for application-specific algorithmic design. We observe that GPUs and FPGAs signif-742
icantly accelerate simulation times compared to traditional methods that use CPUs.743
In this context, OpenCL allows code portability and competitive performance across744
different multicore platforms at no extra programming effort.745

This strategy can be applied to other areas of VLSI system design as well. Although746
we analyzed the particular case of LDPC decoders used in communication systems,747
similar tradeoffs in balancing performance, area, and energy-efficiency usually attract748
the attention of hardware designers across application domains.749

REFERENCES750

A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown, and T. Czajkowski. 2011.751
Legup: High-level synthesis for fpga-based processor/accelerator systems. In Proceedings of the 19th752
ACM/SIGDA International Symposium on Field Programmable Gate Arrays. 33–36.753

B. Cope, P. Y. K. Cheung, W. Luk, and L. Howes. 2010. Performance comparison of graphics processors to754
reconfigurable logic: A case study. IEEE Transactions on Computing 59, 4 (2010), 433–448.755

EN 302 307 V1. 1.1, European Telecommunications Standards Institute (ETSI). 2005. Digital video broad-756
casting (DVB); second generation framing structure, channel coding and modulation systems for broad-757
casting, interactive services, news gathering and other broad-band satellite applications. (2005).758

M. Eroz, F. W. Sun, and L. N. Lee. 2004. Dvb-s2 low density parity check codes with near Shannon limit759
performance. International Journal of Satellite Communications and Networking 22 (2004), 269–279.760

G. Falcao, J. Andrade, V. Silva, and L. Sousa. 2011. GPU-based DVB-S2 LDPC decoder with high throughput761
and fast error floor detection. Electronics Letters 47, 9 (April 2011), 542–543.762

G. Falcao, V. Silva, L. Sousa, and J. Andrade. 2012. Portable LDPC decoding on multicores using OpenCL.763
IEEE Signal Processing Magazine 29, 4 (2012), 81–109.764

R. G. Gallager. 1962. Low-density parity-check codes. IRE Transactions on Information Theory 8, 1 (1962),765
21–28.766

A. Gill, T. Bull, D. DePardo, A. Farmer, E. Komp, and E. Perrins. 2011. Using functional programming767
to generate an LDPC forward error corrector. In Proceedings of the IEEE 19th Annual International768
Symposium on Field-Programmable Custom Computing Machines. 133–140.769

H. Jin, A. Khandekar, and R. McEliece. 2000. Irregular repeat-accumulate codes. In Proceedings of the 2nd770
International Symposium on Turbo Codes & Related Topics.771

V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. Cronquist, and M. Sivaraman. 2002. Pico: Automatically772
designing custom computers. IEEE Computer Magazine 35, 9 (2002), 39–47.773

Group Khronos. 2010. OpenCL – The Open Standard for Parallel Programming of Heterogeneous Systems.774
Retrieved from http://www.khronos.org/opencl.775

C. Lattner and V. Adve. 2004. LLVM: A compilation framework for lifelong program analysis transformation.776
In Proceedings of the International Symposium on Code Generation and Optimization (CGO’04). 75–86.777

M. Lin, I. Lebedev, and J. Wawrzynek. 2010. OpenrCL: Low-power high performance computing with re-778
configurable devices. In Proceedings of the 2010 International Conference on Field Programmable Logic779
(FPL’10). 458–463.780

J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero. 1996. Swing modulo scheduling: A lifetime-sensitive781
approach. In Proceedings of the International Conference on Parallel Architectures and Compilation782
Techniques (PACT’96). 80–90.783

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

http://www.khronos.org/opencl

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

Enhancing Design Space Exploration by Extending CPU/GPU Specifications onto FPGAs 33:23

NVIDIA. 2007. CUDA – Compute Unified Device Architecture. Retrieved from http://www.nvidia.com/ 784
object/cuda_home_new.html. 785

Muhsen Owaida, Christos D. Antonopoulos, and Nikolaos Bellas. 2013. A Grammar Induction Method for 786
Reducing Routing Overhead in Complex FPGA Designs. Technical Report. Department of Computer and 787
Communication Engineering, University of Thessaly, Greece. 788

M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos. 2011a. Massively parallel programming models 789
used as hardware description language: The OpenCL case. In Proceedings of the IEEE/ACM Interna- 790
tional Conference on Computer-Aided Design (ICCAD). 791

M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos. 2011b. Synthesis of platform architectures from 792
opencl programs. In Proceedings of the IEEE Symposium on Field-Programmable Custom Computing 793
Machines (FCCM’11). 794

A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong, and Wen-mei Hwu. 2009. FCUDA: 795
Enabling efficient compilation of CUDA kernels onto FPGAs. In Proceedings of the 7th IEEE Symposium 796
on Application Specific Processors. 35–42. 797

Markus Rupp, Andreas Burg, and Eric Beck. 2003. Rapid prototyping for wireless designs: The five-ones 798
approach. Signal Processing 83, 7 (2003), 1427–1444. 799

B. Smith, A. Farhood, A. Hunt, F. Kschischang, and J. Lodge. 2011. Staircase codes: FEC for 100 Gb/s OTN. 800
IEEE/OSA Lightwave Technology PP, 99 (2011), 1. 801

M. Stephenson, J. Babb, and A. Amarasinghe. 2000. Bitwidth analysis with application to silicon compilation. 802
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation 803
(PLDI’00). 804

R. Weber, A Gothandaraman, R. J. Hinde, and G. D. Peterson. 2011. Comparing hardware accelerators in 805
scientific applications: A case study. IEEE Transactions on Parallel and Distributed Systems 22, 1 (2011), 806
58–68. 807

S. B. Wicker and S. Kim. 2003. Fundamentals of Codes, Graphs, and Iterative Decoding. Kluwer Academic 808
Publishers. 809

Chi-Li Yu and C. Chakrabarti. 2012. Transpose-free sar imaging on fpga platform. In Proceedings of 810
the International Symposium on Circuits and Systems (ISCAS’12). 762–765. DOI:http://dx.doi.org/ 811
10.1109/ISCAS.2012.6272149 812

Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J. Cong. 2008. High-Level Synthesis: From Algorithm to 813
Digital Circuit. Springer Netherlands, Chapter AutoPilot: A Platform-Based ESL Synthesis System. 814

Received April 2013; revised January 2014; accepted September 2014

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 33, Publication date: December 2014.

http://www.nvidia.com/object/cudahomenew.html
http://www.nvidia.com/object/cudahomenew.html
http://dx.doi.org/10.1109/ISCAS.2012.6272149
http://dx.doi.org/10.1109/ISCAS.2012.6272149

TECS1402-33 ACM-TRANSACTION December 22, 2014 11:26

QUERIES

Q1: AU: Pleaes provide full author addresses and emails for all authors.
Q2: AU: Please check the acronyms used in the article and expand (spell out) on first use those that might

not be completely familar to the readers.

