
Using dynamic cache management techniques to reduce energy

in general purpose processors
Nikolaos Bellas� Ibrahim Hajj� and Constantine Polychronopoulos

Abstract� The memory hierarchy of high�performance and

embedded processors has been shown to be one of the major en�

ergy consumers� For example� the Level�� �L�� instruction cache

�I�Cache� of the StrongARM processor accounts for �	
 of the

power dissipation of the whole chip ���� whereas the instruction

fetch unit �IFU� and the I�Cache of Intels Pentium Pro pro�

cessor are the single most important power consuming modules

with ��
 of the total power dissipation ���� Extrapolating cur�

rent trends� this portion is likely to increase in the near future�

since the devices devoted to the caches occupy an increasingly

larger percentage of the total area of the chip�

In this paper� we propose a technique that uses an additional

mini cache� the L��Cache� located between the I�Cache and the

CPU core� This mechanism can provide the instruction stream

to the data path and� when managed properly� it can e�ectively

eliminate the need for high utilization of the more expensive I�

Cache� We propose� implement� and evaluate �ve techniques

for dynamic analysis of the program instruction access behavior�

which is then used to proactively guide the access of the L��

Cache� The basic idea is that only the most frequently executed

portions of the code should be stored in the L��Cache since this

is where the program spends most of its time�

We present experimental results to evaluate the e�ectiveness

of our scheme in terms of performance and energy dissipation for

a series of SPEC�� benchmarks� We also discuss the performance

and energy tradeo�s that are involved in these dynamic schemes�

Results for these benchmarks indicate that more than ��
 of the

dissipated energy in the I�Cache subsystem can be saved�

Keywords� Low�power�design� Memory�

Performance�tradeo�s� System�level

I� INTRODUCTION

In recent years� power dissipation has become a major de�
sign concern for the microprocessor industry� The shrinking
device size� and the large number of devices packed in a chip
die coupled with the large operating frequencies� have led to
unacceptably high levels of power dissipation�
The problem appears to be more acute in portable systems

which operate under the energy constraints of a battery� These
systems need a small battery for portability� which should pro�
vide enough energy to keep the system running for as long as
possible� Hence� the energy dissipation of the portable system
should be low so that it does not drain the battery quickly�
On the other hand� desktop systems operate in an increasingly
�hot� environment� The layout compaction and the high op�
erating frequencies entail high power densities and� thus� high
thermal stresses on the chip� If this trend is not controlled by
low power techniques� the chip will have reliability problems�
such as electromigration� which is due to the high current den�
sities on the metal interconnects� Such low�power techniques
also help in keeping the cost of packaging low� thus reducing
the cost of the �nal product�
The problem of the wasted power caused by unnecessary ac�

tivity in various parts of the CPU during code execution has

This work was supported by Intel Corp�� Santa Clara� CA from ���� to ����

N� Bellas is with the DigitalDNA Systems Architecture Laboratory� Motorola

Inc�� Schaumburg� IL

I� Hajj and C� Polychronopoulos are with the Coordinated Sciences Labora�

tory� Department of Electrical and Computer Engineering� University of Illinois

at Urbana�Champaign� Urbana� IL ��	
�

traditionally been ignored in code optimization and architecture
design� Processor architects and compiler writers are concerned
with system performance�throughput and they do little� if any�
thing at all� to eliminate energy�power dissipation at this level�
Researchers in the CAD community have started tackling the
problem of power minimization through compiler transforma�
tions� yet this process is still in its infancy� On the other hand�
power dissipation is rapidly becoming the major bottleneck in
today	s systems integration and reliability�
Modern microprocessors are large power consumers
 Table I

shows clearly the power increase for the faster versions of the
same processor families� Higher frequencies and larger transis�
tor counts more than o�set the lower voltages and smaller de�
vices� and they result in larger power consumption in the newest
version in a processor family� This has prompted many manu�
facturers to design low�power versions of their �agship proces�
sors for use in the mobile and multimedia computing industry�
Clearly� designing a low�power� high�performance processor is
considered an extremely hard problem� which can only be solved
if power or energy reduction is a concern from the beginning of
the design process and not only an afterthought�
As processor performance continues to grow� and high�

performance� wide�issue processors exploit the available
Instruction�Level Parallelism� the memory hierarchy should
continuously supply instructions and data to the data path to
keep the execution rate as high as possible� Very often� the
memory hierarchy access latencies dominate the execution time
of the program� The very high utilization of the instruction
memory hierarchy entails high energy demands on the on�chip
I�Cache subsystem�
In order to reduce the e�ective energy dissipation per in�

struction access� we propose the addition of an extra cache the
L��Cache� which serves as the primary cache of the processor�
and is used to store the most frequently executed portions of
the code� and subsequently provide them to the pipeline� In
our case� the L��Cache is a small� direct�mapped cache which
can accommodate �� to ��� instructions� and has a block size of
� to �� bytes� Our approach seeks to manage the L��Cache in a
manner that is sensitive to the frequency of accesses of the in�
structions executed� It can exploit the temporalities of the code
and can make decisions on�the��y� i�e�� while the code executes�
The problem that the dynamic techniques seek to solve is how

to select basic blocks� to be stored in the L��Cache while the
program is being executed� If a block is selected� the CPU will
access the L��Cache �rst� otherwise� it will go directly to the
I�Cache and it will bypass the L��Cache� In case of an L��Cache
miss� the CPU is directed to the I�Cache to get the instruction
and� at the same time� to transfer the instruction from the I�
Cache to the L��Cache� A penalty of one clock cycle has to
be paid in case of an L��Cache miss� The L��Cache is loaded
with instructions from the I�Cache after a miss� The L��Cache
and the I�Cache are always accessed in sequence and never in
parallel� thus avoiding redundant accesses and reducing energy
dissipation�

�A basic block is a sequence of instructions with no transfers in and out except

possibly at the beginning or end�

�

TABLE I

Power trends for current microprocessors�

DEC ����� DEC ����� Pentium Pentium II Ultra Ultra
Higher freq� Pro SPARCI SPARCII

SPECint�� ���� ���� ���� ���� ��� ����
SPECfp�� ���� ���� ���� ���� ���� ����
Average ���� ���� ���� ����� ���� ����

Freq� MHz� ��� ��� ��� ��� ��� ���
� �m� ���� ���� ��� ���� ���� ����

Voltage V� ��� ��� ��� ��� ��� ���
Power W� ���� �� ���� ���� �� max� �� max�

Fig� � shows the schematic of a CPU with the L��Cache
placed between the pipeline and the L� I�Cache� Our design
objective is to exploit the instruction reuse present in a typical
program� by placing the most frequently portions of the code in
the L��Cache� Since the small L��Cache is the primary cache of
the system� dynamic management techniques are employed to
reduce the negative e�ects of excessive miss rates�

The paper is organized as follows
 in section II� we review
previous work regarding energy and power minimization in the
microarchitectural level� as well as dynamic management of the
memory hierarchy for performance enhancement� Next� in sec�
tion III we brie�y describe the hardware that we use� and� in
section IV� we explain the basic idea behind our scheme� Sec�
tion V details our solution to dynamic selection of basic blocks
to be cached in the L��Cache� and gives several techniques that
trade o� delay and energy reduction� The experimental results
for each technique are also given in section V� The conclusions
are presented in section VI�

II� RELATED WORK

The area of power minimization at the architectural and soft�
ware levels is relatively new� The impact of memory hierarchy
in minimizing power consumption� and the exploration of data�
reuse in order to reduce the power required to read or write data
in the memory is addressed in ��� and ���� In ��� the same au�
thors propose a novel way to organize complex data structures
in the memory hierarchy so that a cost function is minimized�

A model that views power from the standpoint of the soft�
ware that executes on a microprocessor and the activity that
it causes� rather than from the traditional hardware standpoint
has been proposed ��� and tested in di�erent architectures ����
This methodology attempts to relate the power consumed by a
microprocessor to the software that executes on it� In ���� the
authors report that the energy�delay product in a wide spec�
trum of processors is relatively constant� although energy and
delay varied by orders of magnitude� For example� the energy�
delay product of the low�power� low�performance R����� from
MIPS was almost the same as the energy�delay product of the
powerful ����� from DEC�

In ���� a mechanism is described which enables the by�pass of
the I�Cache by storing the most frequently accessed instructions
in an extra bu�er� In ����� the authors propose methods to
eliminate the tag comparisons in a cache access when the same
cache block is accessed� In ����� the authors demonstrate that
some popular hardware techniques that have been proposed to
improve the hit rates of caches� such as the victim cache� have
a bene�cial impact on power as well�

The �lter cache ���� tackles the problem of large energy con�
sumption of the L� caches by adding a small� and thus more

energy�e�cient cache between the CPU and the L� caches� Pro�
vided that the working set of the program is relatively small� and
that the data reuse is large� this �mini� cache can provide the
data and instructions of the program and e�ectively shut down
the L� caches for long periods during program execution� The
penalty to be paid is the increased miss rates and� hence� longer
average memory access time� Although this might be acceptable
for embedded systems for multimedia or mobile applications� it
is out of the question for high�performance processors� Our
method uses an extra� smaller cache between the the CPU and
the L� I�Cache just as the �lter cache does� However� we use a
series of dynamic management techniques to regulate the access
of the L��Cache� Contrary to the �lter cache� our method does
not access the L��Cache for every instruction� but only when a
series of criteria are satis�ed� When they are not� the I�Cache
is accessed immediately� and the L��Cache is bypassed�

The concept that an intelligent RAM IRAM� organization
is inherently low power is discussed in ���� and ����� In ����� the
addition of a compiler�managed extra cache the Loop�Cache�
is proposed that amends the large performance degradation of
the �lter cache� In this scheme� the compiler generates code
that exploits the new memory hierarchy by maximizing the hit
rate of the Loop�Cache� Pro�le information and the control �ow
graph of the program are used for this purpose�

The work in ��� focuses on the excessive energy dissipation of
high�performance� speculative processors that tend to execute
more instructions than are actually needed in a program� The
authors use the concept of branch prediction and con�dence
estimation ���� to detect when the CPU fetches and executes
instructions from a speculative path that has a small proba�
bility to be taken� The CPU stops execution in the pipeline
when there is a large probability of wrong path execution� and
it resumes only when the actual execution path is detected�

There has been an extensive research e�ort lately on tech�
niques to improve the memory hierarchy performance through
dynamic techniques� This e�ort has almost always targeted de�
lay rather than energy reduction� The authors in ���� and ����
present techniques for dynamic analysis of program data access
behavior� which are then used to guide the placement of data
within the memory hierarchy� Data that are expected to have
little reuse in the cache are bypassed and are not placed in the
L� D�Cache� Extra hardware is used to keep statistics about
the frequency of access of the data used in the program�

The techniques proposed in ���� and ���� can also be used in
our scheme to manage the caching of instructions in the L��
Cache� They can detect the most frequently executed portions
of the code dynamically� and� then� direct the L��Cache to store
only those portions� However� these techniques require the ad�
dition of extra hardware in the form of extra tables or counters

�

to keep statistics during execution� The extra hardware dissi�
pates energy� and can o�set the possible energy reduction from
the usage of the L��Cache� To make the dynamic techniques
attractive for low energy� we need to use hardware that already
exists in the CPU� The hardware we will use in this work is the
branch prediction mechanism�

III� BRANCH PREDICTION AND CONFIDENCE

ESTIMATION�A BRIEF OVERVIEW

In this section we give an overview of branch prediction and
con�dence estimation and we focus on the mechanisms that will
be useful in the context of our work�

As the processor speed increases and instruction�level paral�
lelism becomes widely used� conditional branches pose an in�
creasingly heavy burden for the growth of uniprocessor perfor�
mance� To fully exploit the potential of the very powerful CPU
cores� programs need to have as few branches as possible� Var�
ious compiler techniques� such as loop unrolling� can help to�
wards that direction� yet they cannot fully solve the problem in
integer programs� which have few loops and small basic blocks�

Branch prediction is an important technique to increase par�
allelism in the CPU� by predicting the outcome of a conditional
branch instruction as soon as it is decoded� Provided that the
branch prediction rate is high� the pipeline executes from the
correct path and avoids unnecessary work most of the time� In
such a case� the pipeline only executes from a straight line code
and can fetch and issue more than one instruction per clock
cycle�

The branch prediction problem can actually be divided into
two subproblems� The prediction of the direction of the branch
and the prediction of the target address if the branch is pre�
dicted to be taken� Both subproblems should be solved for the
branch prediction to be meaningful� In this work� we are only
interested in the prediction of the branch direction�

A� Previous work on branch prediction

Successful branch prediction mechanisms take advantage of
the non�random nature of branch behavior ����� Most branches
are either mostly taken or mostly not taken in the course of
program execution� Moreover� the behavior of a branch usually
depends on the behavior of the surrounding branches in the
program�

PC

Counts

Branch
prediction

Branch
address

Fig� �� Bimodal branch predictor� Each entry in the table is a ��bit

saturated counter�

Bimodal branch predictor� The bimodal branch predic�
tor in Fig� � takes advantage of the bimodal behavior of most
branches� Each entry in the table shown in Fig� � is a ��bit
saturated counter which determines the prediction� Each time
a branch is taken� the counter is incremented by one� and each
time it falls through it is decremented by one Fig� ��� The
prediction is done by looking into the value of the counter
 if
it less than �� the branch is predicted as not taken� otherwise�

it is predicted as taken� By using a ��bit counter� the predictor
can tolerate a branch going into an unusual direction once�

Strongly
Not Taken

Weakly
Not Taken

Strongly
Taken

Weakly
Taken

Taken

Not Taken
Taken

Not
Taken

Not Taken

Taken

Not Taken

1

2
3

0

Taken

Fig� �� FSM for the ��bit saturated counters�

The table is accessed through the address of the branch us�
ing the program counter PC�� Ideally� each branch has its own
entry in the table� but for smaller tables multiple branches may
share the same entry causing loss of prediction accuracy� The
table is accessed twice for each branch
 �rst to read the predic�
tion� and then to modify it when the actual branch direction has
been resolved later in the pipeline� The latter access can hap�
pen much later in the pipeline in an out�of�order� superpipelined
execution core�
Global branch predictor� In the bimodal branch pre�

diction method� only the past behavior of the current branch
is considered� Another scheme is proposed in ���� which also
considers the behavior of other branches to predict the behav�
ior of the current branch� This is called global prediction� and
the hardware implementation is similar to the implementation
of the bimodal method Fig� ��� The di�erence is that the table
with the counters is accessed with the Global Branch History
GBH� register� which contains the outcome of the n most re�
cent branches� A single shift register� which records the direc�
tion taken by the n most recent branches� can be used� This
information is combined with the address of the branch under
consideration via XOR or concatenation� to index the table of
counters� This predictor is called global branch predictor with
index sharing�

PC

Counts

Branch
prediction

GBH

XOR

Combined
Global Hist. &
Branch address

Fig� �� Global branch predictor with index sharing�

McFarling branch predictor� Finally� McFarling ����
combines two predictors to achieve better results� In Fig� ��
a McFarling predictor is shown which consists of three tables�
The tables PR� and PR� contain the counters for the two inde�
pendent predictors� and the selector counter determines which
predictor will be used to give the prediction� The two predic�
tors can be any of the predictors we discussed in the previous
paragraphs� McFarling found out that the combination of a lo�
cal ���� and a global predictor with index sharing gives the best
results�
Each entry in the selector counter contains a ��bit saturated

counter� This counter determines which predictor will be used

�

PC

Branch
address

PR1 PR2

Counts1 Counts2Counter
Selector

Fig� �� McFarling branch predictor�

for the prediction and is updated after the direction of the
branch has been resolved� The counter is biased towards the
predictor that has given most correct predictions in the past for
that particular branch�

B� Previous work on con�dence estimation

In many cases computer architects want to assess the quality
of a branch prediction and determine how con�dent the machine
is that the prediction will be correct� The relatively new con�
cept of con�dence estimation has been introduced recently to
quantify this con�dence and keep track of the quality of branch
predictors �����

The con�dence estimators are hardware mechanisms that are
accessed in parallel with the branch predictors when a branch
is decoded� and they are modi�ed when the branch direction
is resolved� They characterize a branch prediction as �high
con�dence� or �low con�dence� depending upon the history of
the branch predictor for the particular branch� For example� if
the branch predictor predicted a branch correctly most of the
time� the con�dence estimator would designate this prediction
as �high con�dence�� otherwise as �low con�dence�� We should
note that the con�dence estimation mechanism is orthogonal
to the branch predictor used� In other words� we can use any
combination of con�dence estimators and branch predictors�

Various con�dence estimation techniques have been proposed
in ���� and ����� Unlike the branch predictors� whose perfor�
mance can be easily measured using the prediction rate� the
con�dence estimators are not easy to characterize� Di�erent
con�dence estimators can be useful for di�erent applications�
We will describe the con�dence estimation techniques used in
our paper later in section V�

Fetch Decode Issue Writeback Commit

I-Cache

Instruction
Stream

Branch
Predictor

Prediction

Update

L0-Cache

Fig� �� Pipeline microarchitecture

Figure � shows the pipeline with the extra cache and the
branch predictor� A branch is decoded at the front end of the
pipeline� but its direction is only resolved when it is executed�

IV� BASIC IDEA OF THE DYNAMIC MANAGEMENT

SCHEME

In this section� we delineate our approach for dynamic man�
agement of the L��Cache� We show how the information that is
accumulated by the branch prediction mechanism during pro�
gram execution can be used as a guiding mechanisms to access
or bypass the L��Cache�
The dynamic scheme for the L��Cache should be able to select

the most frequently executed basic blocks for placement in the
L��Cache� It should also rely on existing mechanisms without
much extra hardware investment if it is to be attractive for
energy reduction�
The branch prediction in conjunction with the con�dence es�

timator mechanism is a reliable solution to this problem� Dur�
ing program execution� the branch predictor accumulates the
history of branches and uses this history to guess the branch
behavior in the future� Since the branch predictor is usually
successful in predicting the branch direction� we can assume
that predictors describe accurately the behavior of the branch
during a speci�c phase of the program� Con�dence estimators
provide additional information about the steady�state behavior
of the branch�
For example� a branch that was predicted �taken� with �high

con�dence� will be expected to be taken during program exe�
cution in that particular phase of the program� If it is not
taken i�e�� in case of a misprediction�� it will be assumed to
behave �unusually�� Of course� what is �usual� or �unusual�
behavior in the course of a program for a particular branch can
change� Some branches can change behavior from mostly taken
to mostly untaken during execution� Moreover� many branches�
especially in integer benchmarks� can be in a gray area� and not
have a stable behavior with respect to direction� or can follow
a complex pattern of behavior�

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

B1

B2

B4

B5

B6

B3

B7

Fig� 	� An
unusual� branch direction leads to a rarely executed portion

of the code�

If a branch behaves �unusually�� it will probably drive the
thread of control to a portion of the code that is not very fre�
quently executed� The loop shown in Fig� � executes the basic
blocks B�� B�� and B� most of the time� and it seldom executes
B� B�� and B�� The branch at the end of B� will be predicted
�not�taken� with �high con�dence�� If it is taken� it will drive
the program to the rarely executed branch� i�e�� it will behave
�unusually�� A similar situation exists for B� and B��
These observations lay the foundation for the dynamic selec�

tion of basic blocks in the L��Cache scheme� In our approach�
we attempt to capture the most frequently executed basic blocks
by looking into the behavior of the branches� The basic idea is
that� if a branch behaves �unusually�� our scheme disables the

�

L��Cache access for the subsequent basic blocks� Under this
scheme� only basic blocks that are executed frequently tend to
make it to the L��Cache� Hence� we avoid cache pollution prob�
lems in the L��Cache� i�e�� storing there infrequently accessed
portions of the code� that replace more frequently accessed code�
and that could create con�ict misses in the small L��Cache�

Instructions are transferred to the L��Cache only in case of
an L��Cache miss� A whole block is then transferred from the
I�Cache � or �� bytes in our experiments�� We assume that no
prefetching mechanism exists in the memory hierarchy system�

0.2
0.3

0.5
0.4

0.6
0.7
0.8
0.9

0.1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1
0.2
0.3
0.4
0.5
0.6

0.8
0.9

0.7

0-
9%

10
-1
9%

20
-2
9%

30
-3
9%

40
-4
9%

50
-5
9%

60
-6
9%

70
-7
9%

80
-8
9%

90
-1
00

% 101.tomcatv

130.li

099.go

Dynamic
branches

Fig� �� Branch direction percentages for three SPEC� benchmarks�

Not all branches can be characterized as �high con�dence��
In Fig� �� the dynamic branches are classi�ed according to how
many times they are �taken�� For example� the height of the
column ������ gives the percentage of the dynamic branches
that are �taken� from �� to ��� percent of the time� For the
����li benchmark� almost ��� of all the dynamic branches were
�taken� between ��� and ��� of the times they are executed�
We use a McFarling branch predictor in which each one of the
three tables used has ���� entries� The bimodal and the global
branch predictor with index sharing are used as the component
predictors�

This experiment shows that di�erent benchmarks demon�
strate di�erent branch behavior� For most integer� and many FP
benchmarks there are many branches that cannot be classi�ed
as �mostly taken� or as �mostly not taken�� These benchmarks
can be �mostly taken� or �mostly not taken� in di�erent stages
of the execution� or they may follow a more random pattern�

Branch predictors have a much easier task in programs like
����tomcatv in which the behavior of branches is predictable�
than in ����go where it is more erratic� For a lot of integer

programs� branches do not demonstrate a bimodal behavior� In
Fig� �� the branch misprediction rates for most of the SPEC��
benchmarks are shown�

Programs whose branches are evenly distributed in all the
columns of Fig� � su�er from a large misprediction rate even
with the McFarling predictor� On the other hand� programs
whose dynamic branches are concentrated near the edges do
not have such problems� In general� branch predictors are quite
successful with numerical or computation�intensive code like
the ����tomcatv��

0

5

10

15

20

25

30

%
 M

is
pr

ed
ic

tio
n

R
at

e

tomcatv
swim

su2cor
hydro2d

applu
fpppp

go
m88ksim

compress95
li

perl

Fig� �� Misprediction rate for the SPEC� benchmarks�

V� DYNAMIC TECHNIQUES FOR SELECTING BASIC

BLOCKS FOR THE L��CACHE

In this section we describe the particular schemes that imple�
ment the basic idea as this was outlined in section IV� First� we
describe the experimental setup� and then� we continue with the
�ve di�erent methods that implement the dynamic L��Cache
management concept� The last part of this section is devoted to
the comparison between the �ve methods� and the energy�delay
trade�o�s� The energy models used for the experimental evalu�
ation can be found in the Appendix�

A� Experimental setup

To gauge the e�ect of our L��Cache in the context of a realis�
tic processor operation� we simulated the MIPS� instruction set
architecture ISA� using the MINT ���� and the SpeedShop ����
tool suites� MINT is a software package for instrumenting and
simulating binaries on a MIPS machine� We built a MIPS� sim�
ulator on top of MINT which accurately re�ects the execution
pro�le of the R����� processor� This is a single�issue� in�order�
pipelined machine with eight stages� The simulator accounts
for all the stall because of structural and data hazards in the
machine� as well as for stalls because of cache misses and branch
mispredictions� Structural hazards are mainly a problem for the
�oating point unit of the R������

Table II shows the latencies in clock cycles� of the functional
units of our simulator based on ����� and Table III describes the
memory subsystem base con�guration as cache size � block
size � associativity � cycle time � latency to L� cache in clock
cycles � transfer bandwidth in bytes per clock cycles from the L�
Cache�� Both I�Cache and D�Cache are banked both row�wise
and column�wise to reduce the access time and the energy per
access ����� We use the tool cacti� described in ����� to estimate

�

the access time of the on�chip caches� as well as the optimal
banking that minimizes the access time�

TABLE II

Functional units latency�

Resource Latency
Integer ALU �
Integer MULT ��
Integer DIV ��
FP ADD�SUB �
FP MULT single� �
FP MULT double� �
FP DIV single� ��
FP DIV double� ��
FP SQRT single� ��
FP SQRT double� ���
FP CONVERT ���

TABLE III

Memory subsystem configuration in the base machine�

Parameter size�Block size�A�Cycle time�L� cache�band�
L� I�Cache ��KB�����������
L� D�Cache ��KB�����������

In our experiments the L��Cache is implemented as a direct�
mapped cache� with size ranging from ��� to ��� bytes� and
block size from � to �� bytes� The dynamic management scheme
regulates the access to the L��Cache as we will describe shortly�

B� Energy models for the cache subsystem

We have developed our cache energy model based on the work
by Wilson and Jouppi ���� in which they propose a timing anal�
ysis model for SRAM�based caches ����� Our model uses run�
time information of the cache utilization number of accesses�
number of hits� misses� input statistics� etc�� gathered during
simulation� as well as complexity and internal cache organiza�
tion parameters cache size� block size� associativity� banking�
etc��� These models are used for the estimation of energy in
both the I�Cache and the L��Cache�

The utilization parameters are available from the simulation
of the memory hierarchy� The cache layout parameters� such
as transistor and interconnect physical capacitances� can be ob�
tained from existing layouts� from libraries� or from the �nal
layout of the cache itself� We use the numbers given in �����
Details for the cache energy modeling are presented in the Ap�
pendix�

In the following subsections� we will present the �ve methods
for the dynamic management of the L��Cache� We will examine
how the energy reduction can be traded for less performance
degradation� and how the extra information about the branch
as this is given by the con�dence estimation mechanisms can
improve both delay and energy� The �ve methods are
 the
simple method in which no con�dence estimation mechanism
is used� the static method� the dynamic con�dence estimation
method� the restrictive dynamic con�dence estimation method�
and the dynamic distance estimation method�

C� Simple method 	without con�dence estimator

The branch predictor can be used as a stand�alone mechanism
to provide insight on which portions of the code are frequently
executed and which are not� A mispredicted branch is assumed
to drive the thread of execution to an infrequently executed part
of the program�

TABLE IV

Energy results for the simple method�

Benchmark ��� B ��� B
� B �� B � B �� B

tomcatv ����� ����� ����� �����
swim ����� ����� ����� �����
su�cor ����� ����� ����� �����
hydro�d ����� ����� ����� �����
applu ����� ����� ����� �����
fpppp ����� ����� ����� �����
go ����� ����� ����� �����
m��ksim ����� ����� ����� �����
gcc ����� ����� ����� �����
compress�� ����� ����� ����� �����
li ����� ����� ����� �����
perl ����� ����� ����� �����

TABLE V

Delay results for the simple method�

Benchmark ��� B ��� B
� B �� B � B �� B

tomcatv ����� ����� ����� �����
swim ����� ����� ����� �����
su�cor ����� ����� ����� �����
hydro�d ����� ����� ����� �����
applu ����� ����� ����� �����
fpppp ����� ����� ����� �����
go ����� ����� ����� �����
m��ksim ����� ����� ����� �����
gcc ����� ����� ����� �����
compress�� ����� ����� ����� �����
li ����� ����� ����� �����
perl ����� ����� ����� �����

Our strategy is as follows
 If a branch is mispredicted� the
machine will access the I�Cache to fetch instructions� If a branch
is predicted correctly� the machine will access the L��Cache� In a
misprediction� the pipeline will �ush� and the machine will start
fetching instructions from the correct address by accessing the
I�Cache� In a correct prediction� the machine will start fetching
instructions from the L��Cache as soon as the branch is resolved�
This might well be several instructions after the branch in a
high�performance� superpipelined processor has been decoded�
Tables IV and V show the normalized energy and delay results

for the SPEC�� benchmarks� We denote the energy dissipation
and the execution time of the original con�guration that uses no
L��Cache as unity� and normalize everything else with respect
to that� Our model accounts for all possible stalls in the R�����
CPU� which is used as the base machine�
In addition� we account for a branch misprediction stall�

which is equal to two clock cycles� The delay increase is due
to the relatively high miss ratio on the L��Cache� The energy

�

results in this and the next sections refer only to the instruc�
tion memory hierarchy subsystem and not the whole processor�
The delay is the execution time of the program� Therefore� the
complete picture of the e�ects of this method on the execution
pro�le is captured�
Numeric code has more energy reduction and smaller per�

formance degradation than integer code� This is because there
is a smaller number of basic blocks in numeric code that con�
tribute signi�cantly to the execution time of the program� and�
thus� there is less contention in the L��Cache� Also� the branch
predictor has a smaller prediction rate for integer benchmarks�
thus� the L��Cache will not be utilized as frequently as in the
case of FP benchmarks� However� the energy reduction for non�
numeric code is also very signi�cant� Table VI shows the per�
centage of dynamic instructions that cause the L��Cache to be
accessed irrespective if the access was a hit or a miss� as well
as the hit rate of the L��Cache� In this experiment as well as
the next ones� the L��Cache is ��� bytes with a block size of ��
bytes�

TABLE VI

Dynamic instructions that cause the L��Cache to be accessed and the

L��Cache hit ratio in the simple method�

Benchmark � dyn� instructions Hit ratio in L��Cache
tomcatv ������ ������
swim ������ ������
su�cor ������ ������
hydro�d ������ ������
applu ������ ������
fpppp ������ ������
go ������ ������
m��ksim ������ ������
gcc ������ ������
compress�� ������ ������
li ������ ������
perl ������ ������

D� Static method

The next technique we used to select basic blocks for the L��
Cache is not dynamic� We used pro�ling� and simulated the
branch predictor� We captured the behavior of the branches
of the program and we classi�ed them as �high con�dence� if
they were predicted correctly most of the time� and �low con�
�dence� if not� A threshold was used to determine con�dence�
so that the branches that were predicted correctly at least ���
of the time were tagged as �high con�dence�� whereas all other
branches were tagged as �low con�dence�� The static method
is not implementable� since it it is not easy to communicate to
the machine whether a particular branch is �low con�dence� or
�high con�dence� without changing the instruction opcode� We
include this approach to indicate its potential�
After pro�ling� we ran the benchmarks again and we se�

lected the basic blocks as follows
 If a �high con�dence� branch
was predicted incorrectly� the I�Cache is accessed for the subse�
quent basic blocks� Moreover� if more than N �low con�dence�
branches have been decoded in a row� the I�Cache is accessed�
Therefore� the L��Cache will be bypassed when either of these
two conditions is satis�ed� In any other case� the machine ac�
cesses the L��Cache�
The �rst rule for accessing the I�Cache is due to the fact that

a mispredicted �high con�dence� branch behaves �unusually�

 Branch

decod?

 Branch

resolv?

Low
Conf.
 Br.?

LC = LC+1

Is

No Yes

Yes

Yes
Yes

Yes

LC = 0
No

High
Conf.
Br?

Branch
Mispred?

Access the
same cache

No

clock cycle

L0-Cache
Access the

clock cycle

Access the

in the next
clock cycle

in the next

I-Cache
in the next

No

No

 Branch

resolv?

No

Yes

No

Yes

Box (1)
Box (1)

LC: Low Confidence Branch
 Counter

LC>N?

Fig� � Decision diagram for the cache access in the static method

and drives the program to an infrequently executed portion of
the code� The second rule is due to the fact that a series of �low
con�dence� branches will also su�er from the same problem
since the probability that they are all predicted correctly is low�
A series of �low con�dence� branches form a path which might
not have been taken very often in the past�

There are two controlling parameters in the static method�
the threshold used to classify a branch as �high� or �low con��
dence� and the number of successive �low con�dence� branches
which need to be decoded before the machine turns to the
I�Cache� A larger threshold of successive �low con�dence�
branches results in more basic blocks accessed from the L��
Cache� In our experiments� an empirical value of N � � was
used�

Fig� � shows the decision diagram that the mechanism follows
implicitly in each clock cycle to decide whether to access the L��
Cache or the I�Cache in the next clock cycle�

Tables VII and VIII show the normalized energy and delay
results for the SPEC�� benchmarks� The same experiments and
the same experimental framework was used here� The results we
present are from self�pro�led executions where the same input
was used to pro�le and evaluate our approach�

The problem with the static method is that it does not ex�
ploit the temporalities of the branches� but it only assigns a
con�dence to them statically� It has similar performance to
the simple method� except for the ����go benchmark for which
it has much lower delay and much higher energy dissipation�
This is because this particular benchmark has a large number
of �low con�dence� branches� Table IX presents the percent�
age of dynamic instructions which cause the CPU to access the
L��Cache�

E� Dynamic con�dence estimation method

A dynamic version of the static method is presented in this
subsection� As we showed in Fig� �� branch predictors are not
always able to give a correct prediction� Therefore� we need
a con�dence estimation mechanism which� coupled with the
branch predictor� gives a better intuition about the behavior
of the branch�

We are using a similar methodology as in the static method�

�

TABLE VII

Energy results for the static method�

Benchmark ��� B ��� B
� B �� B � B �� B

tomcatv ����� ����� ����� �����
swim ����� ����� ����� �����
su�cor ����� ����� ����� �����
hydro�d ����� ����� ����� �����
applu ����� ����� ����� �����
fpppp ����� ����� ����� �����
go ����� ����� ����� �����
m��ksim ����� ����� ����� �����
gcc ����� ����� ����� �����
compress�� ����� ����� ����� �����
li ����� ����� ����� �����
perl ����� ����� ����� �����

TABLE VIII

Delay results for the static method�

Benchmark ��� B ��� B
� B �� B � B �� B

tomcatv ����� ����� ����� �����
swim ����� ����� ����� �����
su�cor ����� ����� ����� �����
hydro�d ����� ����� ����� �����
applu ����� ����� ����� �����
fpppp ����� ����� ����� �����
go ����� ����� ����� �����
m��ksim ����� ����� ����� �����
gcc ����� ����� ����� �����
compress�� ����� ����� ����� �����
li ����� ����� ����� �����
perl ����� ����� ����� �����

but no pro�ling information is used� Instead� the con�dence
of each branch is determined dynamically using the saturat�
ing counters approach� In that approach� we use the predic�
tion of each one of the component predictors the bimodal and
the global� to determine the con�dence� If both predictors are
strongly biased in the same direction both �strongly taken�
or both �strongly not�taken��� we signal a �high con�dence�
branch� In any other case� we signal a �low con�dence� branch�
An added advantage of this method is that it uses a minimal
amount of extra hardware�

The management of the cache subsystem is identical to the
static method� We access the I�Cache if a �high con�dence�
branch is mispredicted� or more than N successive �low con��
dence� branches are encountered� The schematic of the modi�
�ed pipeline is shown in Fig� ��� The �Low Con�dence Branch
Counter� will trigger a subsequent I�Cache access if its value
exceeds a prede�ned threshold N N � � in our experiments��
The I�Cache will also be accessed in case of a misprediction of
a �high con�dence� branch�

Again� Fig� � describes the decision process for the access
of the L� or L� caches� All the information necessary for the
hardware to decide which cache to access in the next clock cycle
is available from the branch prediction mechanism and the de�
coder of the CPU� The extra hardware needed is a number of ex�
tra gates to compute the con�dence �on�the��y�� a multiplexer

TABLE IX

Dynamic instructions that cause the L��Cache to be accessed and the

hit ratio of the L��Cache in the static method�

Benchmark � dyn� instructions Hit ratio of the L��Cache
tomcatv ������ ������
swim ������ �����
su�cor ������ ������
hydro�d ������ ������
applu ������ ������
fpppp ������ ������
go ������ ������
m��ksim ������ ������
gcc ������ ������
compress�� ������ ������
li ������ ������
perl ������ ������

Fetch Decode Issue Writeback Commit

I-Cache

Branch
Predictor

Prediction

Update

Low Confidence
Branch Counter

Is M>N?

Instructions

Is High Conf.
branch mispredicted?

Current Value of
Counter (M)

L0-Cache

If Low Confidence branch, increment counter

If High Confidence branch, reset counter

Fig� ��� Microarchitectural modi�cations for the con�dence estimation

method�

to redirect the instruction stream from the I�Cache or L��Cache
to the pipeline� and the �Low Con�dence Branch Counter��
Tables X and XI show the normalized energy and delay results

for the SPEC�� benchmarks� Table XII presents the percentage
of dynamic instructions which cause the CPU to access the L��
Cache�
This method is slightly better in terms of energy reduction

than the simple or the static method� The delay is lower than
the previous two methods in some benchmarks and higher in
some others� Since the con�dence estimator can adapt dynam�
ically in the temporalities of the code� it is more accurate in
characterizing a branch and� then� regulating the access of the
L��Cache�

F� Restrictive dynamic con�dence estimation method

The methods described in the previous sections tend to place
a large number of basic blocks in the L��Cache� thus degrading
performance� In modern processors� one would prefer a more
selective scheme in which only the really important basic blocks
would be selected for the L��Cache�
We use the same setup as before� but the selection mechanism

is slightly modi�ed as follows
 the L��Cache is accessed only if
a �high con�dence� branch is predicted correctly� The I�Cache
is accessed in any other case� This method selects some of the
very frequently executed basic blocks� yet it misses some others�
Usually the most frequently executed basic blocks come after
�high con�dence� branches that are predicted correctly� This is

	

TABLE X

Energy results for the method that uses the confidence estimator�

Benchmark ��� B ��� B
� B �� B � B �� B

tomcatv ����� ����� ����� �����
swim ����� ����� ����� �����
su�cor ����� ����� ����� �����
hydro�d ����� ����� ����� �����
applu ����� ����� ����� �����
fpppp ����� ����� ����� �����
go ����� ����� ����� �����
m��ksim ����� ����� ����� �����
gcc ����� ����� ����� �����
compress�� ����� ����� ����� �����
li ����� ����� ����� �����
perl ����� ����� ����� �����

TABLE XI

Delay results for the method that uses the confidence estimator�

Benchmark ��� B ��� B
� B �� B � B �� B

tomcatv ����� ����� ����� �����
swim ����� ����� ����� �����
su�cor ����� ����� ����� �����
hydro�d ����� ����� ����� �����
applu ����� ����� ����� �����
fpppp ����� ����� ����� �����
go ����� ����� ����� �����
m��ksim ����� ����� ����� �����
gcc ����� ����� ����� �����
compress�� ����� ����� ����� �����
li ����� ����� ����� �����
perl ����� ����� ����� �����

especially true in FP benchmarks�
Again� Tables XIII and XIV present the normalized energy

and delay results� As before� the delay results consider all the
possible stalls in the R����� processor� Table XV shows the
percentage of the dynamic instructions which causes the CPU
to access the L��Cache�
As expected� this scheme is more selective in storing instruc�

tions in the L��Cache� and it has a much lower performance
degradation� at the expense of lower energy reduction� It is
probably preferable in a system where performance is more im�
portant than energy�

G� Dynamic distance estimation method

Another con�dence estimator which was proposed in ���� ex�
ploits the clustering of mispredicted branches� As was shown
experimentally in that paper� a mispredicted branch triggers a
series of succesive mispredicted branches� The degree of cluster�
ing depends on the particular program� and the predictor used�
This correlation fades as more branches are executed� and is
stronger immediately after the mispredicted branch� The obser�
vation that branches that follow a mispredicted branch are more
probable to be mispredicted can be exploited in our scheme�
We use a counter to measure the distance of a branch from

the previous� mispredicted branch� This is similar to the miss
distance counter 	MDC
 proposed in ����� The method works as

TABLE XII

Dynamic instructions that cause the L��Cache to be accessed and hit

ratio in the L��Cache in the confidence estimation method�

Benchmark � dyn� instructions Hit ratio of the L��Cache
tomcatv ������ ������
swim ������ ������
su�cor ������ ������
hydro�d ������ ������
applu ������ ������
fpppp ������ ������
go ������ ������
m��ksim ������ ������
gcc ������ ������
compress�� ������ ������
li ������ ������
perl ������ ������

TABLE XIII

Energy results for the modified method that uses the confidence

estimator�

Benchmark ��� B ��� B
� B �� B � B �� B

tomcatv ����� ����� ����� �����
swim ����� ����� ����� �����
su�cor ����� ����� ����� �����
hydro�d ����� ����� ����� �����
applu ����� ����� ����� �����
fpppp ����� ����� ����� �����
go ����� ����� ����� �����
m��ksim ����� ����� ����� �����
gcc ����� ����� ����� �����
compress�� ����� ����� ����� �����
li ����� ����� ����� �����
perl ����� ����� ����� �����

follows
 all N branches after a mispredicted branch are tagged
as �low con�dence�� otherwise as �high con�dence�� The basic
blocks after a �low con�dence� branch are fetched from the
I�Cache� whereas the basic blocks after a �high con�dence�
branch are fetched from the L��Cache� The net e�ect is that a
branch misprediction causes a series of fetches from the I�Cache�

The parameter N was set equal to four in our experiments�
It can be used to bias the mechanism towards larger energy
reductionsmaller N� or higher performance larger N�� Fig� ��
shows the new pipeline that can support this scheme�

Again� Tables XVI and XVII present the normalized energy
and delay results� Table XVIII shows the percentage of the
dynamic instructions which causes the CPU to access the L��
Cache�

This scheme is also very selective in storing instructions in
the L��Cache� even more than the previous method� Provided
that the L��Cache is not too small to contain the working set
of the program� this approach will be able to manage the L��
Cache such that only the basic blocks with the larger degree of
reuse will be stored there�

H� Comparison of dynamic techniques

The normalized energy and delay results of the �ve di�erent
schemes we proposed and the �lter cache proposed in ���� are

�

TABLE XIV

Delay results for the modified method that uses the confidence

estimator�

Benchmark ��� B ��� B
� B �� B � B �� B

tomcatv ����� ����� ����� �����
swim ����� ����� ����� �����
su�cor ����� ����� ����� �����
hydro�d ����� ����� ����� �����
applu ����� ����� ����� �����
fpppp ����� ����� ����� �����
go ����� ����� ����� �����
m��ksim ����� ����� ����� �����
gcc ����� ����� ����� �����
compress�� ����� ����� ����� �����
li ����� ����� ����� �����
perl ����� ����� ����� �����

TABLE XV

Dynamic instructions that cause the L��Cache to be accessed and hit

ratio of the L��Cache in the modified confidence estimation method�

Benchmark � dyn� instructions Hit ratio of the L��Cache
tomcatv ������ ������
swim ������ ������
su�cor ������ ������
hydro�d ������ ������
applu ������ ������
fpppp ������ ������
go ������ ������
m��ksim ������ ������
gcc ������ ������
compress�� ������ ������
li ������ ������
perl ������ ������

shown graphically in Figs� �� and ��� respectively� A ��� bytes
L��Cache with a block size of �� bytes is assumed in all cases�
The graphical comparison of the results can be used to extract
useful information about each one of these methods�

The energy reduction and the delay increase is a function of
the algorithm used for the regulation of the L��Cache access�
the size of the L��Cache� its block size� and its associativity�
The e�ect that these parameters have on the energy and the
performance pro�le of the new scheme is not always clear� For
example� a larger block size causes a larger hit ratio in the L��
Cache� This results into smaller performance overhead� and
bigger energy e�ciency since the I�Cache does not need to be
accessed so often� On the other hand� if the block size increase
does not have a large impact on the hit ratio� the energy dis�
sipation may go up� since a cache with a larger block size is
less energy e�cient than a cache with the same size but smaller
block size� Therefore� the cumulative e�ect of all these param�
eters on the energy and delay characteristics of the processor is
dependent on the program and its degree of instruction reuse�

Note that the second and third methods make the implicit as�
sumption that the less frequently executed basic blocks usually
follow less predictable branches or more predictable branches
that are mispredicted� On the other hand� the �rst and fourth
methods address the problem from another angle
 they assume

Fetch Decode Issue Writeback Commit

I-Cache

L-Cache

Branch
Predictor

Prediction

Update

Miss distance counter
Reset if
mispredicted

branch

Current Value
of counter (M)

Is M>N?

Instruction
Stream

Increment

if the instr. is a branch

Fig� ��� Microarchitectural modi�cations for the distance estimator

method�

TABLE XVI

Energy results for the distance confidence estimation method�

Benchmark ��� B ��� B
� B �� B � B �� B

tomcatv ����� ����� ����� �����
swim ����� ����� ����� �����
su�cor ����� ����� ����� �����
hydro�d ����� ����� ����� �����
applu ����� ����� ����� �����
fpppp ����� ����� ����� �����
go ����� ����� ����� �����
m��ksim ����� ����� ����� �����
compress�� ����� ����� ����� �����
li ����� ����� ����� �����
perl ����� ����� ����� �����

that most frequently executed basic blocks usually follow highly
predictable branches�

The last �dynamic� method is the most successful in reduc�
ing the performance overhead� but the least successful in energy
reduction� The method that uses the restrictive dynamic con�
�dence estimator poses stricter requirements for a basic block
to be selected for the L��Cache than the original dynamic con�
�dence method�

The numeric benchmarks show the largest potential for en�
ergy reduction without a severe performance penalty� The FP
benchmarks have a smaller number of basic blocks that are fre�
quently executed compared with the non�numeric code� These
blocks have a larger degree of reuse� and once they are stored in
the L��Cache� they will probably remain there for a long period
of time� However� the basic blocks in FP benchmarks tend to
be larger� If they are larger than the size of the L��Cache as in
fpppp�� the performance and energy results deteriorate rapidly�

The dynamic techniques have a larger impact on the inte�
ger benchmarks as is shown in the two graphs� Since a large
percentage of branches are �low con�dence� in integer bench�
marks� the machine can be very selective when it picks up basic
blocks for the L��Cache� This is why di�erent dynamic tech�
niques have so di�erent energy and delay characteristics for the
integer benchmarks� Regulation of the L��Cache utilization is
more �exible in these programs�

The �lter cache shows the largest energy reduction� at the
expense of a bigger performance overhead� This was expected
since the �lter cache is always accessed before the I�Cache is

��

TABLE XVII

Delay results for the distance confidence estimation method�

Benchmark ��� B ��� B
� B �� B � B �� B

tomcatv ����� ����� ����� �����
swim ����� ����� ����� �����
su�cor ����� ����� ����� �����
hydro�d ����� ����� ����� �����
applu ����� ����� ����� �����
fpppp ����� ����� ����� �����
go ����� ����� ����� �����
m��ksim ����� ����� ����� �����
compress�� ����� ����� ����� �����
li ����� ����� ����� �����
perl ����� ����� ����� �����

TABLE XVIII

Dynamic instructions that cause the L��Cache to be accessed and hit

ratio of the L��Cache in the distance estimator method�

Benchmark � dyn� instructions Hit ratio of the L��Cache
tomcatv ������ ������
swim ������ ������
su�cor ������ ������
hydro�d ������ ������
applu ������ ������
fpppp ������ ������
go ������ ������
m��ksim ������ ������
compress�� ������ ������
li ������ ������
perl ������ ������

accessed� It su�ers from a large degree of cache pollution� but�
on the other hand� it has the largest potential for energy savings
if the working set of the program is small�
Larger block size and associativity will have a bene�cial e�ect

on both energy and performance� The hit rate of a small cache
is more sensitive to the variation of the block size as is shown
in the results� and the associativity�

VI� Conclusion

In this paper� we presented methods for �dynamic� selection
of basic blocks for placement in the L��Cache� First� we pre�
sented an extensive overview of previous research in improving
the memory hierarchy subsystem performance using dynamic
techniques� Usually� extra hardware is used to keep statistics
about the program execution and� accordingly� to allow or disal�
low the storage of speci�c instructions or data in the L� caches�
Then� we proceeded by explaining the functionality of the

branch prediction and the con�dence estimation mechanisms in
high�performance� speculative processors� After that� we ex�
plained how those mechanism can provide information to the
CPU about the frequency of execution of parts of the code�
and� �nally� we presented �ve di�erent �dynamic� techniques
for the selection of the basic blocks� These techniques try to
capture the execution pro�le of the basic blocks by using the
branch statistics that are gathered by the branch predictor�
The experimental evaluation demonstrates the applicability

of the dynamic techniques for the management of the L��Cache�

Normalized
Energy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

to
m
ca

tv

sw
im

su
2c

or

hy
dr

o2
d

ap
pl
u

fp
pp

p
go

m
88

ks
im

co
m
pr

es
s9

5

li pe
rl

Simple method
Static method
Confidence estimation method
Modified confidence estimation method
Distance counter method
Filter cache method

Fig� ��� Normalized energy dissipation for the �ve dynamic methods�

Those are the same numbers that appeared in the tables of the pre�

vious sections�

Normalized
Delay

1.1

1.0

1.2

1.3

tom
ca

tv

sw
im

su
2c

or

hy
dr
o2

d

ap
plu

fpp
pp go

m88
ks

im

co
mpr

es
s9

5
li pe

rl

Simple method
Static method
Confidence estimation method
Modified confidence estimation method
Distance counter method
Filter cache method

Fig� ��� Normalized delay for the �ve dynamic methods� Those are the

same numbers that appeared in the tables of the previous sections�

Di�erent techniques can trade o� energy with delay by regulat�
ing the way that the L��Cache is accessed� By varying the
parameters of the method� the designer can choose from a wide
range of caching policies�

We are currently investigating further improvements in the
scheme� by using �dynamic� techniques with di�erent con��
dence estimation and branch prediction mechanisms� In addi�
tion we are looking into L��Caches with associativity larger than
one� Associativity becomes important for small caches since the
miss rate drops dramatically� In addition� techniques similar to
those described in ���� and ���� are more accurate in locating
frequently executed portions of the code� and they should also
be assessed along the lines of reduced energy consumption�

Appendix

I� Cache energy models

Fig� �� shows the assumed internal cache organization� This
is a very general model of an A�way set associative cache� with
size of C bytes and a block size of B bytes� The operation of
the cache is now brie�y described�

The cache is organized as a collection of S � C
B�A

sets� so

��

1 A

BITLINES BITLINES

Tag index offset

 WORD

LINES LINES

WORD

.

.

.
.
.
.

.

COMPARATORS

TAG
ARRAY ARRAY

DATA

ADDRESS
INPUT

. .

. . . .

COLUMN
MUXES

COLUMN
MUXES

SENSE
AMPS

SENSE
AMPS

OUTPUT
DRIVERS

DATA OUTPUTHIT/MISS

MUX DRIVERS

issued by CPU
Address

Fig� ��� Cache Model �taken from �����

that one set contains A blocks� or B�A bytes� The CPU issues
an address to the cache consisting of three parts
 the tag� the
index and the o�set� The index part has length log�S� bits� and
is used to index the set from which the data will be retrieved�
The o�set part has length log�B� bits� and is used to select the
appropriate word within a block to return to the CPU� Finally�
the tag part is used to check whether there is a hit or a miss in
the cache�

The cache consists of two arrays used to store the tag and
the actual data� Each one of them is organized as a series of
rows and columns so that there is one CMOS Static RAM cell
at the intersection of a row and two columns the bitline and
its complement�� In Fig� ���� we assume that one row in the
data array stores a single set� The decoder �rst selects a row
from the tag and data array using the index and o�set bits of
the CPU address� Each bitline is �rst precharged high� When
the decoder makes the selection� each memory cell in that row
pulls down one of its two bitlines� depending on the value of the
cell�

A set of sense ampli�ers monitors small changes in the bitlines
and transforms them into legitimate voltage values� Usually� a
sense ampli�er is shared among several pairs of bitlines� Extra
column multiplexers are used in both arrays to implement this
sharing�

The information read from the tag array is compared to the
tag bits of the address issued by the CPU� There are A such
comparators for an A�associative cache� The result of the com�
parison is used to drive the output bus with the data that have
been read� in the meantime� from the data array�

In most of today	s caches� the tag and data arrays are broken
rowwise and columnwise so that the time to access the data is
reduced� Three new parameters are de�ned for that purpose
for each of the two arrays� The parameter Ndwl shows how
many times the data array is split vertically resulting into more
and shorter wordlines� The parameter Ndbl shows how many
times the data array is split horizontally resulting into more
and shorter bitlines� Finally the parameter Nspd indicates how
many sets are mapped into a single row� The tag array can be
broken independently according to the parameters Ntwl� Ntbl�
and Ntspd�

Using these organizational parameters� each data subarray

has
	�B�A�Nspd

Ndwl
columns and C

B�A�Ndbl�Nspd
rows� The total

number of data subarrays is Ndbl �Ndwl�
We will show the equation for energy dissipation in the word�

lines� Detailed modeling of the other components of Fig� �� is
given in ����� In every clock cycle� a wordline will be charged
and another one will be discharged Fig� ���� The energy dissi�
pation in the word lines is given by

. . .

Vdd
WORDLINE
DRIVER

8*B*A*Nspd
Ndwl bits

INV1 INV2 PASS

Fig� ��� Word line architecture

Ewordline � V �
dd
�Nacc�Ndwl� �Cj�INV � Cg�INV ��V �

dd
�Nacc� ���

B �A�Nspd � �� Cg�PASS Cj�INV � �� B � A�Nspd � Cwordmetal�

V �
dd
�Nacc �Ntwl � �Cj�INV � Cg�INV �� V �

dd
�Nacc � ��T St��Ntspd �

� � Cg�PASS Cj�INV � �T St� � Ntspd � Cwordmetal �

The gate capacitance of a device x is denoted as Cg�x and
its junction capacitance as Cj�x� The length of the tag is T
bits� and there are also St bits for the status in each block� For
example� the valid and the dirty bit are status bits� Each data
subarray has � � � � B � A � Nspd pass transistors� and each
tag subarray has �� T St� pass transistors� Finally� Nacc is
the number of accesses in the cache�
Our experiments in ���� show that the largest percentage of

the energy is consumed for the precharge and discharge of the
bitlines as well as for the transfer of data from the output drivers
to the CPU or to the next level of the memory hierarchy� Low
swing bitlines are extensively used for any low power imple�
mentation of SRAM�based caches� Also� shorter bitlines and
wordlines are very bene�cial in reducing power� That is why a
smaller cache is also more energy e�cient than a larger one�

References

��� D� Dobberpuhl� �The design of a high�performance low�power microproces�

sor�� in Proceedings of the International Symposium of Low Power Electronics

and Design� pp� ������ �����

��� S� Manne� D� Grunwald� and A� Klauser� �Pipeline gating� Speculation

control for energy reduction�� in Proceedings of the International Symposium

of Computer Architecture� pp� ������� ���	�

��� J� Diguet� S� Wuytack� F� Catthoor� and H� De Man� �Formalized method�

ology for data reuse exploration in hierarchical memory mappings�� in

Proceedings of the International Symposium of Low Power Electronics and

Design� pp� �
���� Aug� �����

�� S�Wuytack� F�Catthoor� L� Nachtergaele� and H� De Man� �Power explo�

ration for data dominated video applications�� in Proceedings of the Inter�

national Symposium of Low Power Electronics and Design� �����

��� S� Wuytack� F� Catthoor� and H� DeMan� �Transforming set data types

to power optimal data structures�� IEEE Transcactions on Computer�Aided

Design� vol� ��� pp� �������� June �����

��� V� Tiwari� S� Malik� and A� Wolfe� �Power analysis of embedded software�

A �rst step towards software power minimization�� IEEE Transactions on

VLSI Systems� vol� �� pp� ����� Dec� ����

��� V� Tiwari� S� Malik� A� Wolfe� and T�C� Lee� �Instruction level power

analysis and optimization of software�� Journal of VLSI Signal Processing�

vol� ��� Aug� �����

�	� R� Gonzalez and M� Horowitz� �Energy dissipation in general purpose pro�

cessors�� IEEE Journal of Solid�State Circuits� vol� ��� pp� �������	� Sept�

�����

��� R� Bajwa� M� Hiraki� H� Kojima� D� Gorny� K� Nitta� A� Shridhar� K� Seki�

and K� Sasaki� �Instruction bu�ering to reduce power in processors for

signal processing�� IEEE Transactions on VLSI Systems� vol� �� pp� ���

�� Dec� �����

��
� R� Panwar and D� Rennels� �Reducing the frequency of tag compares for

low power I�Cache design�� in Proceedings of the International Symposium

of Low Power Electronics and Design� Aug� �����

��

���� I� Bahar� G� Albera� and S� Manne� �Power and performance trafeo�s using

various caching strategies�� in Proceedings of the International Symposium

of Low Power Electronics and Design� pp� ����� ���	�

���� J� Kin� M� Gupta� and W� Mangione�Smith� �The �lter cache� An energy

e�cient memory structure�� in Proceedings of the International Symposium

on Microarchitecture� pp� �	����� Dec� �����

���� R� Fromm� S� Perissakis� N� Cardwell� C� Kozyrakis� B� McGaughy� D� Pat�

terson� T� Anderson� and K� Yelick� �The energy e�ciency of IRAM ar�

chitectures�� in Proceedings of the International Symposium of Computer

Architecture� pp� �������� �����

��� J� Zawodny� E� Johnson� J� Brockman� and P� Kogge� �Cache�in�memory�

A lower power alternative��� in Proceedings of the Power�Driven Microar�

chitecture Workshop� ISCA� pp� ������ ���	�

���� N� Bellas� I� Hajj� C� Polychronopoulos� and G� Stamoulis� �Architectural

and compiler support for energy reduction in the memory hierarchy of high

performance microprocessors�� in Proceedings of the International Sympo�

sium of Low Power Electronics and Design� pp� �
���� Aug� ���	�

���� E� Jacobsen� E� Rotenberg� and J� Smith� �Assigning con�dence to condi�

tional branch prediction�� in Proceedings of the International Symposium on

Microarchitecture� pp� ������� �����

���� Teresa Johnson and Wen�mei Hwu� �Run�time adaptive cache hierarchy

management via reference analysis�� in Proceedings of the International

Symposium of Computer Architecture� pp� �������� �����

��	� Teresa Johnson� Matthew Merten� and Wen�mei Hwu� �Run�time spatial

locality detection and estimation�� in Proceedings of the International Sym�

posium on Microarchitecture� �����

���� J� Hennesy and D� Patterson� Computer Architecture�A Quantitative Ap�

proach� San Francisco� CA� Morgan Kaufmann� �����

��
� S� T� Pan� K� So� and J�T� Rahmeh� �Improving the accuracy of dynamic

branch prediction using branch correlation�� in Proceedings of the Interna�

tional Conference on Architectural Support for Programming Languages and

Operating Systems� pp� ���	� �����

���� S� McFarling� �Combining branch predictors�� tech� rep�� DEC WRL �����

June �����

���� T� Y� Yeh and Y� N� Patt� �A comparison of dynamic branch predictors

that use two levels of branch history�� in Proceedings of the International

Symposium of Computer Architecture� pp� �������� �����

���� D� Grunwald� A� Klauser� S� Manne� and A� Plezskun� �Con�dence estima�

tion for speculation control�� in Proceedings of the International Symposium

of Computer Architecture� pp� �������� ���	�

��� J� E� Veenstra and R� J� Fowler� �MINT� A front end for e�cient sim�

ulation of shared�memory multiprocessors�� in Proceedings of the Second

International Workshop on Modeling� Analysis� and Simulation of Computer

and Telecommunication Systems �MASCOTS�� pp� �
���
�� ����

���� SpeedShop User�s Guide� Silicon Graphics� Inc�� �����

���� G� Kane and J� Heinrich� MIPS RISC Architecture� Englewood�Cli�s� NJ�

Prentice Hall� �����

���� S� Wilson and N� Jouppi� �An enhanced access and cycle time model for

on�chip caches�� tech� rep�� DEC WRL ����� July ����

��	� N� Bellas� I� Hajj� and C� Polychropoulos� �A detailed� transistor�level

energy model for SRAM�based caches�� in Proceedings of the International

Symposium on Circuits and Systems� �����

