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Abstract—In this paper, we focus on low-power design tech-
niques for high-performance processors at the architectural and
compiler levels. We focus mainly on developing methods for re-
ducing the energy dissipated in the on-chip caches. Energy dis-
sipated in caches represents a substantial portion in the energy
budget of today’s processors. Extrapolating current trends, this
portion is likely to increase in the near future, since the devices
devoted to the caches occupy an increasingly larger percentage of
the total area of the chip.

We propose a method that uses an additional minicache located
between the I-Cache and the central processing unit (CPU) core
and buffers instructions that are nested within loops and are
continuously otherwise fetched from the I-Cache. This mechanism
is combined with code modifications, through the compiler, that
greatly simplify the required hardware, eliminate unnecessary
instruction fetching, and consequently reduce signal switching
activity and the dissipated energy.

We show that the additional cache, dubbedL-Cache, is much
smaller and simpler than the I-Cache when the compiler assumes
the role of allocating instructions to it. Through simulation, we
show that for the SPECfp95 benchmarks, the I-Cache remains dis-
abled most of the time, and the “cheaper” extra cache is used in-
stead. We also propose different techniques that are better adapted
to nonnumeric nonloop-intensive code.

Index Terms—Low-power design, memory, power-consumption
model, special low-power99.

I. INTRODUCTION

I N RECENT years, power dissipation has become a major de-
sign concern for the microprocessor industry. The shrinking

device size and the large number of devices packed in a chip
coupled with the large operating frequencies have led to unac-
ceptably high levels of power dissipation.

The problem of the wasted power caused by unnecessary
activity in various parts of the central processing unit (CPU)
during code execution has traditionally been ignored in code
optimization and architecture design. Processor architects
and compiler writers are concerned with system perfor-
mance/throughput and they do little, if anything at all, to
eliminate energy/power dissipation at this level. However,
power dissipation is rapidly becoming the major bottleneck in
today’s systems integration and reliability. Modern micropro-
cessors are large power consumers: the UltraSPARC-II from
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Sun consumes 58-W maximum power at 296 MHz, the Pentium
Pro Processor consumes 35 W at 200 MHz, and the Alpha
21 164PC chip from DEC consumes 32.5 W at 433 MHz.

In general, low power and high performance are usually two
conflicting goals at all levels of the design hierarchy. For ex-
ample, one common technique for reducing power consumption
is to lower the supply voltage. This reduction in supply voltage,
however, results in slower circuits. Higher frequencies are de-
sirable for high performance, but they increase power consump-
tion. Higher activity (and thus utilization) could result in a larger
throughput, but also in higher power. The excessive power con-
sumption of today’s processors is, in part, the outcome of very
high utilization of their components.

In this paper, we develop techniques for energy reduction that
have little or no impact on performance. We focus on reducing
the activity caused by the I-Cache subsystem which is one of
the main power consumers in most of today’s microprocessors.
The on-chip L1 and L2 caches of the 21 164 DEC Alpha chip
dissipate 25% of the total power of the processor [1]. The Stron-
gARM SA-110 processor from DEC, which targets specifically
low-power applications, dissipates about 27% of the power in
the I-Cache [2]. In the Pentium Pro processor, the instruction
fecth unit (IFU) and the I-Cache contribute 14% to the total
power consumed [3].

The reason for the high-power consumption in the I-Cache
subsystem is that the execution rate of a processor depends crit-
ically on the rate at which the instruction stream can be fetched
from the I-Cache. The I-Cache should therefore be able to pro-
vide the data path of the machine with a continuous stream of
instructions and has therefore very high switching activity. In
addition, the I-Cache drives large capacitance wires to the CPU
core. Furthermore, today’s caches constitute an ever increasing
portion of the die area and the number of transistors of the pro-
cessor.

The remainder of the paper is organized as follows. Section II
discusses related work, and Section III provides the motivation
behind our approach. Section IV details the compiler transfor-
mations necessary for our scheme, while Sections V and VI de-
scribe the hardware support and the energy estimation method
we used for the caches, respectively. Section VII presents sim-
ulation results for both energy and performance on a subset of
SPEC95 benchmarks, and Section VIII discusses an extension
of the method for the integer benchmarks. The conclusion is
given in Section IX.

II. RELATED TASK

Power optimization at the architectural and software levels
has attracted the interest of a number of researchers. A model
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that views power from the standpoint of the software that exe-
cutes on a microprocessor and the activity that it causes, rather
than from the traditional hardware standpoint, has been pro-
posed in [4] and tested in different architectures [5].

In [6] and [7], brief reviews of compiler techniques for power
minimization are presented. As expected, standard compiler op-
timizations, such as loop unrolling, software pipelining, etc., are
also beneficial for the reduction of energy since they reduce the
running time of the code.

More recently, the impact of memory hierarchy in minimizing
power consumption and the exploration of data reuse so that the
power required to read or write data in the memory is reduced
are addressed in [8] and [9].

The filter cache [10] tackles the problem of large energy con-
sumption of the L1 caches by adding a small and thus more en-
ergy-efficient cache between the CPU and the L1 caches. The
penalty to be paid in adding the filter cache is the increased miss
rates and, hence, longer average memory access time. Although
this might be acceptable for embedded systems for multimedia
or mobile applications, it is not desirable for high-performance
processors. The filter cache delivers an energy reduction of 58%
for a 256-byte direct mapped filter cache, while reducing per-
formance by 21% for a set of multimedia benchmarks.

In a similar work in [11], a mechanism is described which
enables the bypass of the I-Cache by storing the instructions
within loops in an extra buffer. Only loops with no conditional
branching can be accommodated with this method, since the
mechanism assumes that all the instruction in a loop are stored
in the extra buffer in the first iteration.

The work in [3] focuses on excessive energy dissipation of
high-performance speculative processors that tend to execute
more instructions than are actually needed in a program. The
authors use the concept of branch prediction and confidence es-
timation [12] to detect when the CPU fetches and executes in-
structions from a speculative path that has a small probability to
be taken. The CPU stops execution in the pipeline when there is
a large probability of wrong path execution, and it resumes only
when the actual execution path is detected.

III. M OTIVATION AND APPROACH

During a loop execution, the I-Cache unit frequently repeats
its previous tasks over and over again: if the thread of control
during program execution is caught in a loop, the I-Cache unit
fetches the same instructions to the CPU core, and the ID de-
codes the very same instructions. The problem is that the IF
unit does not operate in an efficient way with respect to power
consumption, but it only tries to satisfy the demand of the ex-
ecution units for high throughput, which is achieved through a
fast first level (L1) instruction cache and high-bandwidth buses
between the cache and the CPU core. This approach works for
performance, but it unnecessarily performs more work; thus, it
dissipates more power than really needed.

Substantial power gains could be achieved if we could reduce
the amount of instructions that the IF unit fetches and subse-
quently disable the I-Cache system for all the time that it is not
needed. The most usual method for disabling a unit is clock

gating, i.e., not allowing the clock ticks to propagate changes
to the output of the unit by ANDing them with a control signal.

This is the basic motivation of the architectural support that
is proposed in this research as was also explained in [10] and
[11]. All the instructions that belong to a loop can be fetched
only the first time the thread of control passes through them.
Subsequently, they can be stored in a special internal cache (the
L-Cache) which is placed between the I-Cache and the CPU
core. Each time the IF unit attempts to fetch an instruction from
within the loop, the instruction that resides in this cache can be
used instead. In the ideal case, the I-Cache unit can be shut down
for the duration of the loop, as it does not need to operate, and
its energy dissipation can be saved. Thus, this method exploits
the locality in the instruction stream. To be energy prone, this
mechanism only accesses the I-Cache and the L-Cache sequen-
tially, i.e., in different clock cycles.

The approach advocated in our scheme relies on profile data
from previous runs to select the best instructions to be cached.
The unit of allocation is the basic block, i.e., an instruction is
placed in the L-Cache only if it belongs to a selected basic
block.1 After selection, the compiler lays out the target pro-
gram so that the selected blocks are placed contiguously before
the nonplaced ones. The main effort of the compiler focuses on
placing the selected basic blocks in positions so that two blocks
that need to be in the cache at the same time do not overlap in
the L-Cache.

The compiler maximizes the number of basic blocks that can
be placed in the L-Cache by determining their nesting and using
their execution profile. The resulting hardware is very simple
and most of the task is carried out by the compiler. We eliminate
the need for a large L-Cache, thus greatly reducing the power
requirements of the extra cache.

IV. COMPILER ENHANCEMENTS

The selection of basic blocks to be inserted in the L-Cache is
done by the compiler “statically,” i.e., during compile time, and
not “dynamically” during run time [13].

The optimization consists of two distinct phases.

• Function inlining, in which the compiler tries to expose as
many basic blocks as possible in frequently executed rou-
tines. This step should be done judiciously since function
inlining can also create performance and locality prob-
lems in the I-Cache. This step aims at exposing as many
basic blocks as possible in frequently executed routines.
Our scheme assumes that no interprocedural basic block
allocation can take place, i.e., at any given time, only
basic blocks that belong to the same function can reside in
the L-Cache. This precaution is taken since the compiler
cannot knowa priori where the linker/loader will place
the functions in the memory address space. Hence, each
function in the source code is considered separately.

• Block placement, the main stage of our method, in which
the compiler selects and then places the selected basic
blocks so that the number of blocks that are placed at the
same time in the extra cache is maximized. To that effect,

1A basic block is a sequence of instructions with no transfers in and out except
possibly at the beginning or end.
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the compiler avoids placing two blocks that have been se-
lected to reside at the same time in the L-Cache in the same
cache locations.

The reasoning behind our decision to choose a basic block as
the basic unit of allocation and not a whole loop can be readily
justified by considering thecontrol flow graph(CFG) of a typ-
ical loop. In most cases, the loop contains basic blocks which are
seldom executed during typical runs. These are blocks that take
care of an exception condition or do error handling. If the whole
loop was to be allocated in the L-Cache, these basic blocks
would occupy space, but they would hardly ever be used. They
would also disqualify frequently executed blocks from being
cached.

The compiler seperates the selected basic blocks from the
nonselected ones, and places all of them in the global address
space. For example, consider the following code:

do 100 i = 1; n

B1; # basic block

if (error) then

error handling;

B2; # basic block

100 continue

If the if-statement in the loop is placed between basic blocks
and in the final layout of the code, it may create a conflict

in the L-Cache. This will happen if the size of the L-Cache is
smaller than the sum of the sizes of the basic blocks and
the if-statement, but larger than the sum of the sizes of the basic
blocks and alone. If we move the if-statement at the end
and place and one after the other, we effectively reduce
the possibility of an overlap. We identify such cases and move
the infrequently executed code away so that the normal flow of
control is in a straight-line sequence. This entails the insertion
of extra jump instructions to retain the original semantics of the
code.

The block placement algorithm is delineated in Fig. 1. The
object code and profile data for the original program are used
as input to our tool. The output produced is an equivalent object
code in which some of the basic blocks have been reordered
and placed in specific memory locations. The following sections
give a detailed description for each of the steps of the method.

A. First Step: Nesting Computation

The control flow graph is built for each function of the orig-
inal program in Step 1). Note that the program can be either the
original one or the one that has been created after inlining. A
node in the CFG can have none, one, or more than one prede-
cessors, and at most two successors. This is the case when there
is a branch instruction at the end of the basic block. We intro-
duce a slight modification in our CFG: although a procedure
is normally considered as having only one entry, we generalize
this as follows: if there is a function call within a procedure,
the return from this function is declared as a new entry to the
procedure. The reason for this modification is that we do not
want to place basic blocks across procedures. Each procedure,
upon entry, will assume that nothing is in the L-Cache from its

Fig. 1. Block placement overview.

Fig. 2. First step of block placement.

caller. In other words, basic blocks within a loop which has a
function call will not be eligible for caching. This restriction
aims at freeing the linker from a possible burden when it maps
a function body to the memory space. Some linkers try to map
routines that cal each other frequently onto contiguous memory
addresses to increase the locality of accesses. An interfunction
basic block allocation would pose additional constraints to the
linker.

Next, in the same step, the tool finds the loops and the nesting
for every basic block [14]. A LabelSet for every basic block

is the set of loops to which belongs. If is not nested,
LabelSet . If is enclosed in loops and ,
then LabelSet . These are the same sets used
in [15]. In Fig. 2, an example is given to describe the data struc-
tures used and the information produced during the first step of
the algorithm. A loop nesting is shown in Fig. 2(a), the corre-
sponding CFG in (b), and the LabelSets in (c).
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Fig. 3. LableTree.

B. Second Step: LabelTree Construction

In Step 2), we construct a directed acyclic graph (DAG) using
the LabelSets as follows: the nodes are the different LabelSets
found in the previous step. There is an arc between two such
LabelSets if is a proper subset of [Fig. 3(a)]. Our
data structure, dubbedLabelTree, is a tree since no basic block
can have two different nestings.

The LabelTree describes the nesting relationship between
basic blocks. Basic blocks in the same path in the LabeleTree
belong to the same nesting, although in different depths. Basic
blocks that are near the leaves of the LabelTree are deeply
nested, whereas basic blocks that are near the root are not.

C. Third Step: Basic Block Selection and Placement

Step 3) takes over the main part of our allocation algorithm
(Fig. 4).

A well-known NP-complete problem is that of placing objects
with a given value and weight into a knapsack so that the total
value of the placed objects is maximized under the constraint
that their weight does not exceed the capacity of the knapsack.
We only expect to find a good heuristic which will place the
most frequently executed basic blocks in the L-Cache provided
that their size is smaller than the size of the L-Cache.

The algorithm scans the basic blocks in descending order of
execution frequency. Hence, the most important blocks are the
first to be considered and have a greater chance to be placed in
the L-Cache. For every node in theLabelTreewe designate a
size, which denotes the position in the L-Cache where a basic
block of the node should be placed in every step of the algo-
rithm. The size should always be less than or equal to the cache
size; otherwise the current basic block cannot be placed in the
L-Cache.

The first step is to propagate the effect of the size of the basic
block under consideration toward the leaves of the tree rooted
at node DOWN TRAV . Suppose, for example, that the
current basic block is in Fig. 3(a). Both nodes and
have already been considered and placed in the L-Cache. The
size of added to the size size should not
exceed the cache size. If this is the case, is placed in the
L-Cache. In other words, will remain in the L-Cache while

and are executed, and it will not be replaced. This step
aims at placing in a different L-Cache position from both
and . If overlapped with them, it would have to be fetched
from the I-Cache instead, since it would be replaced byor

after being executed. This technique maximizes the number
of basic blocks that are placed in the cache and avoids conflicts
between them.

Fig. 4. Placement algorithm.

If size size size , the placement
of is not possible, and the algorithm continues with the next
basic block.

Subsequently, the algorithm calls UPTRAV which propa-
gates the effect of the new placement to the outer blocks. This, in
effect, reduces the chance of the outer blocks to be placed in the
L-Cache, which is not bothering at all, since we are mostly inter-
ested in the inner, most frequently executed blocks. In Fig. 3(a),
the annotatedLabelTreefor the example in Fig. 2 is given with
the final placement of the basic blocks in 3(b). All the blocks ex-
cept are placed in the L-Cache (the positions are in the paren-
theses and are with respect to the beginning of the L-Cache).

The algorithm is greedy because it tries to accumulate as
many important basic blocks as possible in the L-Cache. In the
case where the most frequently executed basic blocks are the
most deeply nested, the algorithm will succeed in putting all of
them in the L-Cache provided that the size of each one is smaller
than the cache size.
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In practice, we only consider a fraction of the basic blocks
of the program, i.e., the ones with a substantial contribution
to the execution time. This will speed up the algorithm signif-
icantly. We rule out any basic block with execution time less
than a user-defined threshold. The complexity of the algorithm
is number of basic blocks , where is the height of the
LabelTree. The maximumLabelTreeheight is , where is the
depth of the deepest nested loop (usually a small integer).

A basic block will not be selected for placement in algorithm
Allocate if any of the following is true.

• The algorithm finds that the basic block was too large to
fit in the L-Cache. This can be either because the size
of the block is larger than the cache size, or because it
cannot fit at the same time with other, more important,
basic blocks. The algorithm described in this section is
used to implement this criterion.

• Its execution frequency is smaller than a threshold and is
thus deemed unimportant.

• It is not nested in a loop. There is no gain in placing such
a basic block in the L-Cache since it will be executed only
once for each invocation of its function.

• Even if its execution is large, itsexecution densitymight
be small. For example, a basic block that is located in a
function which is invoked many times might have a large
execution frequency, but it might only be executed a few
times for every function invocation. We define the execu-
tion density of a basic block as the ratio of the number of
times it is executed to the number of times that the func-
tion in which it belongs is invoked.

• Finally, a very small basic block is not placed in the
L-Cache even if it passes all the above criteria. The extra
jump instructions that might be needed to link it to its
successor basic blocks will be an important overhead in
this case.

A basic block is placed in the L-Cache only if it is expected
to stay there for a long period of time without getting replaced.
This in effect decouples the communication between the
I-Cache and the L-Cache and reduces the traffic between them.

1) Example: We refer to Fig. 3 to show how the algorithm
works. We consider the basic block with the largest contribution
in the execution time first; in that case , which belongs to
LabelSet . Basic block is the first to be considered and
can be placed in the L-Cache without any conflict. We set the
variablesizeof equal to the size of , i.e., . We also
set thesizeof all the LabelSets between and the root to .

We continue with , which belongs to . Basic block
can also be placed in the L-Cache since no conflict arises. The
sizevariables of and are set to . Next, is
placed in the L-Cache, but thesizeof and do not change.

Basic block is not in a leaf; therefore, we need to use the
DOWN TRAV function to propagate the effects of the inclu-
sion of on its descendants. Since size size

, we can place in the L-Cache. We also set
size size . We continue
in this manner, and we only select a basic block if it does not
create a conflict with a block that has already been selected.

Fig. 5. CFG restructuring example.

We notice that cannot be placed in the L-Cache because
size size .

D. Fourth and Fifth Steps: Global Placement in the Memory

Step 4) in our methodology is the placement of the basic
blocks in the global address space. The algorithm takes as input
the placement of the basic blocks with respect to the L-Cache
and tries to minimize the necessary space as much as possible.
Extra jump instructions are inserted in Step 5) to retain the se-
mantics of the original program.

In Fig. 5, a complete example of the original and the restruc-
tured CFG is shown for the code of Fig. 2. Blocks and
will overlap in the L-Cache since will be executed only when
the loop of exits. On the other hand, if overlapped with

or , it would miss in every execution of the
loop.

The user has the ability to adjust the thresholds in the selec-
tion of the basic blocks in the first stage, and tradeoff perfor-
mance degradation with power savings. For example, a smaller
basic block frequency threshold will select more basic blocks
for placement, leading to larger energy savings, and, possibly,
to a larger delay, since these basic blocks will need extra jump
instructions to retain the semantics of the code and will create
larger conflicts in the L-Cache. In the extreme case, the user
can either select every basic block to be placed in the extra
cache, or can disable the L-Cache altogether. In the former case,
the scheme emulates a filter cache organization, whereas in the
latter case, it emulates the original scheme that has no extra
cache. These two extremes are subsets of our compiler-driven
scheme. The method is very flexible, and individual applica-
tions can choose from a range of caching policies.

V. HARDWARE ENHANCEMENTS

In addition to the compiler enhancement, our scheme requires
extra hardware for the implementation of the L-Cache scheme.
This is shown in Fig. 6.

The program counter(PC) is presented to the L-Cache tag
at the beginning of the clock cycle. The L-Cache tag will only
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Fig. 6. L-Cache organization.

output its tag if theblockedpart signal is on. This signal is gen-
erated by the instruction fetch unit (IFU), and its meaning is
explained later. In that case, the comparator checks for a match,
and if it finds one, it instructs the multiplexer to drive the con-
tents of the L-Cache in the data path. At the same time, the data
portion of the L-Cache asserts its output and sends the new in-
struction to the data path. The I-Cache is disabled for this clock
cycle, since the signalblockedpart is on.

In the case of an L-Cache miss (LCacheHit is off), the
I-Cache controller activates the I-Cache in the next clock cycle
and gets the referenced instruction from there. At the same
time, this instruction is transfered to the L-Cache. Note that
the L-Cache and I-Cache are only accessed sequentially and
never in parallel. Ifblockedpart off, the I-Cache controller
activates the I-Cache without waiting for theLCacheHit
signal. In this way, the L-Cache can be bypassed without a
delay penalty.

Recall that the compiler has already laid out the code so that
the basic blocks that are destined for the L-Cache are placed
before the others. A 32-b register is used to hold the address of
the first nonplaced block in the main memory layout. If during
program execution thePC has a value less than that address,
the 32-b comparator will setblockedpart on, else this signal
will be set to off. In the former case, the machine will attempt
to access the L-Cache first, whereas, in the latter case, it will
bypass the L-Cache and it will try to fetch the instruction from
the I-Cache. This way, the machine can figure out which portion
of the code executes with only an extra comparison.

This simplification is only possible because of the way that
the code has been restructured in the compilation phase. Notice
also that ifblockedpart on, the L-Cache can still miss; this
will happen, for example, when the basic block to be placed in
the L-Cache has not been executed before, i.e., the first time the
thread of control passes through it. Therefore, the tag portion of
the L-Cache is still needed.

Finally, we extend the instruction set architecture (ISA), and
we add an instruction calledalloc which marks the boundary
between the selected and the nonselected code. This extra in-
struction is used to store the address of the first nonplaced in-
struction in the 32-b register, as described in the previous sec-
tion, and it is the first instruction to be executed upon entry in a
procedure. The ID stage of the pipeline will decode the instruc-
tion and place the address in the register. There is only one such

TABLE I
MEMORY SUBSYSTEM CONFIGURATION IN

THE BASE MACHINE

instruction per function, and its effect on performance is negli-
gible.

The comparator can have a negative impact on the clock cycle
of the machine if its latency cannot be hidden. The actual im-
pact (if any) depends on the specific machine, and whether the
comparator will be placed in the critical path of the processor.
In any case, the effect on performance should be considered in
a real system during the performance versus energy tradeoffs.

VI. ENERGY ESTIMATION

We have developed our cache energy model based on the
work by Wilson and Jouppi [16] in which they propose a timing
analysis model for SRAM-based caches [17]. Our model
uses run-time information of the cache utilization (number of
accesses, number of hits, misses, input statistics, etc.) gathered
during simulation, as well as complexity and internal cache
organization parameters (cache size, block size, associativity,
banking, etc.). A 0.8-m technology with 3.3-V voltage supply
is assumed. These models are used for the estimation of energy
in both the I-Cache and the L-Cache.

The utilization parameters are available from the simulation
of the memory hierarchy. The cache layout parameters, such
as transistor and interconnect physical capacitances, can be ob-
tained from previous layouts, from libraries, or from the final
layout of the cache itself. We use the numbers given in [16] for
a 0.8- m process.

VII. EXPERIMENTAL EVALUATION

A. Simulator Environment

We evaluated the effectiveness of our software/hardware
enhancements by examining the energy savings on a set of
SPEC95 benchmarks. The benchmarks were compiled with the
MIPSpro compiler using the -O2 optimization flag. Hence, we
enabled all the traditional optimizations but we disabled any
interprocedural analysis and inlining. That was necessary in
order to test our own inlining heuristic.

To gauge the effect of our L-Cache in the context of a
realistic processor operation, we simulated the MIPS2 in-
struction set architecture (ISA) using theMINT [18] and the
SpeedShop[19] tool suites. MINT is a software package for
instrumenting and simulating binaries on a MIPS machine.
We built a MIPS2 simulator on top of MINT which accurately
reflects the execution profile of the R-4400 processor. Table I
describes the memory subsystem configuration as (cache
size/block size/associativity/cycle time/latency to L2 cache in
clock cycles/transfer bandwidth in bytes per clock cycles from
the L2 Cache). Both I-Cache and D-Cache are banked both
row-wise and column-wise to reduce the access time and the
energy per access [16]. We use the toolcacti, described in [16],



BELLAS et al.: ARCHITECTURAL AND COMPILER TECHNIQUES FOR ENERGY REDUCTION 323

TABLE II
USER-GIVEN THRESHOLDS IN THEL-CACHE EXPERIMENTS

TABLE III
L-CACHE UTILIZATION STATISTICS: PERCENTAGE OFINSTRUCTIONS

THAT CAUSE AN ACCESS TO THEL-CACHE

to estimate the access time of the on-chip caches, as well as the
optimal banking that minimizes the access time.

The L-Cache was 256 and 512 bytes and had a block size
of 4 bytes, i.e., the size of a MIPS instruction. A larger block
size does not significantly increase the hit rate of the L-Cache,
whereas it negatively affects the dissipated energy per access.
The L2 unified cache is off-chip and its energy dissipation is
not modeled.

We also experimented with different scenarios for the user-
given thresholds that guide the basic block selection and place-
ment in the L-Cache (Table II). A more aggressive scenario re-
sults in larger energy gains at the expense of larger performance
degradation. A frequency threshold of 0.01%, for example, will
force the tool to mark for placement only basic blocks that have
an execution time of at least 0.01% of the total execution time
of the program. A size threshold of ten instructions will force
the tool to mark only the basic blocks that have at least ten in-
structions, and so on. Different parameters are selected for the
FP and integer programs based on the different features of these
programs. Our experimental methodology was as follows. First,
we ran the benchmarks to collect the profile data. The data were
used to drive the inline and the block placement heuristics. The
tool, along with the restructuring of the body of the program,
selected various statistics regarding the quality of the generated
code. SpeedShop was used for profiling and the MIPSpro com-
piler was used for compilation and code optimization. The ac-
tual simulation was done using MINT. Function inlining was
used only for the SPECint95 benchmarks. Through experimen-
tation, we found out that inlining is more beneficial when only
leaf functions are absorbed; hence, we limit our inlining proce-
dure to consider only leaf functions.

B. Results

The percentage of dynamic instructions that cause the ma-
chine to access the L-Cache in the course of program execution
is shown in Table III. This access may result in either a hit or a
miss. This percentage is high for all the SPECfp95 benchmarks,
reflecting the efficacy of our approach for these programs. As
expected, a larger L-Cache is more succesful in storing basic

TABLE IV
NORMALIZED ENERGY RELATIVE TO THE BASE MACHINE FOR A 256-BYTE

AND 512-BYTE EXTRA L-CACHE

TABLE V
NORMALIZED DELAY RELATIVE TO THE BASE MACHINE FOR A 256-BYTE AND

512-BYTE EXTRA L-CACHE

blocks and therefore in disabling the I-Cache for a larger period
of time. In some cases, even a small L-Cache is capable of effec-
tively shutting-down the I-Cache for the duration of the program
execution. The law of diminishing returns applies here as well,
since a very large L-Cache (1024 instructions) is usually as suc-
cesful as smaller ones. In most cases, a 256 instruction L-Cache
approximates the performance of an infinite size L-Cache.

On the other hand, most integer benchmarks do not have a
large number of basic blocks that can be cached in the L-Cache.
They are also insensitive to the cache size variation, which is
to be expected since the basic blocks of integer programs are
generally small. Most of the basic blocks of the SPECint95
benchmarks are not nested, or they are nested within a loop that
contains a function call; hence, they cannot be included in the
L-Cache. Integer programs with complex control flow graphs,
such as interpreters, compilers, and so on, have a large number
of different paths in the CFG. These benchmarks have the worst
behavior. Benchmarks with a more regular structure (compres-
sion programs, simulators, etc.) are better suited to our algo-
rithm.

Table IV shows the energy gains in the I-Cache subsystem
for the three different L-Cache configurations. The numbers are
normalized with respect to the energy dissipation of the original
scheme. The energy in the modified configurations is due to
both the I-Cache and L-Cache. A result less than one is desirable
since it denotes an improvement in energy or delay with respect
to the original scheme.

The performance overhead of these cache configurations with
respect to the original execution time is given in Table V. This is
a full chip simulation that takes into consideration the latency in
the memory hierarchy, the structural hazards in the FPU, and the
data dependency hazards in both the integer unit and the FPU.

A very important feature of the L-Cache approach is the small
performance overhead, which is vital for high-performance ma-
chines. The performance overhead is due to the miss rates in the



324 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 3, JUNE 2000

Fig. 7. Instruction placement results for the SPECint95 benchmarks with a
512-byte L-Cache.

L-Caches and the extra jump instructions that are inserted by
the compiler as discussed previously. The scheme gains benefit
from the very high hit rates of the compiler-managed L-Cache.

An optimal L-Cache has a size of 128 instructions (i.e., 0.5
Kbytes) for the FP benchmarks. Small caches are not very suc-
cesful in disabling the I-Cache. Larger caches, on the other hand,
have larger energy dissipation per access, yet not a much better
hit rate than average sized caches. The energy dissipation drops
as the size increases, but it goes up again for the larger caches.

VIII. M ODIFIED SCHEME FORINTEGERBENCHMARKS

Integer benchmarks do not perform well under the loop-based
selection algorithm as we have explained in the previous section.
Most of the basic blocks in the SPECint95 benchmarks are not
nested; hence, they cannot be placed in the L-Cache during ex-
ecution.

The previous methodology was based on the detection of
nested basic blocks in loops which did not contain function calls.
These basic blocks were candidates for compiler-driven place-
ment in the L-Cache. As is evident from the experimental re-
sults, the method is not succesful for a large category of integer
benchmarks, such as interpreters and compilers. Fig. 7 gives in-
sight into the failure of the algorithm for some of the integer
benchmarks.

Shown is the classification of the dynamic mix of instruc-
tions for the most troublesome SPECint95 benchmarks for a
0.5-Kbyte L-Cache. An instruction belongs to one of the six fol-
lowing categories: 1) “P” if it has been selected by the algorithm
to be positioned in the L-Cache; 2) “U” if it is in a basic block
with a small execution frequency (unimportant); 3) “NN” if it
is in a block with large execution frequency but not nested in
a loop; 4) “SD” if it is in a nested block with large execution
frequency but small execution density; 5) “SS” if it belongs to
a nested block with large frequency and execution density but
small size; and 6) “L” if it satisfies all the above criteria but
does not fit in the L-Cache. For this experiment, the frequency
threshold is (1/10 000) of the execution time of the program, the
execution density threshold is five executions per function invo-
cation, and the size threshold is five instructions.

The single most important reason that disqualifies the basic
blocks of the integer benchmarks from being cached is nesting.
Most of the basic blocks do not belong to a loop, or they belong

to a loop that has a function call (85% of them). More than 10%
of the basic blocks have small execution density.

The problem seems to be inherent to the structure of integer
programs, especially when they are written in C/C++. This
programming methodology favors small sections of sequential
code, procedural abstraction (many functions), and lack of very
deeply nested loops. The execution time is distributed among a
larger number of basic blocks, many of which do not execute
many times per function invocation. An alternative approach
for selection of blocks for the L-Cache is therefore appropriate
for these programs.

The proposed solution selects a function and places its most
important basic blocks permanently in the L-Cache. In other
words, they are not replaced when the thread of control leaves
the function. Naturally, we select the function with the largest
contribution in the execution time, as this has been designated
by the profile data. The method consists of two steps as before.

A. Function Inlining and Block Placement

Before placement, our method performs function inlining to
maximize the gains of this approach. The function with the
largest execution time may contain function calls to other func-
tions. If these functions are inlined, the contribution of the orig-
inal function in the total execution time will increase.

After inlining, the heuristic selects the most frequently ex-
ecuted basic blocks of the inlining function. This selection is
based on user-given compiler options. If all these basic blocks
of the function fit in the L-Cache, the block placement algo-
rithm will proceed to place them all. The size of the L-Cache is
therefore important, unlike in the loop-based heuristic in which
the integer benchmarks were almost insensitive to L-Cache size
variations.

In general, the problem can take the form of the0–1 Knap-
sackproblem which is NP-complete [20]: Given a finite set
of basic blocksbb, each one with a size , a value
which is the number of executed instructions inbb, and a pos-
itive L-Cache size , find a subset of basic blocks
such that and such that is
as large as possible. Since a basic block can either be placed in
the L-Cache or not (we cannot place part of the block), an op-
timal solution requires exponential time in the number of basic
blocks.

We apply a greedy approximation algorithm which
works as follows: we order the set of basic blocks by
the “key”: so that

. Starting with
empty, we proceed sequentially through the list, each time

adding a basic blockbb whenever the sum of the sizes of the
blocks already in andbb does not exceed .

In addition, we perform another greedy procedure in which
the list has been sorted using only the number of cycles
of each basic block, so that .
The best solution among the two is selected. A near optimal
solution is obtained using this approach in our experiment.

B. Experimental Evaluation of the Modified Scheme

In the new experiments we did not set any size or density
constraints. Since the basic blocks are placed in the L-Cache
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TABLE VI
NORMALIZED ENERGY RELATIVE TO THE BASE MACHINE FOR A 256-BYTE

AND 512-BYTE L-CACHE, USING THE MODIFIED SCHEME FOR

INTEGERBENCHMARKS

when the selected function is executed for first time and remain
there afterwards, it s not necessary to pose extra limitations in
their selection.

The memory hierarchy subsystem is described in Table I. The
energy gains of the L-Cache is given in Table VI. The results are
very encouraging for benchmarks that have poor performance
under the initial method. Similar results are obtained for most
of the integer benchmarks that do not score well under the old
scheme (e.g.,130.li, 134.perl).

The execution time overhead is negligible in this scheme for
an L-Cache of 0.5-Kbyte. This is because the hit rate is almost
100% and the L-Cache is large enough to accommodate all the
important basic blocks of a function.

IX. CONCLUSION

In this research, we have developed techniques for hard-
ware/software codesign in high-performance processors that
result in energy/power reduction at the system level. To that
effect, we make a more judicious use of one of the most
power-consuming modules of a CPU, the I-Cache. The tech-
niques we descibed are orthogonal to the standard circuit or
gate level techniques that are traditionally used by designers to
reduce power and can therefore be used to further reduce power
consumption without impairing performance.

Since performance is the most important objective of today’s
high-end microprocessors, no energy reduction technique will
be acceptable, unless it has only a marginal negative effect on
the execution time, or unless its overhead can be hidden by
other compiler/architectural techniques. If this is the case, even
a moderate energy reduction will be welcome.

Most of the energy gains in high-performance and embedded
processors alike will be extracted from the high level of the de-
sign flow, when the designers have not yet committed to major
design decisions. Major energy gains can be obtained if the com-
piler and the hardware are designed with low energy in mind.
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