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Abstract— High performance computing platforms require an 
efficient memory subsystem to keep processors busy. This paper 
proposes a memory hierarchy using stream units to move stream 
data between memory and processors. The stream units prefetch 
and align data based on stream descriptors, a mechanism that 
allows programmers to indicate data movement explicitly by 
describing their memory access patterns. The memory hierarchy 
is configured on reconfigurable logic based on application needs. 
This paper presents an example stream unit design with 
preliminary synthesis results.  
 

Index Terms—Stream processing, memory hierarchy, 
memory burst. 

I. INTRODUCTION 
econfigurable systems offer flexible platforms in which 
to optimize a memory subsystem for single application or 

a class of applications. While architectural research on FPGA 
have been partial to processor designs, the same flexibility 
and performance offered by today’s FPGAs are equally 
suitable for the memory subsystem design. As the 
performance disparity between processor and memory 
intensifies [1], high performance or real-time application 
performance continues to be limited by the memory 
subsystem [2]. Consequently, studies on efficient memory 
subsystems should be considered alongside the processor 
design as memory performance must be scrutinized on new 
reconfigurable architectures.  

While FPGA platforms continue to provide a larger 
number of configurable logic blocks that can be mapped to 
processing elements to satisfy computing demands, the 
interconnect delays and relatively slower memories maintain 
an imbalance between processor and memory performance. 
Traditional approaches to compensate for poor memory 
performance such as caches are not effective due to poor 
temporal locality of data for streaming data [3], especially 
when large memory buffers are not available on FPGA 
platforms. Data duplication on distributed memory buffers is 
also not effective as the chip area can be better utilized for 
processing. 

This paper presents a flexible memory subsystem for 
stream computation. The memory subsystem builds upon 
configurable stream units that move data while computation is 
performed. The stream units are specialized DMA units that 
are optimized for stream data transfer. They rely on a set of 
stream descriptors, which defines the memory access pattern, 
to prefetch and align data in the order required by the 

computing platform. In using the stream units in the memory 
subsystems, the architecture effectively decouples the 
communication from computation, and allows hardware 
designers to address their implementation and optimization 
individually. The stream units take advantage of available 
bandwidth by prefetching data before it is needed, and 
consequently, the system performance becomes dependent on 
average bandwidth of the memory subsystem with less 
sensitivity to peak latency to access a data element. 

II. RELATED WORK 
The streaming programming model separates 

communication from computation, allowing either 
programmer or compiler to specify each portion 
independently [4]. Properties of streaming model of 
computation include: 
• Computations kernels are independent and self contained 

Computation kernels are localized such that there are no 
data dependencies between other kernels. A programmer 
can annotate portions of a program that exhibit this 
behavior for mapping onto a stream processor or 
accelerator. 

• Computation groups are relatively static 
The processing performed in each computation group is 
regular or repetitive, which often come in the form of a 
loop structure. There are opportunities for compiler 
optimization to organize the computation as well as the 
regular access patterns to memory. 

• Explicit definition of communication 
Computation kernels produce an output stream from one or 
more input streams. The stream and other scalar values 
which hold persistent application state are identified 
explicitly as variables in a communication stream or signal 
between kernels.  

• Data movement exposed to programmer 
A programmer can explicitly define movement of data from 
memory or to other computation kernels. Hardware 
mechanisms such as a DMA or stream unit provide this 
capability without interrupting the processor. The stream 
processing model seeks to either minimize data movement 
by localizing the computation, or to overlap computation 
with data movement. Furthermore, the programmer can 
retune the application memory access as memory 
bottlenecks arise.  

 R
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There is a number of streaming processor architectures 
developed over recent years. Examples of stream processors 
include RAW [5], Imagine [6], Merrimac [7], and the 
RSVP™ architecture [8,9]. There is also another class of 
streaming architectures with origins from reconfigurable 
platforms such as FPGA. These architectures rely on the 
flexibility of the platform to synthesize streaming accelerators 
based on programmer definition. In comparison to the above 
mentioned architectures, a set of compiler tools create 
optimized hardware configurations rather than map 
computation onto existing design. They are associated with 
the programming language or compiler tool that allows 
software developers to configure hardware for stream 
computation. Examples include SCORE [10], ASC [11], and 
Streams-C [12].  

While each approach is different, stream architectures 
provide hardware mechanisms that can configure their 
datapaths for different types of parallelism in stream 
computation. Furthermore, they include programmable 
communication infrastructure to move data based on 
programmer defined API. In this paper, we propose the use of 
stream descriptors [8,9] for use in a reconfigurable FPGA 
platform to generate an optimized memory subsystem. Stream 
descriptors are a language extension to specify memory 
access patterns, which is used by dedicated stream units to 
prefetch and assemble data. The programmer describes the 
computation independently from stream descriptors, and then 
a compiler synthesizes the proper hardware for stream 
processing. 

III. STREAM MEMORY HIERARCHY  
A design framework is being developed to automatically 

generate synthesizable streaming accelerators [13]. Using 
stream programming languages [9,14,15,16] which includes 
programmer’s explicit definition of streams and their 
movement, an integrated memory subsystem can be built. 
This approach selects designs from well-engineered 
framework consisting of accelerators and network rather than 
generating hardware from a generic representation of a high 
level language [17]. 

The memory subsystem builds upon stream units that 
moves data based on stream descriptors, as shown in Figure 
1. Single or multiple accelerators in various configurations 
can be built. Furthermore, systems with multiple scalar 
processors, bus, peripherals or memory controllers can be 
configured such that the stream unit and accelerator are 
placed appropriately according to the flow of data. Stream 
descriptors have been recently applied to stream processors 
[8,9] and peripherals [18,19] to leverage on the deterministic 
movements of data from memory. In this paper, the stream 
descriptors are applied to the entire memory subsystem so as 
to enable stream data movement throughout the computing 
platform. 

The goal of this research is to generate an optimized 
memory subsystem based on stream programming input. As 
data stream type and movement are explicitly defined, there 
are opportunities to optimize the memory subsystem by 
prefetching and overlapping movement with computation. By 
distributing stream units throughout the memory subsystem, 
the design framework avoid large cache mechanisms that are 
not efficient for streaming computation and are difficult to 
synthesize on FPGAs. 
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Figure 1. Stream memory subsystem, (a) single accelerator,  
(b) multiple accelerators, (c) alternative configurations 

This following section describes the stream descriptors 
used to capture stream access patterns in memory. 
Furthermore, an example stream unit design is described with 
preliminary results from synthesis. 

A. Stream Descriptors 
Stream descriptors are mechanisms to allow the 

programmer to describe the shape and location of data in 
memory. Dedicated stream units can then utilize the stream 
descriptors to prefetch data from memory for the computing 
platform. Each stream unit handles all issues in 
loading/storing of data: address calculation, byte alignment, 
data ordering, and memory bus interface. A compiler can also 
schedule the loading of a stream descriptor that is dependent 
on run time values.  

A stream descriptor is represented by the tuple (Type, 
Start_Address, Stride, Span Skip, Size) where:  
• Type indicates how many bytes are in each element (Type 

is 0 for bytes, 1 for 16-bit half-words, etc.)  
• Start_Address represents the memory address of the first 

stream element.  
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• Stride is the spacing, in number of elements, between two 
consecutive stream elements. 

• Span is the number of elements that are gathered before 
applying the skip offset  

• Skip is the offset is applied between groups of span 
elements, after the stride has been applied  

• Size is the number of elements in the stream  
The Stride, Span, Skip, and Type fields define the shape of 

a data object. The grouping and order in which data is 
accessed defines a Stream Record and corresponds to the 
preferred alignment of the computation kernel. Stream 
records can be processed in parallel by hardware accelerators 
and this explicit alignment of the data facilitates their 
hardware implementation by eliminating packing and 
unpacking instructions.  Multidimensional or even non-
regular spaces can be created by extending the defined 
semantics of each stream descriptor field. More details are 
available in [8,9]. 

B. Stream Unit 
The stream unit consists of one or more input and output 

stream modules, which are generated to match the needs of 
the streaming accelerators. In Figure 2, there are two input 
and one output stream modules. The stream unit is used to 
transfer data from a system memory or peripheral, and present 
them in-order to the streaming accelerator. It also transfers 
processed data back to other memory locations. 

The following paragraph describes internal operations of 
the input stream module. The address generation unit (AGU) 
generates bus addresses based on stream descriptor values 
and stores pending requests in a queue (Addr Queue). The 
AGU has similar functionality to [20] but with more robust 
stream descriptors that allows for different bit-widths and 
more complex access patterns. The Addr Merge unit then 
selects the next bus address to issue, while removing 

duplicate bus addresses. Data is then stored in the line buffer 
when the PLB bus returns data from memory.  A Tag unit 
selects stream elements from the line buffer for storage into a 
stream buffer queue. Data is then presented to the streaming 
accelerator as aligned data, in the order defined by the stream 
descriptor. 

The output stream module consists of similar internal 
components, but data flows in the opposite direction. 
Processed data is first stored in stream buffers, which are 
selected for transfer by the Tag unit. A line buffer holds the 
set of selected stream data which can be stored at a specified 
bus address, stored in the Addr unit. 

The stream unit can be configured to match application 
requirements based on stream descriptor values, and 
characteristics of the bus-based system and streaming 
accelerators. For example, the number of storage elements 
(stream buffers) and their sizes (bit-width) are selected based 
on the stream descriptor values and requested bandwidth of 
the streaming accelerator (stream bandwidth) so that the 
stream module can provide the maximum number of stream 
elements requested per cycle. Furthermore, the Address 
Queue buffer size is selected based on the maximum number 
of pending requests supported by the bus. The bus line buffer 
size is set based on bus bandwidth and bursting schemes. This 
would allow maximum saturation of the bus that can pipeline 
transfer requests from the memory controller or peripherals. 
Finally, the address generation unit can be hardwired to 
generate the memory access patterns based on stream 
descriptors.  

Table 1 shows the preliminary synthesis results for 
different configurations of the stream unit. The resulting 
clock speeds is about 130MHz on the selected Xilinx FPGA 
device. In general, the larger the buffer sizes, the larger the 
stream unit. For larger bit-width parameter, the stream unit 
gate count can actually decrease due to reduced logic to 
handle multiple bytes within a 32bit word. The current logic 
circuits can be further optimized by restructuring the logic in 
Tag unit which compares against the bus address in Addr 
Queue unit when accessing the line buffer. 

IV. CONCLUSION AND FUTURE WORK 
This paper presents a configurable stream unit for use in a 

stream memory hierarchy. The stream unit prefetches and 
aligns data for streaming accelerators based on a set of stream 
descriptors, which defines the data shape and location. 
Preliminary synthesis results on the different configurations 
are shown.  

Future work for the stream unit includes further 
optimization and use of the design in a full memory 
subsystem. Benchmarking on applications can be performed 
with a suite of applications. Integration with streaming 
peripherals[18] and a high performance memory controller 
would improve performance. There are additional research 
areas in integrating streaming descriptors within a streaming 
language and compiler infrastructure.  
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Figure 2. Stream unit block diagram 
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[9] S. M. Chai, S. Chiricescu, R. Essick, A. López-Lagunas, B. Lucas, P. 
May, K. Moat, J. Norris, M. Schuette, “Streaming Processors for Next 
Generation Mobile Imaging Applications,” to appear in IEEE 
Communications Magazine, Special Topics in Circuits for 
Communication Series (Mobile Multimedia), Dec 2005 

Table 1. Preliminary implementation results1  
Address queue 
buffer2

Input stream 
buffers3

Input stream  
bit-width4

Output stream  
bit-width5

Input stream 
bandwidth6

Output stream 
bandwidth7

2 1779 8 1862 8 1862 8 1862 1 1862 1 1862 
4 1862 16 2350 16 1744 16 1863 2 1878 2 1869 
8 2050 32 3209 32 1605 32 1863 4 1915 4 1930 
16 2072       8 1956   
1All data given in number of slices in the Xilinx 4vfx140ff1760-11 device 
2 Input/output buffer = 8, input/output bit-width = 8, input/output bandwidth = 1 
3 Address queue buffer = 4, input/output bit-width = 8, input/output bandwidth = 1 
4 Address queue buffer = 4, input/output buffer = 8, input/output bandwidth = 1 
5 Address queue buffer = 4, input/output buffer = 8, input/output bandwidth = 1 
6 Address queue buffer = 4, input/output buffer = 8, input/output bit-width = 8 
7 Address queue buffer = 4, input/output buffer = 8, input/output bit-width = 8 
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