
Distribute, Store and Retrieve Management Policies
in Wireless Ad-Hoc Networks using the Content

Delivery Publish/Subscribe Paradigm
Vasilis Sourlas∗, Paris Flegkas∗, Georgios S. Paschos†, and Leandros Tassiulas∗

∗Department of Computer & Communication Engineering
University of Thessaly, Greece.

†CERTH-ITI, Greece.
Email: vsourlas, pflegkas, gpasxos, leandros @uth.gr

Abstract—Policy management is a management paradigm that
has been extensively studied for the case of fixed networks
but limited work can be found for migrating it to mobile
environments. It enables dynamic adaptation of the network
behavior to current conditions based on high-level business
and operational objectives. Publish/subscribe has become an
important architectural style for designing distributed systems
and especially for mobile environments due to the loose coupling
of the components involved namely the publishers and the
subscribers. In this paper, we present a policy-based management
system for wireless ad-hoc networks using the publish/subscribe
paradigm for distributing policies to the managed nodes ensuring
this way that all nodes will receive the related defined policies,
in an asynchronous and loosely coupled manner, achieving the
desired network-wide behavior. Moreover, we enhance the pub-
lish/subscribe system with a novel request/response mechanism
for tackling the problem of how newly joined nodes will retrieve
previously introduced policies. Finally, we describe our initial
design and implementation of the proposed mechanism, evaluate
it through simulation and testbed experiments and give pointers
to our future work.

I. INTRODUCTION

Management of Wireless ad-hoc networks has recently
attracted a lot of attention due to the proliferation of mo-
bile/pervasive devices and their ability and need to com-
municate. The nature and their inherent characteristics such
as topology changes, mobility of nodes and limited termi-
nal capabilities of such networks pose new challenges and
requirements for their management. Traditional management
approaches in fixed networks based on centralized approaches
(SNMP - Simple Network Management Protocol) cannot be
applied in ad-hoc networks. The highly dynamic environ-
ment of wireless ad-hoc networks can benefit from the self-
management capabilities provided by Policy-based Manage-
ment (PBM). PBM has been applied to fixed networks using
also a centralized architecture where a Policy Decision Point
(PDP) resides in a management server and is responsible
for retrieving policy rules. Policy rules are defined by the
operator in the Policy Management Tool (PMT), stored in the
Policy Repository (PR) and translating them to management
operations on the network elements i.e. Policy Enforcement
Points (PEPs) [1]. In order to apply PBM in ad-hoc networks,

a hierarchically distributed management approach has to be
followed as described by related work [2].

The publish/subscribe paradigm has become an important
architectural style for designing distributed systems. Applica-
tions that exploit a publish/subscribe communication paradigm
are organized as a collection of autonomous components
(clients), which interact by publishing events and by subscrib-
ing to the classes of events they are interested in. The event
dispatcher (broker) is responsible for collecting subscriptions
and forwarding events to subscribers. In publish/subscribe sys-
tems the selection of a message is determined entirely by the
client, which uses expressions (filters) that allow sophisticated
matching on the event content.

Network management has always been one of the most
popular applications using an event-based paradigm where
managers subscribe to events published by the managed el-
ements. In this paper, we present a policy-based management
architecture for mobile ad-hoc networks based on the pub-
lish/subscribe communication paradigm for distributing policy
rules from the points they are introduced to all the respon-
sible components for their enforcement. We show through
simulations and testbed experiments that the dynamic envi-
ronment of wireless ad-hoc networks can benefit from such a
communication paradigm. Policy distribution is a critical task
in managing wireless ad-hoc networks since there is a need
to assure that all nodes comply with policies introduced by
the operator leading the system to stability. Moreover, we en-
hance the publish/subscribe paradigm with a request/response
mechanism so that nodes that join the network can retrieve
previously introduced policies. This is important since nodes
might not have joined the network when the operator defines
a policy and current publish/subscribe systems do not support
retrieval of previous or missing events.

The rest of the paper is organized as followed. Section II
describes related work in the area of management of wireless
ad-hoc networks and publish/subscribe systems. Section III
presents our proposed policy management architecture based
on the publish/subscribe paradigm for distributing policies.
Section IV describes the enhanced request/response mecha-
nism while section V analyzes our systems’ design. Section

VI evaluates our architecture through simulation experiments,
while section VII is devoted to performance evaluation via
testbed experiments. Finally, section VIII concludes the paper
and gives pointers to our future work.

II. RELATED WORK

Limited work has been done in the area of management
of ad-hoc networks where most approaches follow a hi-
erarchical organization model. The first attempt was made
by [3], proposing an Ad-hoc Network Management Protocol
(ANMP) based on hierarchical clustering of nodes in a three
level architecture. The “Guerilla” architecture [4] adopts an
agent-based two-tier distributed approach where at the higher
level “nomadic managers” make decisions and mobile agents
exploit a utility function to decide their migration and probe
deployment to fulfill management objectives. In [5] a PBM
system is proposed where policy agents are deployed and man-
age the network through a two tier hierarchical architecture
with the use of several proprietary protocols (YAP, AMPS,
DRCP/DCDP). Another PBM approach is presented in [6] for
QoS provisioning in Mobile Ad-hoc Networks (MANETs).
They propose a k-hop clustering scheme and extensions to
COPS for policy provisioning (COPS-PR) protocol. Finally in
[2], a hybrid hierarchical and distributed approach is adopted,
presenting a system architecture that uses the policy-based
management paradigm together with context awareness for
managing MANETs. While all the above approaches were
designed for solving relevant problems in the area of ad-
hoc network management, none of them has dealt with the
critical issue of policy distribution in them. The use of
a publish/subscribe architecture for distributing policies in
wireless ad-hoc networks has not been considered in the past
and comprises one of the innovative aspects of our approach,
shortly introduced in [7].

There are several research efforts concerned with the de-
velopment of an event notification service including IBM’s
Gryphon [8], Siena [9], Elvin [10], TIBCO [11] and Jedi [12]
which implement the publish/subscribe architecture. Some of
them are distributed while others are centralized. The majority
of them address scalability and ease of implementation by
realizing the broker tree as an overlay network. The topology
is assumed to be stable, a requirement that clashes with the
reality of dynamic scenarios like wireless ad-hoc networks.
REDS [13] on the other hand defines a protocol to organize
the nodes of a mobile ad-hoc network in a single, self-repairing
tree that efficiently supports content-based routing.

III. SYSTEM ARCHITECTURE

We adopt a 2-tier hierarchical and distributed approach
for our management organization model, where nodes of the
network are categorized based on their management func-
tionality. The simplest nodes are the ones having the PEP
(Policy Enforcement Points) functionality which are usually
the most lightweight nodes in terms of capabilities, such as
sensors, offering only a management interface to nodes with
enhanced management intelligence (PDP - Policy Decision

Point) denoted as cluster managers in [4]. These nodes have
the ability to retrieve and translate policies to management
operations on nodes they are responsible for managing, or
enforce them on the co-located PEP if the node does not
have a cluster manager role. Our architecture does not follow
a strict management hierarchy in the sense that although a
node may not have a cluster manager role, but is capable of
interpreting policies, it retrieves the related policy enforcing
it on the co-located managed objects. The idea is to use a
management by delegation principle reducing this way the
remote operations and the possibility of failing to apply a
policy due to the frequent disconnections that might occur in
a wireless environment. Depending on the derived degree of
distribution policy repositories (PR) can be hosted in several
nodes in the network with varying capabilities and behavior
(e.g. mobility) avoiding this way the retrieval from a single
point in the network. Finally, in the highest level of our
hierarchy are the nodes with the PMT (Policy Management
Tool) functionality, enabling the administrator of the network
to introduce policies that should be stored in the repositories
and enforced by all the nodes with the PDP functionality in the
network. It is possible that a node in the network might have
a policy management functionality that may not be active, for
example a policy repository that is decided not to be used to
store policies due to the node’s behavior and characteristics
such as the mobility pattern, remaining battery etc, while PEP
functionality is present to all nodes that participate in the
network.

In order to incorporate a robust and efficient policy dis-
tribution mechanism in our architecture all the policy man-
agement components described above communicate using a
publish/subscribe paradigm in a loosely-coupled and asyn-
chronous manner. In order to achieve that, several nodes
of the network take the role of the event broker i.e. a
publish/subscribe (pub/sub) router as it is shown in figure
1 forming an overlay publish/subscribe network handling the
distribution of policies from the point they are introduced to
the repositories and the PEPs responsible to enforce them.
All the policy components present in our system are the
clients of our pub/sub network namely the publishers and
the subscribers. Due to the nature of ad-hoc networks clients
and pub/sub routers may be physically co-located in the same
node. Our system architecture is depicted in figure 1 where
all nodes with a PDP functionality subscribe to the pub/sub
router they are connected to, waiting for a relevant policy to
be introduced/published by the administrator (PMT).

In our work we assume the following well adopted repre-
sentation of a policy as defined by IETF [14].

Roles [TimePeriod] if {conditions} then {actions}

The concept of roles is critical in our architecture since
it defines the scope of the policy i.e. to which nodes it
applies and comprises the subscription filter (or part of it) in
the pub/sub network. Nodes with only the PEP functionality
supply their role to their cluster manager node, which in turn
creates an aggregated subscription with all the roles of the

Fig. 1. System Architecture.

managed nodes in order to receive all the relevant policies.
Nodes with the PDP functionality present and not in a cluster
manager role subscribe only to policies related to their own
operation.

The operator of the network defines the policies in a node
with the PMT functionality, which publishes the policy to the
pub/sub router it is attached to. The pub/sub network is respon-
sible for delivering this policy to all the relevant components
based on the Roles attribute and the subscription tables of the
pub/sub routers, that were created by the client subscriptions.
The benefits from using a publish/subscribe system for the
communication of policies are evident since it enables an
asynchronous and loosely coupled communication between
the publishers and subscribers. With the recent advances
in the pub/sub systems and their enhancements for mobile
environments handling both the mobility or disconnections of
clients (i.e. both the manager and nodes with PDP functionality
can move or disconnect) as well as the event brokers (i.e. nodes
with the pub/sub router functionality), the pub/sub overlay
network takes all the reconfigurations actions needed to assure
a minimum amount of lost messages.

Finally, nodes with the Policy Repository component also
subscribe to receive policies and are responsible to store them
for later retrieval by new subscribers or for validation and
conflict detection checking before a new policy is introduced.
Both replication and distribution of the PR component is
supported and is realized by subscribing to roles of policies
that every node hosting a PR desires to store. For example,
if full replication is decided, every PR node subscribes to all
roles of policies supported and when a manager defines and
publishes a policy, this will be received and stored by all PRs
present in the network. In the case of a distributed policy
repository, PR nodes subscribe to different roles, possibly
depending on the PEPs present in its cluster (subtree). Finally,
a combination of replication and distribution can easily be
supported to the power of expressiveness of the subscription
filters provided by publish/subscribe systems.

In order to support this kind of operation, we enhance the
publish/subscribe paradigm with a request/response mecha-
nism so that nodes that have just joined the network to be able
to request all the previously defined policies, relevant to their
role, from the PRs. Moreover manager nodes that do not have a
local repository or view of all the policies present in the system
(e.g. due to the presence of other manager defining policies
from different nodes) are able to check for any conflict with
previously installed policies using the proposed mechanism.

An advertisement mechanism is also proposed (used by the
PR nodes) so that requests for policies coming from clients
are routed to the nodes hosting a PR. When a manager desires
to publish a new policy, a request is first initiated for all the
policies that could lead to a potential conflict and responses
with all the relevant policies already stored in the PRs are sent.
When the PMT receives all the responses with these policies,
its conflict detection mechanism checks if there is any conflict
and if not, the PMT publishes the policy that will be received
by all the relevant nodes (subscribers) in the network.

The proposed mechanisms are crucial for enabling storing
in pub/sub systems and can also be used in the case of
wireless networks, since clients that are disconnected from
the network due to mobility or bad connectivity can request
and retrieve content that has been published the time that were
disconnected. In the section below, we describe in detail the
proposed enhancements to the publish/subscribe framework.

IV. ENHANCING PUBLISH/SUBSCRIBE WITH
REQUEST/RESPONSE

In our pub/sub system we use the subscription forwarding
routing strategy [9] where the routing paths for policies are set
by subscriptions, which are propagated throughout the network
so as to form a tree that connects the subscribers to all the
brokers in the network. This scheme is optimized to avoid
forwarding the same subscriptions in the same direction by
exploiting “coverage” relations among filters. This means that
a subscription is forwarded to a neighboring broker only if it
is not being covered by a subscription already forwarded to
the same neighbor. Particularly we say that a subscription filter
f1 covers another subscription filter f2, denoted by f1 ≥ f2,
iff any event matching f2 also matches f1 [15]. When a client
(PMT) publishes an event (policy) that matches a subscription,
the event is routed towards the subscriber following the reverse
path put in place by the subscription.

The subscription forwarding routing strategy and all its
known implementations ([9] and [13]) does not provide the
capability of retrieving a published event (policy) at a time
later than the time of its publication. In order to achieve this
we enhance the pub/sub system with advertisement messages.
Each broker maintains a set ST “Subscription Table” con-
taining the identifiers of the brokers to which the broker is
connected and the subscriptions that those neighbors had sent
to the broker. Particularly each neighbor ni in ST has an
associated set filters (ni) containing the subscriptions sent by
ni through subscription messages. In our case we add to each
broker another set AT ”Advertisement Table” which contains

the identifiers of the brokers to which the broker is connected
and the advertisements that those neighbors had sent to the
broker. Similarly each neighbor nj in AT has an associated
set advertisements (nj) containing the advertisements sent
by nj through advertisement messages.

Advertisement messages are messages sent by the PR
nodes containing the Roles to which the stored policies are
referred to and are treated similarly to subscription messages
so as to form a tree that connects the PRs to all the brokers
in the network. Coverage also occurs with advertisements
and as in subscriptions is used to avoid forwarding the same
advertisements to the same direction. We also add to the
system two additional types of messages besides Subscribe(),
Publish() and Advertise(). We call those two new messages
Request() and Response(). As shown in figure 2, when a client
node S2 (PDP) subscribes to a broker node na (step 3), send-
ing a Subscribe (fa) message also sends a Request (fa, S2)
message(if she/he wants to retrieve previously introduced
messages). The Request() message is similar to the Subscribe()
message but apart from the filter it also carries the sequence
of the nodes that passes from. Node na upon receiving the
Request() message checks in ATa for advertisements matching
filter fa. In other words checks if the role of events published
in the past match the role of the new subscriber. If such an
advertisement occurs (adva) the broker forwards the Request()
message to the identifier for which the adva was in the table
otherwise the Request() message is dropped. Particularly the
syntax of the message looks like Request (fa, na → S2) and
is sent to broker nb (nb the identifier for which the adva was
in ATa or in other words the broker from which a matching
advertisement was sent in the past).

When a broker nb receives a Request() checks in
ATb for matching advertisements and according to the
findings it forward the Request() appending its identifier
(Request (fa, nb → na → S2)). In this case there will be an
entrance in a brokers’ AT (ATc) which points in a PR node.
Upon receiving the Request() the PR node checks for the
matching event and sends back a Response() message (step
4) for each matching event/policy. The Response() message is
similar to the Publish() one but apart from the event it also
carries the sequence of nodes carried by the Request(). For
instance the syntax in our example for the Request() sent by
broker nc would be Response (msg, nb → na → S2) where
msg the matching event found in the client PR1. When a
broker receives a Response() message pops off its identifier
from the sequence and forwards it to the first broker of the
remaining sequence. In the end client S2 will receive the event.
With the above procedure every new subscriber and only that
one will receive every old event (policy) matching its role.

If the network has more than one replica repositories, there
will be cases where a request message will meet more than one
entries in a brokers’ AT . In all those cases the corresponding
broker forwards the request to only one of them. The selection
of the broker to whom the request is to be forwarded is random
in this paper but we can supply the brokers with more sufficient
selection mechanisms (based on traffic statistics or topological

Fig. 2. Enhanced publish/subscribe paradigm. Step 3 and step 4 illustrates
the novel introduced Request() and Response() messages.

knowledge).

V. SYSTEM DESIGN

For our system we use REDS [13] since it was designed
to tolerate dynamic reconfigurations of the dispatching infras-
tructure.

The reconfiguration problem can be broken down into the
problem of repairing the overlay dispatching network, to retain
connectivity among brokers, and the problem of reconciling
the subscription and advertisement information held by each
broker and used for routing messages, to keep it consistent
with the topological changes, without interfering with the
normal processing of subscriptions, and advertisements.

There are two types of overlay network failures: link and
broker. Link failure creates two trees with exactly the same
nodes as before the link break. Repair, therefore, involves
adding a link with endpoints in each of the two trees. Failure
of a node with n neighbors results in n partitions, which
require the addition of n − 1 new links, so a broker loss
can be addressed as a combination of several link losses. The
main challenge to address in repair of the overlay network is
the selection of these links to repair the tree. REDS inspired

by MAODV (Multicast Ad-hoc On-Demand Distance Vector)
to create COMAN [16] (COntent based routing for Mobile
Ad-hoc Networks), a protocol to organize the nodes of a
wireless ad-hoc network in a tree-shaped network able to a)
self repair to tolerate the frequent topological reconfigurations
typical of ad-hoc networks and b) achieve this goal through
repair strategies that minimize the changes that may impact
the content based routing layer exploiting the tree.

After ensuring the maintenance of the overlay tree, the next
step is maintaining the subscription and advertisement tables
to allow messages to continue to reach the subscribers. The
very first solution (Strawman) is that when a link disappears,
a broker behaves as if it received unsubscription and unad-
vertisement messages from the former neighbor, updating its
subscription and advertisement table and propagating the un-
subscription and unadvertisement message if necessary. When
the new link is added, its endpoints send subscriptions and
advertisements to one another for all entries in their subscrip-
tion and advertisement table, allowing events to flow across
the new link. This approach successfully reconfigures the
subscription and advertisement tables but cause unnecessary
overhead. REDS uses a reversal technique called Deferred Un-
subscription to delay the unsubscription and unadvertisement
process until the subscription and advertisement process is
complete, reducing in this way the overhead of reconfiguration.

VI. PERFORMANCE EVALUATION

In this section we evaluate the proposed mechanism using
a discrete event simulator. N = 15 brokers are organized in
a balanced binary tree and clients are dynamically generated
on each broker according to a birth process with birth rate λ.
We are looking at the following interesting metrics.

• The Publish delivery ratio, the ratio of the published
messages actually delivered to a client to the overall
number of published messages (policies) matching at
least one subscription at that client.

• The Request delivery ratio, the ratio of the request
messages actually delivered to a repository to the overall
number of request messages sent to the network by the
clients.

• The Response delivery ratio, the ratio of the response
messages actually delivered to a client to the overall
number of response messages sent by the repository to
that client.

• The Responded requests delivery ratio, the ratio of the
successful request-response transactions made in the net-
work to the overall request messages sent to the network.

• The Minimum hop distance, is measured for each success-
ful response and corresponds to the minimum number of
hops between the responding repository and the broker
where the client making the request is attached to. This
metric is indicative of the delay of responses as a function
of hops in the network.

The above metrics are random variables and we estimate
their mean by simulating thousands of observations. We set
four experiments, one varying the dynamics of the clients

0 , 1 0 , 2 0 , 3 0 , 4 0 , 50 , 8 0

0 , 8 5

0 , 9 0

0 , 9 5

1 , 0 0

del
ive

ry
rat

io

s u b s c r i p t i o n r a t e (s u b s / s e c)

 p u b l i s h
 r e q u e s t
 r e s p o n s e
 r e s p o n d e d r e q s

0 , 1 0 , 2 0 , 3 0 , 4 0 , 50 , 9 0

0 , 9 5

1 , 0 0

del
ive

ry
rat

io
s u b s c r i p t i o n r a t e (s u b s / s e c)

 p u b l i s h
 r e q u e s t
 r e s p o n s e
 r e s p o n d e d r e q s

Fig. 3. Delivery ratio (publish, request, response, responded requests) vs
subscription rate when the system has 1 (upper graph) and 2 (lower graph)
(replicas) repositories respectively.

(λ), one varying the interval time between link failures, one
varying the recovery time from a link failure and one varying
the number of brokers in the network. We execute those
experiments twice, once with one repository in the network
and once with two replica repositories. For this first approach
we supposed that each time only one link is broken, leaving
for our future work the cases where more than one links are
“down” each time.

Figures 3, 4, 5 and 6 depict the delivery ratios for each
one of the four experiments when the system is equipped
with one and two PRs (policy repositories) respectively. The
charts show that our system is only marginally influenced by
the traffic; an increase in the subscription rate brings less
than 5% − 10% reduction in every delivery metric for both
scenarios. We can also identify the exponential impact to the
delivery ratio of the link break interval time (in other words
the link failure rate) and also verify that the system which
is equipped with two repositories offers at least 10% better
delivery ratio than the system with the one repository.

Figure 5 also shows that delivery ratios are linear to the time
that the overlay tree is broken in two pieces, while figure 6
shows that with only one link failure at a time the delivery ratio
increases with respect to the number of brokers in the network.
This occurs because the ratio of the brokers, (consequently the
clients) that are connected to the part of the tree which includes

0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 00 , 7 5

0 , 8 0

0 , 8 5

0 , 9 0

0 , 9 5
del

ive
ry

rat
io

l i n k b r e a k i n t e r v a l (s e c)

 p u b l i s h
 r e q u e s t
 r e s p o n s e
 r e s p o n d e d r e q s

0 , 5 1 , 0 1 , 5 2 , 0 2 , 5 3 , 00 , 8 5

0 , 9 0

0 , 9 5

1 , 0 0

del
ive

ry
rat

io

l i n k b r e a k i n t e r v a l (s e c)

 p u b l i s h
 r e q u e s t
 r e s p o n s e
 r e s p o n d e d r e q s

Fig. 4. Delivery ratio (publish, request, response, responded requests) vs
link failure interval time when the system has 1 (upper graph) and 2 (lower
graph) (replicas) repositories respectively.

the repository(ies), to the brokers that are not connected to that
part increases.

Finally figure 7 shows the average minimum hop distance
between the responding repository and the broker where
the client making the request is attached to. This metric is
indicative of the delay of responses as a function of hops in the
network and is obvious that the system with two repositories
outperforms the system with only one repository since now
messages (policies) can be retrieved from two different points
in the network which implies that a clients’ request could find
a closer repository.

VII. TESTBED EXPERIMENTATION

We modified the REDS system in order to implement the
newly introduced messages and support the storage of the
advertisements (Advertisement table). Particularly we added
as functions in the Routing Strategy interface and its Sub-
scriptionForwardingRoutingStrategy implementation the new
messages Advertise(), Request() and Response() and we also
added a new interface called AdvertisementTable and imple-
mented it in GenericAdvTable so that it can store the advertise-
ments. The GenericAdvTable and the AdvertisementTable is
similar to the GenericTable and the SubscriptionTable already
implemented in REDS. Apart from those fundamental changes
we also modified from the Overlay layer the Transport inter-
face and its implementations TCPTransport and UDPTransport

0 , 5 1 , 0 1 , 5 2 , 0 2 , 50 , 8 0

0 , 8 5

0 , 9 0

del
ive

ry
rat

io

l i n k r e c o v e r y t i m e (s e c)

 p u b l i s h
 r e q u e s t
 r e s p o n s e
 r e s p o n d e d r e q s

0 , 5 1 , 0 1 , 5 2 , 0 2 , 50 , 9 0

0 , 9 5

1 , 0 0

del
ive

ry
rat

io
l i n k r e c o v e r y t i m e (s e c)

 p u b l i s h
 r e q u e s t
 r e s p o n s e
 r e s p o n d e d r e q s

Fig. 5. Delivery ratio (publish, request, response, responded requests) vs
recovery time from a link failure when the system has 1 (upper graph) and 2
(lower graph) (replicas) repositories respectively.

in such a way that can transfer the new type of messages. Of
course minor changes had been made to other modules in order
to make the system compatible. Changes has also been done
to the client API and particular in functions that generate the
Advertise, the Request and the Response message. The main
changes were done in the DispatchingService interface and its
implementations (TCPDispatchingService and UDPDispatch-
ingService).

For our evaluation we used 6 laptops equipped with a 1,6
GHz Intel Celeron M CPU, 512 MB of RAM and a wireless
card configured in ad-hoc mode. In each laptop we installed
a broker.

Set 1: In the first set of our evaluation at each laptop
clients were subscribing with a rate ranging from 5 - 20
subscriptions per minute (0,09 - 0,33 subs/sec) while the
system was equipped firstly with one repository and then with
two replica repositories. PMT was introducing new policies
with a rate of 6 policies per minute (0,1 policies/sec) in the
first scenario and 12 policies per minute in the second, while in
every scenario the repository initially has ten stored policies
(one for each role) so that every subscriber can retrieve at
least one policy from the network. We also assumed no link
disconnections. We measure the average time that takes a client
to retrieve all the previously introduced policies that matches
his/her subscription, we call this time as “stability time”.

8 1 6 2 4 3 2 4 0 4 8 5 6 6 40 , 8 0

0 , 8 5

0 , 9 0
del

ive
ry

rat
io

n u m b e r o f b r o k e r s

 p u b l i s h
 r e q u e s t
 r e s p o n s e
 r e s p o n d e d r e q s

8 1 6 2 4 3 2 4 0 4 8 5 6 6 40 , 9 0

0 , 9 5

1 , 0 0

del
ive

ry
rat

io

n u m b e r o f b r o k e r s

 p u b l i s h
 r e q u e s t
 r e s p o n s e
 r e s p o n d e d r e q s

Fig. 6. Delivery ratio (publish, request, response, responded requests) vs
number of brokers when the system has 1 (upper graph) and 2 (lower graph)
(replicas) repositories respectively.

8 1 6 2 4 3 2 4 0 4 8 5 6 6 42 , 0
2 , 5
3 , 0
3 , 5
4 , 0
4 , 5
5 , 0
5 , 5
6 , 0

mi
nh

op
 di

sta
nce

n u m b e r o f b r o k e r s

 1 r e p o s i t o r y
 2 r e p o s i t o r i e s

Fig. 7. Minimum hop distance vs number of brokers when the system has
1 and 2 (replicas) repositories respectively.

Figure 8 depicts the stability time. It is obvious that the
stability time increases when the publication rate increases
since for each request there are more matching messages that
have to be delivered. Moreover when we use two repositories
requests and responses travel through shorter paths leading to
a significant improvement in the stability time. Finally, the
increase in subscription rate has a marginal effect on stability
time since this metric depends only on the number of stored
policies and the distance from the repository(ies).

0 , 1 0 0 , 1 5 0 , 2 0 0 , 2 5 0 , 3 0 0 , 3 50

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

sta
bil

ity
 tim

e (
ms

)

s u b s c r i p t i o n r a t e (s u b s / s e c)

 1 r e p - 0 , 1 p u b s / s e c
 2 r e p - 0 , 1 p u b s / s e c
 1 r e p - 0 , 2 p u b s / s e c
 2 r e p - 0 , 2 p u b s / s e c

Fig. 8. Stability time vs subscription rate when the system has 1 and 2
(replicas) repositories respectively for 2 different publication rates (0,1 and
0,2 policies/sec).

0 , 1 0 0 , 1 5 0 , 2 0 0 , 2 5 0 , 3 0 0 , 3 50 , 6 0
0 , 6 5
0 , 7 0
0 , 7 5
0 , 8 0
0 , 8 5
0 , 9 0
0 , 9 5
1 , 0 0

del
ive

ry
rat

io

s u b s c r i p t i o n r a t e (s u b s / s e c)

 p u b l i s h
 r e q u e s t
 r e s p o n s e

0 , 1 0 0 , 1 5 0 , 2 0 0 , 2 5 0 , 3 0 0 , 3 50 , 8 0

0 , 8 5

0 , 9 0

0 , 9 5

1 , 0 0

del
ive

ry
rat

io

s u b s c r i p t i o n r a t e (s u b s / s e c)

 p u b l i s h
 r e q u e s t
 r e s p o n s e

Fig. 9. Delivery ratio (publish, request, response, responded requests) vs
subscription rate when the system has 1 (upper graph) and 2 (lower graph)
(replicas) repositories respectively.

Set 2: In the second set of the evaluation, we assumed that
brokers and clients can move in space, changing position in the
network or even disconnect from it. Since our intention is not
to examine the efficiency of COMAN but to check the delivery
ratio of the newly introduced messages (request, response)
when the system has one or two repositories we assumed a low
disconnection frequency of four nodes (as node we refer to the
laptops) failures-disconnections per minute (here we suppose

node failures while in the simulation part we supposed link
failures). In order to examine the dynamicity of the system
we assumed a subscription rate per broker ranging from 5
to 20 subscriptions per minute (0,09 - 0,33 subs/sec) and a
stable publication rate at PMT of 6 policies per minute (0,1
policies/sec).

Figure 9 shows the delivery ratio when the system is
equipped with one and two PRs (policy repositories) respec-
tively. Given the fact that no additional measure is taken
to recover any lost message the charts are good, and by
complementing our system with a protocol which provides
such message recovery (epidemic algorithms) we expect to
easily obtain a full delivery of 100%. The charts show that our
system is only marginally influenced, as in simulations, by the
traffic: an increase from 0,09 to 0,33 subs/sec brings less than
10% reduction in every delivery metric for both scenarios, a
measure of good scalability retained from COMAN [16]. The
differences in the delivery ratio of each type of message is
due to the different amount of messages being sent in the
network. In every case the system with the two repositories
has at least 10% better delivery ratio than the system with the
one repository since now policies can be retrieved from two
different points in the network making the system more stable
in disconnections.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we described an architecture for policy based
management of wireless ad-hoc networks focusing on the
critical problem of policy distribution. We showed how we
can incorporate a publish/subscribe communication paradigm,
providing a robust and efficient policy distribution mechanism
in such a volatile network environment.

Simulations and testbed experiments showed very promising
results and our future work focuses on performing experiments
in different mobility scenarios. Of course we intend to provide
our system with a message recovery mechanism and incorpo-
rate opportunistic caching techniques to reduce the volume of
the messages in the system and their delivery time.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments which helped us to improve the
technical quality of this paper. This work has been supported
by the European Commission through the OneLab2 program.

REFERENCES

[1] Strassner J., “Policy-Based Network Management, Solutions for the next
generation,” Morgan Kaufmann, 2003.

[2] Hadjiantonis M., Malatras A., Pavlou G., “A Context-aware Policy-based
Framework for the Management of MANETs,” 7th IEEE International
Workshop on Policies for Distributed Systems and Networks, pp. 23–32,
Canada, 2006.

[3] Chen W., Jain N., Singh, S., “ANMP Ad hoc network management
protocol,” IEEE Journal on Selected Areas in Communications, vol. 17,
1999.

[4] Shen C., Srisathapornphat C., Jaikaeo C., “An adaptive management
architecture for ad hoc networks,” IEEE Communication Magazine, vol.
41, 2003.

[5] Chadha R., Cheng H., Cheng Y.H., Chiang J., Ghetie A., Levin G.,
Tanna H., “Policy Based Mobile Ad hoc Network Management,” 5th
IEEE International Workshop on Policies for Distributed Systems and
Networks, 2004.

[6] Phanse K.S., DaSilva L.A., “Protocol support for policy-based manage-
ment of mobile ad hoc networks,” IEEE/IFIP Network Operations and
Management Symposium (NOMS), 2004.

[7] Sourlas V., Flegkas P., Tassiulas L., “Policy Distribution using the Publish-
Subscribe Paradigm for Managing MANETs,” in proc. of 11th IFIP/IEEE
International Conference on Management of Multimedia and Mobile
Networks and Services (MMNS 2008) held as part of Manweek 2008,
Samos, Greece, Volume 5274/2008, pp 14-19, 2008.

[8] Aguilera M. K., Strom R. E., Sturman D. C., Astley M., Chandra T.
D., “Matching events in a content-based subscription system,” 18th ACM
Symposium on Principles of Distributed Computing (PODC ’99) Atlanta,
GA, May 4-6, pp. 53–61, 1999.

[9] Carzaniga A., Rosenblum D., Wolf A., “Design and evaluation of a wide-
area event notification service,” ACM Transaction On Computer Systems,
vol. 19, pp. 332–383, 2001.

[10] Segall B., Arnold D., “Elvin has left the building: A publish/subscribe
notification service with quenching,” Proceedings of AUUG97, Brisbane,
Australia, Sept. 3-5, pp. 243–255, 1997.

[11] “TIB/Rendezvous,” White paper, TIBCO, Palo Alto, CA, 1999.
[12] Cugola G., Nitto E.D., Fugetta A., “The Jedi event-based infrastructure

and its application to the development of the opss wfms,” IEEE Trans.
Softw. Eng. 27, 9 (Sept.), pp. 827–850, 2001.

[13] Cugola G., Picco G., “REDS, A Reconfigurable Dispatching System,”
6th International workshop on Software Engineering and Middleware, pp.
9–16, Oregon, 2006.

[14] Moore B., Ellesson E., Strassner J., Westerinen A., “Policy Core
Information Model,” RFC 3060, IETF 2001.

[15] Chand R., Felber A., “A scalable protocol for content-based routing
in overlay networks,” 2nd IEEE International Symposium on Network
Computing and Applications, pp. 123–130, 2003.

[16] Mottola L., Cugola G., Picco G. “A Self-repairing Tree Topology
Enabling Content-Based Routing in Mobile Ad Hoc Networks,” IEEE
Transaction on Mobile Computing, vol 7, pp. 946–960, 2008.

