
Policy Refinement for DiffServ Quality Of Service
Management

A. Bandara, E. Lupu, A. Russo,
N. Dulay, M. Sloman
Imperial College London,
180 Queensgate, London SW7 2AZ, UK
{a.k.bandara, e.c.lupu, a.russo, n.dulay,
m.sloman}@imperial.ac.uk

P. Flegkas, M. Charalambides,
 G. Pavlou
CCSR, University of Surrey,
Guildford, GU2 7XH, UK
{p.flegkas, m.charalambides,
g.pavlou}@eim.surrey.ac.uk

Abstract:

Policy-based management provides the ability to dynamically re-configure DiffServ networks
such that desired Quality of Service (QoS) goals are achieved. This includes network
provisioning decisions, performing admission control, and adapting bandwidth allocation
dynamically. QoS management aims to satisfy the Service Level Agreements (SLAs)
contracted by the provider and therefore QoS policies are derived from SLA specifications and
the provider’s business goals. This policy refinement is usually performed manually with no
means of verifying that the policies written are supported by the network devices and actually
achieve the desired QoS goals. Tool support is lacking and policy refinement has rarely been
addressed in the literature. This paper extends our previous approach to policy refinement and
shows how to apply it to the domain of DiffServ QoS management. We make use of goal
elaboration and abductive reasoning to derive strategies that will achieve a given high-level
goal. By combining these strategies with events and constraints, we show how policies can be
refined, and what tool support can be provided for the refinement process using examples from
the QoS management domain. However, the approach presented here can be used in other
application domains such as storage area networks or security management.

Keywords
Policy derivation, Goal elaboration, Refinement patterns

1. Introduction
Network Quality of Service (QoS) management requires administrators to

manage the network devices and infrastructure to achieve predictable performance.
The Differentiated Services (DiffServ) architecture [1] can achieve this by
aggregating network traffic into defined classes of service, and configuring routers to
treat each of these classes appropriately. This results in a network where, at each hop,
a packet might be handled differently based on the DiffServ class it belongs to.
Policy-based management provides the ability to dynamically configure a system, by
separating the rules that govern a system’s behaviour from the functionality
supported by it. Policies can be specified, and applied to large numbers of devices
uniformly. In DiffServ, policies can be used to dynamically reconfigure routers such
that the desired QoS goals are achieved as well as to perform admission control. It is
important to be able to analyse policies to ensure consistency and to ensure that key

properties are preserved in the network configuration, e.g. traffic marked in the same
way is not allocated to different queues. Although adaptation can be realised through
general scripting languages, policy languages adopt a more succinct, declarative,
form in order to facilitate analysis. Although many policy languages have been
proposed, policy analysis techniques remain poorly explored. Unless such techniques
are developed and used in network management and provisioning tools, the
additional expense required to deploy policy-based management will remain difficult
to justify.

The SLAs which have to be satisfied by the network, as well as the derived
QoS policies required to satisfy the SLAs, will change frequently. This process of
deriving policies from the SLA specifications is recognized as one of the most
difficult research challenges and is not fully automatable. However, tool support to
assist administrators in the refinement of policies would significantly reduce and
improve network administration tasks especially when combined with analysis tools
to ensure that only consistent specifications are derived. Although we contend that
policy refinement cannot be automated in general, techniques and tool support for
refinement can be developed. Moreover, increasing support can be achieved when
constraining the problem to a well defined functional area, such as QoS management,
where application specific knowledge can be encoded and used.

Policy refinement is the process of transforming a high-level, abstract policy
specification into a low-level, concrete one. Moffett and Sloman [2], identify the
main objectives of a policy refinement process as:
i) Determine the resources that are needed to satisfy the requirements of the policy.
ii) Translate high-level policies into enforceable, operational policies.
iii) Verify that lower level policies actually meet the high-level policy requirements.

 (i) involves mapping abstract entities defined as part of a high-level policy to
concrete objects/devices that make up the underlying system. (ii) specifies the need
to ensure that derived operational policies are in terms of operations supported by the
underlying system. (iii) requires a process for incrementally decomposing abstract
requirements into more concrete ones, ensuring that at each stage the decomposition
is correct and consistent. In previous work [3], we have proposed an approach that
meets these objectives by elaborating high-level, abstract goals into more concrete
ones and using abductive reasoning to derive the actions (strategies) that are
supported by the system for achieving these concrete goals. We show how these
strategies can then be used in specifying policies that can be enforced by the system
to achieve the original goal. The goal elaboration technique makes use of the KAOS
[4] requirements engineering approach, which is based on the use of formal
specifications in conjunction with policy refinement patterns that are proved to be
correct. The most useful patterns are likely to be application-specific, e.g. for QoS
management, storage or security, although KAOS also defines a set of application-
independent patterns together with proofs of their correctness.

This paper focuses on the application of our refinement technique to DiffServ
QoS management. By limiting the scope to this application domain, we are able to
specify application specific refinement patterns and maximise the level of automation
in the refinement process. In order to identify the goals, strategies and policies

involved in DiffServ QoS management we use the framework developed in the
context of the EU IST TEQUILA project [5]. TEQUILA uses DiffServ, with Multi-
Protocol Labelled Switching (MPLS) [6] to provide dynamic adaptation to varying
traffic requirements. This adaptation is performed using a combination of online and
offline techniques – from network dimensioning calculations that determine the
upper/lower bounds of network parameters based on the Service Level Agreements
(SLAs) and traffic forecasts; to dynamic resource and route management modules
that make real-time changes to the router configuration to handle variations in traffic.

In the next section we present background information about the TEQUILA
framework and our policy refinement approach. Section 3 presents example scenarios
from the QoS management domain, and identifies the goals, strategies and policies
involved. In section 4 we show how the examples can be generalised into
application-specific refinement patterns and later reused in new situations. Section 5
presents related work; and section 6 discusses our conclusions and future work.

2. Background
2.1 Approach to Policy Refinement

The first phase of the policy refinement process is a technique for refining high-
level goals into concrete achievable goals, often referred to as System Requirements.
The next phase of the refinement process maps these system requirements to specific
modules/operations that are available within the system. In this process, each high-
level goal is refined into sub-goals, forming a refinement hierarchy where the
dependencies between goals at different levels of refinement are based on the type of
goal decomposition used (AND/OR). Additionally there can be dependencies
between goals in different hierarchies. The refinement process involves following a
particular path down the hierarchy, at each stage verifying the feasibility of achieving
the higher-level goal in terms of the lower-level ones. If it is discovered that a high-
level goal cannot be achieved, then we have to either manually decompose the goal,
such that suitable lower-level goals can be derived, or increase the system’s
functionality by adding additional management procedures and services.

KAOS [4] is a formal technique for goal elaboration, where each goal is
represented as a Temporal Logic rule and refinement patterns are used to decompose
the original goal into a logically entailed set of sub-goals. This process results in a
set of refined goals, and the identification of objects and operations that might
operationalise those goals. Whilst KAOS does not provide automated support for
goal refinement, it does define a library of domain-independent refinement patterns
that have been logically proved correct. The following table shows some patterns of
AND-decomposition for goals of the form P u ¡ Q (if P holds, then Q will
eventually hold in the future):

Table 1: Selection of Domain-independent goal elaboration patterns
Ref Goal Subgoals
GP1 P u ¡ Q (P u ¡R) . (R u ¡Q)
GP2 P u ¡ Q (P1 u ¡Q) . (P2 u ¡Q) . (P u P1 - P2)
GP2’ P u ¡ Q (P u P1 . P1 u ¡Q) - (P u P2 . P2 u ¡Q) - (P u P2 . P2 u ¡Q)

Having refined the abstract goals into lower-level ones, the next phase of the
process is to assign each refined goal to a specific object/operation such that the final
system will meet the original requirements. Since KAOS does not provide support
for automating this, we propose the following method for inferring the mechanism by
which the system can achieve a given goal.

At a given level of abstraction there will be some description of the system
(SD) and the goals (G) to be achieved by the system. The relationship between the
system description and the goals is the Strategy (S), i.e. the Strategy describes the
mechanism by which the system represented by SD achieves the goals denoted by G.
Formally this would be stated as:

 (1) - SD, S d G

This requires a representation of the system description, in terms of the
properties and behaviour of the components, together with a definition of the goals
that the system must satisfy. We use Statecharts to describe system behaviour, where
each transition indicates the invocation of an operation and/or the occurrence of a
system event that can trigger the transition. Guards are specified for transitions where
there are some pre-conditions for invoking the operation. We have chosen Statecharts
for two reasons: first, because it is unrealistic to consider that users will provide
system descriptions in the underlying formal specification language whereas
Statecharts are a well-known design level behavioural specification notation and
second, because it is possible to translate from the Statechart specification to the
underlying formalism. We use Event Calculus (EC) [7] as the underlying formalism
for analysis and refinement. The mapping between the system descriptions and policy
language to their EC representation is detailed in [3]. Using the EC representation of
the system, and given the relationship between the system description, strategy and
goal defined in (1) above, we then use abduction to programmatically infer the
strategies that will achieve a particular goal. Given the rules describing a system (SD)
and the definition of some desired system state (i.e., the goal - G), abduction allows
us to derive the facts that must be true for the desired system state to be achieved. As
the goal is represented by a desired system state abduction is essentially deriving a
path in the statechart from some initial state to the desired one. This path is the
derived strategy and can be represented using the following syntax:

 Strategy AchievedGoal
 OnEvent Events derived from transitions with system events.
 DerivedActions Actions derived from transitions with operations.
 Constraints Constraints derived from guards.

Whether a strategy should be encoded as policy, or as system functionality, will
depend on the particular application domain. Although there is no obvious way to
automate this decision, we propose the following guidelines to identify the situations
where a policy-based implementation would be appropriate:

1. If the goal refinement results in a disjunction of sub-goals (i.e. the high-level
goal can be achieved by one of an OR-decomposed set of sub-goals), the
strategies derived for each of the sub-goals could be encoded as policies.

2. If the system supports multiple strategies for achieving a given goal, each of
these strategies could be encoded in a separate policy. This situation might arise
when the abductive process yields multiple solutions.

3. If a strategy has parameter values that may need to change in the future,
implementing the strategy in a policy will provide the flexibility to do this.

In addition to elaborating goals and deriving strategies, it is necessary to map
abstract entities to concrete objects/devices in the system. For example, there might
be an abstract “Network” entity that logically consists of “Routers”, “Links” etc.,
each consisting of the relevant managed objects. A domain hierarchy is used to
represent the relationships between the various abstract entities and the low-level
concrete objects [8]. Domains provide a means of grouping objects to which policies
apply and can be used to partition the objects in large systems according to
geographical boundaries, object type, responsibility and authority. Membership in a
domain is explicit and not defined in terms of a predicate on object attributes. An
advantage of specifying policies in terms of domains is that objects can be added and
removed from the domains to which policies apply without having to change the

policies.

Figure 1: Policy Refinement Process

Combining this dom ng abstract entities
with

ain hierarchy based approach for refini
the goal elaboration and strategy derivation techniques, the overall policy

refinement process can be summarized as follows. The user provides information
about the system behaviour, in the form of statecharts, together with the domain
hierarchy for the managed objects and the high-level policy they are interested in
refining. This policy would be of the form “On event, if condition holds then achieve
goal”. The KAOS approach is applied to elaborate the high level policy, making use
of both domain-independent and domain-specific refinement patterns provided by the
system. At each stage of elaboration, the system description and the goals are used to
attempt to abduce a strategy for achieving the goal. If no strategy can be derived,
then either the goals are elaborated further, or the system description is augmented
with more detail. Once a strategy is identified, it is used in the action clause of the
final policy. The domain hierarchy is used to identify the exact objects in the system
that correspond to those entities mentioned in the high-level policy which are used in
the subject and target clauses of the final policy. Finally the event and constraints of
the high-level policy are mapped, by the user, into the final policy (Figure 1). This

Elaborate

Abduce

High-Level
Policy

AB C

D

E

On admission of tfcG5 packet, (Event)

if during peak times (Condition)

ensure it receives gold QoS (Goal)

P ⇒ Q

P ⇒ R R ⇒ Q

PatternsObjects

StrategyStrategyStrategyM
ap

Se
le

ct

Se
le

ct

On admitPkt(tfcG5)

when time.between(“9:00”, “17:00”)

subject s = /DiffServManager/;

target t = /routers/;

do t.setDSCP(dscp) t.setMeter(meter) ...

ElaborateElaborate

AbduceAbduce

High-Level
Policy

AB C

D

E
AB C

D

E

On admission of tfcG5 packet, (Event)

if during peak times (Condition)

ensure it receives gold QoS (Goal)

P ⇒ Q

P ⇒ R R ⇒ Q

P ⇒ Q

P ⇒ R R ⇒ Q

P ⇒ Q

P ⇒ R R ⇒ Q

P ⇒ Q

P ⇒ R R ⇒ Q

PatternsObjects

StrategyStrategyStrategyStrategyStrategyStrategyM
ap

Se
le

ct

Se
le

ct
Se

le
ct

On admitPkt(tfcG5)

when time.between(“9:00”, “17:00”)

subject s = /DiffServManager/;

target t = /routers/;

do t.setDSCP(dscp) t.setMeter(meter) ...

final step is a manual one since there is no easy way to capture the domain
information necessary for translating high-level events and constraints into lower-
level ones. This is not a major disadvantage, as, these mappings can be done once
and encoded into application specific refinement patterns that are reusable.

Automating this technique requires tools that allow users to specify the system
behaviour and goal information in a high-level notation, such as UML, and then
trans

n two modes – an offline mode that
 meet long-term traffic demands; and a run-

time

late this representation into Event Calculus for analysis. Also, the results of the
analysis should be presented in an easy to understand form. To achieve this, we are
developing a tool that integrates a UML editor (ArgoUML), with an abductive
reasoning engine (A-System with SICStus Prolog [9]). The same abductive reasoning
framework has also been used to develop the policy analysis approach presented in
[10]. Finally, this refinement and analysis tool is being integrated with the Ponder
policy system [8]. The translation between Ponder policies and their Event Calculus
representation has been presented in [10].

2.2 TEQUILA DiffServ Framework
The TEQUILA framework operates i

determines the configuration required to
mode that adapts the configuration to meet short-term traffic variations. It can

be decomposed into three sub-systems: SLS management, Traffic Engineering and
Monitoring. SLS management is responsible for agreeing the customers’ QoS
requirements in terms of SLSs, while Traffic Engineering is responsible for fulfilling
the contracted SLSs by deriving the network configuration. The Monitoring
subsystem provides the above systems with the appropriate network measurements
and assures that the contracted SLSs are indeed delivered at their specified QoS.
Figure 2 shows a logical representation of this architecture. The TEQUILA
framework has been previously presented [11, 12], so we describe here only the
behaviour of the SLS-S and DRsM components which are used in the scenarios
presented in the next section.

SLS
Subscription

Traffic
Forecasting

Network
Dimensioning

SLS
Invocation

CUSTOMER

SLS-Matrix
T-Matrix

RA-Matrix

NETWORK MONITORING

NDND
Dynamic

Route Mgmt NDND
Dynamic

Resource Mgmt

SLS

Invocation

OFFLINE

ONLINE

idle slsRegistered

slsReq
Accepted

slsReq
Rejected

Event(slsReqReceived(SLS)),
Action(slsm.registerSLS(SLS))

Action(slsm.accept(SLS)) Action(slsm.reject(SLS))

slsCounter
OfferMade

Action(slsm.makeCounteroffer(SLS))

Figure 2: TEQUILA DiffServ Architecture Figure 3: SLS Subscription Module
Behaviour

s -
offers and updates of traffic forecasts. Admission control is controlled by policies
and s

The SLS-S module (Figure 3) perform admission control, calculates counter

o is the most relevant component for policy refinement. The SLS-S module uses
the parameters of each requested SLS to calculate the expected traffic load based on

traffic demand forecasts. This traffic is then aggregated with the expected traffic
accumulated from the SLSs established during this Resource Provisioning Cycle
(RPC). The resulting aggregated traffic defines the maximum potential demand and
is mapped against the corresponding entries of the resource availability matrix (RA-
Matrix). The result of this mapping is used by the admission control algorithm, when
deciding whether requests should be accepted or rejected. Requests are rejected if the
risk is too high of overwhelming the network with traffic that cannot be served with
the guaranteed QoS. This is shown in Figure 3. A more detailed description of the
subscription admission control algorithm can also be found in [12].

Traffic Engineering comprises 3 functional blocks. Network Dimensioning
(ND) performs the long-to-medium term network configuration and is responsible for
mapp

sing alarms when the bandwidth consumed
by a

ing the traffic onto the physical network resources to accommodate forecasted
traffic demands. The output of ND is fed to Dynamic Route Management (DRtM),
Dynamic Resource Management (DRsM), and to SLS-S in order to provide the
traffic limits on which admission control decisions for future SLS subscriptions are
based. The DRtM is distributed, operates at each edge router and manages the routing
processes according to the guidelines produced by ND. The DRsM is also distributed,
with an instance present at each router interface and ensures that link capacity is
appropriately distributed between the PHBs sharing the link. This is achieved by
configuring buffer and scheduling parameters according to ND directives, and taking
into account the actual experienced load.

The DRsM can be further decomposed into two components. The first monitors
PHB utilization and raises threshold-cros

 PHB exceeds an upper threshold or drops below a lower threshold. In fact, two
values could be used for each threshold (trigger and clear values) to avoid repeated
alarms when small oscillations occur. Once an alarm is raised, the DRsM calculates a
new bandwidth allocation and configuring the link appropriately; or triggers a new
resource provisioning cycle if sufficient bandwidth cannot be allocated. Policies
determine how to calculate the new value, configure the link or trigger a new RPC.
Figure 4 shows the behaviour of the DRsM components.

idle

calculated
Value

newValue =
calcValue

newValue =
drsm.ndMaxBWAlloc

newvalue =
drsm.ndCongBWAlloc

configLink

spareC
Proportiona

ap
llySplit

spareCapEqually
Split

spareCapExplicitly
Split([splitValues])

Event(alarmRaised(bwUtilIncr, [utilValue, PHB])),
Action(calcValue = drsm.incrAllocBW(PHB, pct))

[drsm.incrAllocBW(PHB, pct) <
drsm.ndMaxBWAlloc(PHB)] [drsm.incrAllocBW(PHB, pct) >=

drsm.ndMaxBWAlloc(PHB)]

Action(drsm.configureLink
(PHB, newValue))

Action(drsm.splitSpareCapExplicitly
([vals]))

Action(drsm.splitSpareCapProportionally())

Action(drsm.splitSpareCapEqually())
alarmRaised

Action(monitor.raiseAlarm
(alarmType, [alarmParms]))

Figure 4: Dynamic Resource Management Component Behaviour

3. DiffS
 first describes the admission

t

S from the customer, AOL, requires a

erv Goals, Strategies and Policies
We present here two TEQUILA scenarios. The

con rol performed when customers register new Service Level Agreements; and the
second describes the response to a short-term increase in the traffic from a particular
customer. For each scenario we present the goals, strategies and policies that apply.

3. 1 Scenario 1: New SLS Subscription
Consider an example where a new SL

pipe between routers R1 and R6 with Expedited Forwarding (EF) per hop behaviour,
20ms delay, zero packet loss, and a 10Mbps throughput guarantee. SLS[customer:
aol; scope: pipe(r1,r6); qos: qosClass(EF, 20, 0); bwReq: bw(10Mbps)], is presented
to the SLS-S subscription module. The SLS-S module registers the SLS, compares
its contents with the RA-Matrix and decides whether to accept, reject or make a
counteroffer. Policies are used to influence the choice of the SLS-S module. The
policy that applies depends on the goals that need to be achieved. For example, the
highest level goal below ensures that the SLS request is processed:

 G1: Goal SLSRequestProcessed
 FormalDef slsReqReceived(SLS) u ¡ slsRequestProcessed(SLS).

Since applying the abductive anal sis to the system description of the SLS-S
module does

y
not produce strategies for achieving this goal, it is necessary to

elaborate it further by the domain-independent pattern GP2’ (see Table 1) to
decompose the above goal into the following sub-goals. In each case we use
abduction to derive a strategy:

 G2: Goal SLSRequestAccepted
 FormalDef slsReqReceived(SLS) u slsReqAccepted(SLS) .
 slsReqAccepted(SLS) u ¡ slsRequestProcessed(SLS).

 G3: Goal SLSRequestRejected
 FormalDef slsReqReceived(SLS) u slsReqRejected(SLS) .
 slsReqRejected(SLS) u ¡ slsRequestProcessed(SLS).

 G4: Goal SLSCounterofferMade
 FormalDef slsReqReceived(SLS) u slsCounterofferMade(SLS) .

ade(SLS) u ¡ slsRequestProcessed(SLS). slsCounterofferM

 S1: Strategy G2: SLSRequestAccepted
 OnEvent slsReqReceived(SLS)
 DerivedActions slsm.registerSLS(SLS) -> slsm.accept(SLS).

 S2: Strategy G3: SLSRequestRejected
 OnEvent slsReqReceived(SLS)
 DerivedActions slsm.registerSLS(SLS) -> slsm.reject(SLS).

 S3: Strategy G4: SLSCounterofferMade
 OnEvent slsReqReceived(SLS)
 DerivedActions slsm.registerSLS(SLS) -> slsm.makeCounteroffer(SLS).

GP2'

G1:
slsRequestProcessed

G2:
slsRequestAccepted

G3:
slsRequestRejected

G4:
slsCounterofferMade

OR

Figure 5: Goal decomposition for SLS subscription scenario

As shown in Figure 5, goal elaboration yields a disjunction of goals (G2-G4),
and the user can select the sub-goal that best satisfies the requirement. Strategies (S1-
S3) are derived automatically and identify the action sequences (->, sequence
operator) that achieve each of the sub-goals. In this scenario, the required high-level
policy is that SLS requests from customer ‘AOL’ with qosClass(EF, 20, 0) should be
accepted if the bandwidth requested is less than the bandwidth available in the RA-
Matrix for the same QoS class. As this policy achieves the SLSRequestAccepted goal
we can encode the corresponding strategy into a policy as follows:

 P1: inst oblig /policies/slsm/acceptAOLSLS_P1 {
 on slsReqReceived(SLS);
 subj s = /slsmPMA;
 targ t = s.slsm;
 do t.register(SLS) -> t.accept(SLS);
 when SLS.customer = ‘aol’ && SLS.qosClass = qosClass(ef, 20, 0) &&
 t.getAvailBW(SLS.qosClass) > SLS.bwReq;
 }

Whilst the strategy is derived automatically, user intervention is required to
map the event and constraints specified in the goal into the policy. Additionally, the
system helps the user select the specific subjects and targets by automatically
identifying objects of the required types in the domain hierarchy. Thus, the high-level
goal specified by the network administrator is refined into a concrete policy.

c
tes how the TEQUILA framework responds to short-term

o ensure that
 and 1pm and causes a network

utilis

a

ra

3. 2 Scenario 2: Increase in traffi
This scenario illustra

traffic changes from customers. The network administrator wants t
when such an increase occurs during between 11am

ation greater than 85% of the maximum allocation calculated by the ND
module, the bandwidth allocation should be increased by 10% and spare capacity
should be equally split amongst the PHBs. In this situation the Dynamic Resource
Management (DRsM) module at each link along the traffic route would respond as
follows:

1. On receiving a traffic increase alarm, the DRsM decides on the appropriate
action to adapt to the increase using guideline values for maximum, minimum
nd congestion bandwidth allocations provided by the ND.

2. Configure the link/PHB with this new value and decide on how to allocate any
spare link capacity amongst all the link/PHBs
Policies are used at each of the stages above, to decide how to calculate the new

bandwidth allocation, and how to distribute spare link capacity. In each case the
exact policy to be used depends on the required goal. For the policy decisions on
calculating the new bandwidth allocation and then allocating spare capacity, the high-
level goal (G6) is to achieve the state “adapted configuration” when an alarm is

ised. This can be stated as follows:

 G6: Goal ConfigAdaptedForBWUtilIncrease
 dapted.

elab b-goals (G7) or

 FormalDef alarmRaised(bwUtilIncr, [utilValue, PHB]) u ¡ configA

In this case the abductive analysis of G6 yields no strategy, so the goal must be
orated further. Applying GP2’ yields the su NewRPCRequested

CalculatedConfigNewBWAllocation (G8). Each leads to the high-level goal G6 being
satisfied as shown in their formal definitions below.

 G7: Goal NewRPCRequested
 FormalDef alarmRaised(bwUtilIncr, [utilValue, PHB]) u requestedNewRPC .
 requestedNewRPC u ¡ configAdapted.

 G8: Goal CalculatedConfigNewBWAllocation
 FormalDef alarmRaised(bwUtilIncr, [utilValue, PHB]) u calcAndConfigNewBWAlloc .
 calcAndConfigNewBWAlloc u ¡ configAdapted.

iguring a new
bandwid

In the scenario, the high-level policy requires calculating and conf
th allocation, represented by goal G8 above. However, since it is not

possible to automatically derive a strategy for this goal, it is necessary to elaborate it
further, this time using a combination of the patterns GP2’ and GP1. Figure 6 indicates
the applicable patterns at each stage with the following goals:

 G9: oal calcNewBWAlloc G
 FormalDef calcNewBWAlloc(newValue) u ¡ configNewBWAlloc.

 G10: Goal configNewBWAlloc
 FormalDef configNewBWAlloc u ¡ configAdapted.

 G11: Goal setCalculatedNewBWAlloc
 FormalDef calcNewBWAlloc (newValue) u (newValue = calcValue) .
 (newValue = calcValue) u ¡ configNewBWAlloc.
 G12: Goal overrideNewBWAllocNDMax
 FormalDef calcNewBWAlloc (newValue) u (newValue = drsm.ndMaxBWAlloc) .
 (newValue = drsm.ndMaxBWAlloc) u ¡ configNewBWAlloc.

 G13: Goal overrideNewBWAllocNDCong
 FormalDef calcNewBWAlloc (newValue) u (newValue = drsm. ndCongBWAlloc) .
 (newValue = drsm.ndCongBWAlloc) u ¡ configNewBWAlloc.

 G14: Goal propSplitSpareCapacity
 FormalDef configNewBWAlloc u spareCapProportionallySplit .
 spareCapProportionallySplit u ¡ configAdapted.

 G15: Goal equalSplitSpareCapacity
 FormalDef configNewBWAlloc u spareCapEquallySplit .
 spareCapEquallySplit u ¡ configAdapted.

 G16: Goal explicitySplitSpareCapacity
 FormalDef configNewBWAlloc u spareCapExplicitlySplit([splitValues]) .
 spareCapExplicitlySplit([splitValues]) u ¡ configAdapted.

In this scenario, the goals of the administrator are G11: setCalculatedN
nd G15: equalSplitSpareCapacity. So, we are interested in the strateg

ewBWAlloc
ies for setting

 equally.
on of the DRsM

lowing strategy, which

a
the new bandwidth to the newly calculated value and splitting spare capacity
Performing the abductive analysis on the statechart representati
calculation and configuration module behaviours yields the fol
in turn can be encoded into a policy:

 S5: Strategy G11: setCalculatedNewBWAlloc && G15: equalSplitSpareCapacity
 OnEvent alarmRaised(bwUtilIncr, [utilValue, PHB])
 DerivedActions calcValue = drsm.incrAllocBW(PHB, pct) ->
 drsm.configureLink(PHB, calcValue) -> drsm.splitSpareCapEqually
 Constraints drsm.incrAll BW(oc PHB, pct)<drsm.ndMaxBWAlloc(PHB).

 P3: inst oblig /policies/adaptTrafficIncreaseAOLSLA_P1 {
 on alarmRaised(bwUtilIncr, [utilValue, ef]);
 subj s = /routers/FromR1/ToR6/drsmPMAs/;
 targ t = s.drsm;
 do calcValue = t.incrAllocBW(ef, 10) -> t.configureLink(ef, calcValue) ->
 t.splitSpareCapEqually;
 when t.incrAllocBW(ef, 10) < t.ndMaxBWAlloc(ef) && time.between(‘11:00’, ‘13:00’);
 }

GP2'

GP1

GP2'GP2'

G6: ConfigAdaptedFor
BWUtilIncrease

G7:
NewRPCRequested

G8: CalculatedConfig
NewBWAllocation

G9: calcNewBWAlloc G10:
configNewBWAlloc

G12: overrideNew
BWAllocNDMax

G13: OverrideNew
BWAllocNDCong

G11: setCalculated
NewBWAlloc

G15: equalSplit
SpareCapacity

G16: explicitySplit
SpareCapacity

G14: propSplit
SpareCapacity

AND

OR OR

Figure 6: Goal decomposition for traffic increase scenario

Note that here, the abductive analysis results in a strategy that includes
constraints. These are derived from the guards defined in the state chart of the system
behaviour and must therefore be included in addition to any other constraints
manually mapped from the high-level policy. This is illustrated in policy P3, which
combines the s olicy.

 of the high-level goal. To

e

OR

trategy constraint with the time constraint from the high-level p

4. Application-specific Refinement Patterns
In the scenarios described above, specific policies were derived by refining

individual goals. Refining every goal would be onerous for network administrators as
the process is only partially automated. Therefore, it is useful to define refinement
patterns that directly relate a goal, to the set of policies that could achieve it. Each
pattern can also be parameterized according the specifics
achi ve this, we introduce the following syntax for policy refinement patterns:
 policyPattern patternName(ParameterList) {
 description A description of the policy pattern.
 goalHierarchy goal [refinesTo (goalHierarchy)]
 policies {// Group of policies that will achieve the goal hierarchy for this pattern.}
 }

The network administrator can use the derived strategies and policies in the
above construct to capture the pattern for later reuse. For example, in scenario 1,

ss SLS requests, we derived a policwhere the high-level goal was to proce y that
ted when constraints relating to

can
ener

n in the above example only mentions those goals which are

achieved the s goal that the SLS request was accepub-
the customer, QoS class and available bandwidth were met. The administrator
g alise this policy by parameterising these constraint values and by using the
policyPattern construct described above. The pattern for this situation is shown
below in Figure 7.

The network administrator can achieve the same goal for a different customer
or QoS class, by instantiating this pattern with the appropriate values. The policy
management tool can aid the administrator to select the appropriate refinement
pattern by providing a search interface for the pattern repository that matches the
goals presented (including the constraints), with goals specified in the patterns. Note
that the goal definitio

satisfied by the pattern; SLSRequestRejected and SLSCounterofferMade are omitted.
This ensures that this pattern will only be highlighted when the administrator
searches for patterns relating to SLSRequestAccepted.

 policyPattern /ptn/acceptSLS(String customer, QoSClass qc) {

 description Accept incoming SLS from customer provided it is for a \
 specified QoSClass and bandwidth can be satisfied by available resources.

 goalHierarchy SLSRequestProcessed refinesTo (SLSRequestAccepted);

 policies {
 oblig acceptSLS1 {
 on slsReqReceived(SLS);
 subj s = /slsmPMA;
 targ t = s.slsm;
 do t.register(SLS) -> t.accept(SLS);
 when SLS.customer=customer && SLS.qosClass=qc && t.getAvailBW(SLS.qosClass)>SLS.bwReq; }}}

Figure 7: Example policy refinement pattern for SLS subscription
to create policies that ensure that SLS requests from customer

n the QoS class qosClass(AF1, 50, 15%), the
 relating to the SLSRequestAccepted goal.

For example,
 when they contai‘pipex’ are accepted

administrator would search for patterns
Having identified the above pattern, he would instantiate it as follows:
 inst policy

 a policy-

te
results. Additionally, Power does not provide support for

e actions to be included in a policy. Therefore, domain
exper

the ta

Pattern acceptPipexSLS = /ptn/acceptSLS(‘pipex’, qosClass(AF1,50,15%));

The policy management system would then instantiate each of the policies in
this pattern with the parameters specified. Once the policy has been instantiated, the
overall policy specification can be analysed for inconsistencies as shown in [10].

5. Related Work
There are few practical studies on policy refinement. Power [13] is

authoring environment where a domain expert specifies policy templates (as Prolog
programs), which guide the user in selecting the elements from an information model
to be included in the policy. This approach lacks any analysis capabilities to evalua
the consistency of the
automatically deriving th

ts must have a detailed understanding of system and formalism. Our refinement
patterns are similar to the Power templates, however, our approach incorporates a
complete analysis technique and provides automated derivation of action sequences.

Verma presents an approach to policy translation for DiffServ QoS
management that is based on a set of tables which identify the relationships between
Users, Applications, Servers, Routers and Classes of Service supported by the
network [14]. When presented with new SLSs, the system performs a series of table
look-ups to identify the correct configuration for the specified user, application and
service class. This technique is fully automated, but depends on the correctness of

ble which requires domain expertise. Furthermore, this approach is inflexible,
as it supports only specific types of SLA and low-level device policies.

6. Conclusions and Future Work
This paper focuses on policy refinement for QoS management. Through

als can be elaborated using refinement

We h

licies are

toget

 programs. This permits a

stem. Thus, the

ogic programming techniques

specific examples, we have shown how go
patterns and how abduction can be used to derive strategies that achieve these goals.

ave also shown how these strategies can be encoded into policies for specific
scenarios and also in general refinement patterns for later reuse. Note that the
techniques employed: goal elaboration, strategy derivation and use of refinement
patterns are not QoS specific and can be used in other application domains.

Our refinement process is built on a systematic, formal and semi-automated
approach to goal refinement thus ensuring that derived strategies meet the high-level
policy requirements. System descriptions are used to ensure that derived po
enforceable by the system. Using domain hierarchies to model the relationships
between abstract entities and concrete objects, together with type information,
permits identifying the objects required to execute strategies. These features illustrate
how this solution satisfies the objectives of policy refinement identified in [2].

It is necessary to analyse policies to detect inconsistencies. After preliminary
work on modality and application specific conflicts [15], we have shown how an
Event Calculus representation of both policies and managed systems can be used,

her with abductive reasoning for policy analysis [10]. Like the refinement
technique presented here, the analysis uses a statechart representation of system
behaviour and the domain hierarchy. The abduction process derives not only the
presence of conflicts but also a description of the conditions under which the
conflicts will occur. Since both the analysis and the refinement techniques are based
on the same formalism the two can easily be integrated.

An important consideration when using formal techniques is to ensure that the
implementation is decidable and computationally feasible. In our implementation, we
ensured this by limiting ourselves to stratified logic
constrained use of recursion and negation while disallowing those combinations that
lead to undecidable programs [16]. Stratified logic programs are a decidable class of
first order logic [17, 18] and are decidable in polynomial time [18].

Although the underlying approach uses formal specifications, network
operators need only use libraries of goals and refinement patterns together with high-
level notations (e.g. Statecharts) for describing the managed sy
selection of goals and refinement patterns can be mostly driven by their natural
language description. We are developing tools that minimise the amount of required
knowledge and intervention from network operators.

One limitation of the work presented is that it does not permit calculating the
parameter values for management operations such as the input rate of the DiffServ
meters. We plan to investigate integrating constraint l
to provide such capabilities. Another limitation is that we use goals decomposed
using solely the AND/OR connectives ignoring any temporal ordering
considerations. Whilst the time information provided by the Event Calculus may be
used for this purpose, the complexity implications require further investigation.

 We are currently developping an integrated analysis/refinement tool based on
an abductive reasoning engine (A-System/Prolog) and using a UML and Policy
edito

 support for this work from the EPSRC (Grant Nos:
5/01), CISCO Systems Inc. and IBM Research.

 "An Architecture for Differentiated Services," in Network Working
5, http://www.ietf.org/rfc/rfc2475.txt

r for specification and user interaction. This effort is already well under way.

7. Acknowledgements
We acknowledge financial

GR/R31409/01 and GR/S7998

8. References
[1] M. Carlson, et al.,

Group - RFC247 , 1998.
,"

2002.
itecture,"

[2] J. Moffett and M. S. Sloman, "Policy Hierarchies for Distributed Systems Management
IEEE JSAC, 11(9):1404-14, Special Issue on Network Management, 1993.

[3] A. K. Bandara, E. C. Lupu, and A. Russo, "A Goal-based Approach to Policy
Refinement," IEEE Workshop on Policies for Distributed Systems and Networks (Policy
2004), IBM TJ Watson Research Centre, New York, USA, June, 2004.

[4] R. Darimont and A. van Lamsweerde, "Formal Refinement Patterns for Goal-Driven
Requirements Elaboration," 4th ACM Symposium on the Foundations of Software
Engineering (FSE4) pp 179-190, 1996.

[5] P. Flegkas, P. Trimintzios, and G. Pavlou, "A Policy-based Quality of Service
Management Architecture for IP DiffServ Networks," IEEE Network, 16(2):50-56,

[6] E. Rosen, A. Viswanathan, and R. Callon, "Multiprotocol Label Switching Arch
in Network Working Group - RFC3031, http://www.ietf.org/rfc/rfc3031.txt, 2001.

[7] R. A. Kowalski and M. J. Sergot, "A logic-based calculus of events," New Generation
Computing, vol. 4 pp. 67-95, 1986.

[8] N. Damianou, T. Tonouchi, N. Dulay, E. Lupu, and M. Sloman, "Tools for Domain-bas
Policy Management of Distributed S IEEE/IFIP Network Operations and

ed
ystems,"

01), 2001.

e

01.

48.

[18] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, "Complexity and Expressive Power of
Logic Programming," 12th IEEE Conf. on Computational Complexity, Ulm, 1997.

Management Symposium (NOMS 2002), Florence, Italy, 2002.
[9] B. van Nuffelen and A. Kakas, "A-System : Programming with abduction," presented at

Logic Programming and Nonmonotonic Reasoning (LPNMR 20
[10] A. K. Bandara, E. C. Lupu, and A. Russo, "Using Event Calculus to Formalise Policy

Specification and Analysis," 4th IEEE Workshop on Policies for Networks and
Distributed Systems (Policy 2003), Lake Como, Italy, 2003.

[11] P. Trimintzios, et al., "Service-driven Traffic Engineering for Intra-domain Quality of
Service Management," IEEE Network Magazine, 17(3):29-36, 2003.

[12] E. Mykoniati, et al., "Admission Control for Providing QoS in IP DiffServ Networks: th
TEQUILA Approach," IEEE Communications Magazine, 41(1), 2003.

[13] M. Casassa Mont, A. Baldwin, and C. Goh, "POWER Prototype: Towards Integrated
Policy-Based Management," HP Laboratories Bristol, Bristol, UK October 1999.

[14] D. C. Verma, Policy-Based Networking: Architecture and Algorithms. New Riders, 20
[15] E. C. Lupu and M. S. Sloman, "Conflicts in Policy-Based Distributed Systems

Management," In IEEE Transactions on Software Engineering - 25(6)852-869, 1999.
," in [16] K. Apt, H. Blair, and A. Walker, "Towards a Theory of Declarative Knowledge

Foundations of Deductive Databases, J. Minker, Ed. MorganKaufmann, 1988, pp.89-1
[17] G. Jager and R. F. Stark, "The Defining Power of Stratified and Hierarchical Logic

Programs," Journal of Logic Programming, 15(1 & 2):55-77, 1993.

	2.1 Approach to Policy Refinement
	2.2 TEQUILA DiffServ Framework
	3. 1 Scenario 1: New SLS Subscription
	3. 2 Scenario 2: Increase in traffic

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

