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Abstract

In a publish/subscribe (pub/sub) network, message de-
livery is guaranteed for all connected subscribers at publish
time. However, in a dynamic mobile scenario where users
join and leave the network, it is important that content pub-
lished at the time they are disconnected is still delivered
when they reconnect from a different point. In this paper,
we enhance the caching mechanisms in pub/sub networks to
enable client mobility. We build our mobility support with
minor changes in the caching scheme while preserving the
main principles of loose coupled and asynchronous com-
munication of the pub/sub communication model. We also
present a new proactive mechanism to reduce the overhead
of duplicate responses. The evaluation of our proposed
scheme is performed via simulations and testbed measure-
ments.

1. Introduction

The publish/subscribe paradigm has become an impor-
tant architectural style for designing distributed systems.
There are several research efforts concerned with the de-
velopment of a pub/sub system [1] - [5]. Most of them ad-
dress scalability and ease of implementation by realizing
the broker tree as an overlay network. In those systems,
any message is guaranteed to reach all interested destina-
tions. This holds for all clients that their subscriptions are
known to the network at publish time. However, there are
cases where clients join the network after the publication of
an interesting message, or roam around the network during
their lifetime. In traditional pub/sub schemes it is not pos-
sible for a new subscriber to retrieve previously published
messages that match his/her subscription. The same holds
for a mobile client who was on the go during the publica-
tion. Therefore, caching for retrieval of past information is
an important asset for mobile networks utilizing the pub/sub
paradigm.

Caching as a mechanism for storing data in pub/sub sys-

tems has received little attention in the literature. In [6] a
caching mechanism where brokers opportunistically cache
information to make it available to future subscribers is in-
troduced. A different aspect of caching is studied; the focus
is on preserving the information over time instead of mak-
ing information available in nearer space as the traditional
caching schemes. Authors in [7] propose a caching mech-
anism, for wireless ad-hoc networks based on buffers, that
offers a way to integrate data repositories distributed in the
network. Their approach concentrates on the class of appli-
cations that commence normal operation after having seen a
sequence of events. Finally, in [8] and [9] authors propose a
historic data retrieval pub/sub system where databases (pre-
defined caching points) are connected to various brokers,
each associated with a filter to store particular information.
In this paper, we will use the caching mechanism described
in [6].

The majority of the overlay pub/sub systems are de-
signed not to tolerate any form of topological reconfigura-
tion, therefore they cannot be exploited in those application
scenarios where decoupling would be most beneficial. The
first pub/sub system that supported mobile clients was JEDI,
where a client used two functions (move-out and move-in)
to explicitly detach from the network and reconnect to it,
possibly through a different broker. In [10] authors imple-
ment a mobility support service that is independent of the
underlying pub/sub overlay and transparently manages ac-
tive subscriptions and incoming messages when a client de-
taches from one broker until it reattaches at another. They
use mobile service proxies which are independent, station-
ary components that run at the edges (where clients exist)
of the pub/sub network. In other words they use a sec-
ond overlay network to take care the mobility of the clients.
That second overlay is responsible to gather the published
events, that match the interests of the mobile client, and de-
liver them when the client reconnects to the network. The
proxies of that second overlay should be aware of the topol-
ogy of the mobile service network, since they should di-
rectly contact each other when a client moves among them.
Finally in [11] authors present COMAN (COntent-based



routing for Mobile Ad-hoc Networks), a protocol to orga-
nize the nodes of a MANET in a tree-shaped network able
to self repair to tolerate the frequent topological reconfig-
urations. COMAN was designed to minimize the number
of brokers whose routing information are affected by topo-
logical changes, but it is not support the retrieval of lost
messages after the reconfiguration of the network.

Here we are interested in supporting the mobility of
clients, where a client is disconnecting from the network
and reconnects from a different point later in time. Particu-
larly, we will use the caching mechanism of [6] and propose
a modification which enables mobility for clients without
further burdening the pub/sub mechanism. This way, we
achieve the desirable result while avoiding adding the com-
plexity introduced in [10]. Finally, we examine the resulting
trade-offs between caching efficiency, system overhead and
message delivery guarantees to the mobile clients.

The rest of the paper is organized as follows. In section
2, a brief introduction to the pub/sub architecture is given,
followed by the description the caching scheme to be used.
In section 3 we present our approach to support mobility of
clients while section 4 describes our proposed duplicate re-
sponse dropping mechanisms. Moreover, sections 5 and 6
report on the performance evaluation of the proposed sys-
tem through simulation and testbed measurements respec-
tively. Finally, section 7 concludes our experience and dis-
cusses future work.

2 The pub/sub system with caches

2.1 The pub/sub architecture

We consider a pub/sub system that uses the subscription
forwarding routing strategy [2]. In this setting, the routing
paths for the published messages are set by the subscrip-
tions, which are propagated throughout the network so as to
form a tree that connects the subscribers to all the brokers
in the network.

Particularly, when a client issues a subscription, a
Subscribe() message containing the corresponding
subscription filter is sent to the broker the client is attached
to. There, the filter is inserted in a Subscription Table (ST),
together with the identifier of the subscriber. Then, the sub-
scription is propagated by the broker, which now behaves
as a subscriber with respect to the rest of the network, to all
of its neighboring brokers. In turn, the neighboring brokers
record the subscription and re-propagate it. This scheme
is usually optimized by avoiding subscription forwarding
of the same event pattern in the same direction exploiting
“coverage” relations among filters.
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Figure 1. Caching and retrieving of old infor-
mation (in red are the new entries of STs and
created by the subscription of C).

2.2 Enabling caching in pub/sub systems

In this section, we give through the example of figure 1
a short description of the caching scheme firstly introduced
in [6]. In our system, each broker is selected as a candidate
caching point for a message as long as it has in its subscrip-
tion table at least one client subscribed in this message, and
depending on the caching policy (the broker) caches or not
each published message matching the subscriptions of its
clients. In this paper, we call that cached message as “old”
message/information. In order to retrieve the old informa-
tion, we added to the system two additional types of mes-
sages, Request() and Response(). A new clientC in-
terested in old content sends a Request() message with
the interested filter fltr c. We used source routing for the
forwarding of the Request() (the path is being built hop
by hop and is included in the Request() header). Bro-
ker 4 upon receiving the Request() message checks in
its Subscription Table (ST) for subscriptions matching the
requested filter (we suppose that fltr c matches both filters
fltr a and fltr b). The matching subscription can be ei-
ther from another broker (broker 3 in this example) or from
a client. The broker forwards the Request() message to
every existing subscribed broker. Each broker–recipient of a
request message–with at least one matching client subscrip-
tion (brokers 1 and 5 in figure 1), searches in its cache for
messages matching the initial filter (messages msg a and
msg b accordingly) and for each match a Response()
message is initiated.

A Response() message carries an old message as
well as the sequence of nodes carried by the initiating
Request() message (source routing). When a broker re-



ceives a Response()message, pops off its identifier from
that sequence and forwards it to the first broker of the re-
maining sequence. In the end, client C will receive the
message. With the above procedure, client C will receive
every old message matching its filter and is still cached in a
broker accessible by the request message.

In [6] a message is removed from a broker’s cache when
all the interested client subscribers have been unsubscribed,
even if the cache is not full. This happens since future re-
quests cannot reach that broker due to the lack of entries in
the subscription tables of the rest of the brokers, pointing to
that corresponding broker. Moreover, we used the first-in
first-out (FIFO) with regenerations policy (similar to Least
Recently Used) as a way to select the message to be dropped
each time a cache is overflown. A Bloom-filter-based mech-
anism [12] could be used to solve scalability issues that
might arise by the usage of source routing and the accumu-
lation of broker ids at the header of the Request() and
Response() messages, but such an analysis is out of the
scope of this paper.

3. Mobility support

In this section, we describe a technique of using the al-
ready proposed caching scheme to provide support to mo-
bile clients. Our approach is relative to [10], with the impor-
tant difference that no extra functionality is required. Par-
ticularly, using a portion of each broker’s cache, we allow
brokers to manage subscriptions and publications on behalf
of the mobile clients, both while they are disconnected and
during the switch-over phase. This way no functions are
needed other than the traditional pub/sub mechanism and
the caching scheme explained above.

When the client is connected, publishes and receives
messages directly to and from the pub/sub network. Before
detaching, the client sends to the broker (broker 1 in figure
2), that he is attached to, a Request()message requesting
to detach. That request message is similar to the message
described in the above section but instead of the request-
ing filter it contains the “id” of the corresponding client.
The broker has already in its Subscription Table “ST” the
id of the client and its subscription filters so now when-
ever a message, matching those filters, arrives at the broker
he directly caches it (apart from delivering it to the rest of
the connected clients, if any, with a matching subscription).
Until now the procedure is exactly the same with the proce-
dure of the caching mechanism described above. The dif-
ference appears in the treatment of those cached messages.

In order to make the mobility support robust, we equip
the caches with a preemption priority mechanism for those
messages that are cached for a mobile client. Using such a
mechanism, these messages are cached in a FIFO manner
disregarding the rest of the messages which contend only
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Figure 2. Mobility support mechanism. When
client A is in movement messages msg a1 -
msg an appeared in the network.

for the remaining cache slots. Thus, a message cached for
a mobile client is only dropped from the cache when the
cache is full with such messages which arrived later than
the given one.

When the mobile client reconnects to the network, from
a different broker (broker 3 in the example), issues a
Request() message with the subscription filter (or filters
or part of them) that had subscribed to the pub/sub network
before the movement and the “id” of the broker that was
connected (broker 1 in the example). That request message
will reach according to [6] broker 1. Broker 1, upon re-
ceiving that request, will i) respond (using Response()
messages) with the cached messages (messages that arrived
when the client was in movement, msg a1 - msg an in the
example), ii) unsubscribe the mobile client from its Sub-
scription Table and iii) erase those messages that no other
client has mataching subscriptions to them. This means that
those messages are treated according to the scheme in [6]
(like in figure 2).

4 Handling multiple responses

While the proposed mobility support mechanism does
not produce multiple duplicate responses, since only one
broker responds to the mobile client’s request, the caching
and retrieving scheme has as side effect the possible pro-
duction of multiple identical responses on a single request.
To deal with this effect, we provide our system with two
(reactive and proactive) duplicate preventing mechanisms.

In the reactive mechanism, every broker with at least one
client subscriber, upon the arrival of each response message,
checks whether the message already appears in its cache and
if this is true, drops the response message. Otherwise, it for-
wards the message according to the technique described in
section 2.2. The reason for searching the cache of every bro-
ker upon the arrival of each response, is because responses
follow the reverse of the route that the requests follow. This



means that the request for initiating the response has also
been processed by the broker under question which may
have responded to that request with the same message(s).
Note also, that the requests cannot be dropped in a similar
manner, because we consider a content-based network, and
finding a matching message in a proximity broker does not
guarantee that there are no other (different) messages in the
network matching the same subscription.

In the proactive counterpart, every broker with a
cached matching message, apart from responding to the
Request() message, before forwarding it to its neighbor-
ing brokers appends to the Request() header the “id” of
the responded message. The brokers–recipients of that re-
quest message–will only respond with messages matching
the requested filter and their ids are not in the Request()
message, since those messages have already been sent to the
client issued that Request().

In the example of figure 3, we suppose that brokers 1, 4,
and 7 have in their cache the same “black” message while
brokers 8 and 11 have in their cache the same “grey” mes-
sage and broker 10 has in its cache a “blue” message. If now
a client connects to broker 5 and requests with some filter
matching “any color”, the request will reach all the above
mentioned brokers. Brokers 4 and 7 will reply with a re-
sponse message but the response message sent by broker 7
will be dropped upon reaching broker 5 given that broker 5
has already cached the “black” message, after the reception
of the response initiated on broker 4 (reactive mechanism).
Broker 1 won’t respond since the “black” message cached
is the same with the one cached in broker 4 and the “mes-
sage id” is carried by the Request() message (proactive
mechanism). Similarly according to the proactive dropping
mechanism only the response of broker 8 will be delivered
to the client. Finally, the response initiated in broker 10
will also reach the client. With this simple example is obvi-
ous how important are those two duplicate dropping mecha-
nisms and especially the proactive one. The disadvantage of
the proactive mechanism is the usage and the accumulation
in the request’s header of the “message ids” cached in the
network which is not scalable, but which can be beneficiary
in a well defined environment where the total number of the
published messages are finitely many.

5. Performance evaluation

In this section, we evaluate the proposed mechanism us-
ing a discrete event simulator. N = 7 brokers are organized
in a balanced binary tree and clients are dynamically gener-
ated on each broker according to a birth and death process
with birth rate λc and death rate µc. Those clients with
rate λmob go mobile and reconnect to the network after a
randomly selected period of time (with mean value 1

µmob
).

New publications occur to the network with rate λmsg . Each
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Figure 3. A dispatching network where the
color of each broker represents the content
of the cached messages and the their client
subscription filters.

broker has a cache capable of storing k messages. We are
looking at the following interesting metrics.

• The absorption time of a messagem is the time passed
from the publication of m until it gets disappeared
from the network. This metric is indicative of the capa-
bility of the network to maintain messages in its mem-
ory.

• The responses per request is measured for each suc-
cessfully responded request and corresponds to the
number of total responses that the system would have
generated if no duplicate dropping mechanism was
used. This metric is representative of the replication
and the overhead in the network.

• The loss ratio is measured for each mobile client and
is the ratio between the publications that matches his
subscription and were published when he was discon-
nected and the messages that are finally delivered to
the client after his reconnection to the network. This
metric is indicative of the capability of the network
to support mobile clients and is indicative of the con-
tention in the caches when they support mobile clients.

The above metrics are random variables and we estimate
their mean by simulating thousands of observations. We
set two experiments, one varying the time interval that the
client is mobile ( 1

µmob
) and one varying the publication rate

λmsg . Those two sets are similar to varying the dynam-
ics of the mobile clients (rate of going mobile and rate of
reconnected to the network) and varying the cache size re-
spectively. We run those two sets with four different values
of the client dynamics λc/µc = ρc = 0.1, 0.5, 1, 100. Note
that if we would vary the number of brokers, in terms of
cache contention, it would scale the problem with respect
to the values of ρc.
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Figure 4. Performance of the mobility support mechanism for several values of the mobile time
interval 1

µmob
(figures a-c) and the publication rate λmsg (figures d-f).

Figure 4 shows three pairs of figures. In the first pair
(subfigures “a” and “d”), we can identify the exponential
nature of absorption time. Particularly, increasing the time
interval that a client is mobile increases the mean absorp-
tion time of messages since now more messages are cached
in the mobility emergency cache and stay there for more
time. But increasing the number of publications (publica-
tion rate) has as effect the contention of messages in the
mobility emergency cache (more messages now have to be
cached). The large values of absorbtion time in subfigure
a are caused by the prioritized messages for mobile users.
Since the mobility interval is large, these messages retain
high priority for longer periods. This example shows that
prioritization is capable of delivering high quality of service
in this case.

In the second pair (subfigures “b” and “e”), we present
the gain in overhead (percentage) as (duplicate) responses
per request that we have in our system by the usage of the
two duplicate dropping mechanisms compared to the case
that we have no dropping duplicate mechanisms. Using
those two dropping mechanisms, we have only one response
per successful request. For low mobility time intervals, we
have a gain of more than 250% something that also occurs
in low publication rates (350% gain). In high mobility time
intervals and publication rates that gain is less since now
due to contention in caches we have less duplicate messages
stored at each cache meaning less duplicate responses per
successful request. In low values of the client dynamics,
that gain is also low since now clients remain “alive” for

less time in the system and messages are not stored based
on the technique described in section 2.2. This overhead
gain increases with the number of nodes in the network.

Finally, in the last pair (subfigures “c” and “f”) we
present the loss ratio described above. Evidently higher mo-
bility time intervals lead to messages staying longer at high
priorities and higher publication rates lead to more mes-
sages in the caches. Both ways the increasing cache con-
tention leads to increased loss ratio.

6. System design and experimentation

We implementated the proposed system on top of REDS
[5]. Apart from the modifications made and presented in
[6] for the purposes of this paper, we altered the logic in
caching to support the mechanisms described in 3 and 4.
We used 5 laptops equipped with a 1,6 GHz Intel Celeron M
CPU, 512 MB of RAM. The 3 computers were connected
via Ethernet switch to set the pub/sub overlay network as
shown in figure 2. Another computer played the role of pub-
lisher while the final laptop played the role of a mobile sub-
scriber client. In our testbed experiments, the mobile client
issues one subscription while a series of publications is sent
(all publications match that subscription) at a constant rate
of λp publications per second (λp = 1, 2), which lasts for
50 seconds (50 and 100 messages accordingly). The mobile
client disconnects from one broker and connects to another
only once while the mobility interval is fixed, ∆t = 15sec.
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Figure 5. No mobility support (left-side), mo-
bility support (right side).

Figure 5 shows two pairs of figures that we call mes-
sage/delivery time traces. The y axis corresponds to the
number of messages delivered to the mobile client, while
the delivery time is when the message is received by him
(set time to zero when the first message is delivered). To
the left, the case where no mobility is supported is show-
cased, while to the right, the effect of our mobility support
mechanism is demonstrated. Every point in the figures cor-
responds to a message received by the client either through
the publish or the request process. The part of the figures
where there is no message delivery represents the time in-
terval that the client is disconnected from the overlay net-
work, while the vertical part of delivered messages (right-
side figures) after the reconnection of the client represents
the responses delivered to the client to his request sent to
the broker that was attached before the movement. It is ob-
vious that all the published messages finally arrive to the
client while there is no delay due to the processing associ-
ated with relocation.

7. Conclusion And Future Work

In summary, we have extended our proposed caching
scheme to support mobility of clients and we have proposed
a new duplicate dropping mechanism to reduce the system
overhead. Evaluation via simulations and testbed measure-
ments depict the performance of the system regarding infor-
mation survivability, overhead and quality of the proposed
mobility support scheme. This work can be extended in
many ways, from deriving applications to extensions in mo-
bile ad-hoc networks where both brokers and clients are al-
lowed to move.
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