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Abstract 

Policy-based Management has been the subject of extensive research over the last decade. More 
recently, the IETF has been investigating Policy-based Networking as a means for managing IP-based 
multi-service networks with quality of service guarantees. Policies are seen as a way to guide the 
behaviour of a network or distributed system through high-level, declarative directives. We mainly 
view policies as a means of extending the logic of a management system at runtime, so that it can be 
adaptive to changing or newly emerging requirements. We are interested in particular in the 
coexistence of “hard-wired” hierarchical management systems with policy logic in a fashion that the 
overall system becomes programmable and extensible. In this paper we consider generic issues behind 
hierarchical policy-based management systems and we present initial work on such a system for 
dimensioning and dynamic resource management in IP Differentiated Services networks. 
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1. Introduction 
Policy-based Management has been the subject of extensive research over the last decade 
[Moff93][Slom94]. More recently, the IETF has been investigating Policy-based Networking as a 
means for managing IP-based multi-service networks with quality of service guarantees [Stev99]. 
Policies are seen as a way to guide the behaviour of a network or distributed system through high-
level, declarative directives. Although the declarative high-level aspect of policies is very important, 
particularly for human managers, we mainly view policies as a means of extending the logic of a 
management system at runtime, so that it can be adaptive to changing or newly emerging 
requirements. We are interested in particular in the coexistence of hierarchical management systems 
realised through “hard-wired” management logic with interpreted policy logic, targetting a 
programmable and extensible overall system. In this paper we consider generic issues behind 
hierarchical policy-based management systems and we present initial work on such a system for 
dimensioning and dynamic resource management of IP Differentiated Services networks. 

The rest of the paper has the following structure. In section 2, we present an overview of the current 
state-of-the-art in policy-based research. This presentation is twofold, covering work in the research 
community, which includes policy classification, policy refinement and policy languages, and also 
work in the IETF, which includes recent work of the Resource Allocation and Policy Framework 
working groups. In section 3, we first discuss aspects of policy-based management and compare and 
contrast the approach to traditional, “hard-wired” management approaches. We then examine key 
aspects of hierarchical management systems and present a preliminary framework for the coexistence 
of such systems with management policies. In section 4, we present our preliminary work on 
hierarchical policy-based management for IP Differentiated Services, including an overview of the 
functional architecture for a relevant system and paying particular attention to policy aspects. We 
finally present a summary and point to our future research work in this area, in section 5. 
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2. Policy Management and Policy-based Networking State-
of-the-Art 

2.1 Policy-based Management in the Research Community 

A lot of research has been carried out in the area of policies for the management of distributed 
systems, with most of the concepts pioneered by Imperial College London. [Slom94] presents the 
concepts of domains and policies in the context of a generic management architecture, see Figure 1. 
Assuming a distributed management system that reflects the distribution of the system being 
managed, policies are specified as objects which define a relationship between subjects (managers) 
and targets (managed objects). Policies are separated from the automated managers, facilitating the 
dynamic change of the behaviour and the adaptivity to new requirements without re-implementing the 
management applications. Domains provide the framework for partitioning management 
responsibilities by grouping objects in order to specify a management policy that applies to a domain. 
Domains are defined as objects, which maintain a list of references to their member managed objects 
[Slom89]. Figure 1 depicts a generic management architecture for distributed management systems 
consisting of: a) communication services for communication between applications as well as between 
applications and managed objects, b) object services for class and instance administration - the 
architecture assumes a distributed objects framework such as e.g. OMG CORBA, c) distributed 
processing services supporting interaction between distributed components, d) common management 
services which support the fundamental concepts of domains, policies and monitoring and e) the 
management applications which are capable of interpreting and applying policies. 

 

Figure 1 Policy-based Distributed Management System Architecture [Slom94]. 

The following types of policies are identified in [ICpol], while [Wies94] specifies also a list of criteria 
for the classification of policies: 

Authorisation Policies (positive and negative), which specify what a subject is authorised/forbidden 
to do with respect to a set of managed objects. These are essentially access control policies. 

Obligation Policies, which specify what operations the subject must perform on a set of target 
objects. Positive obligation policies are triggered by events. 

Refrain Policies, which define the actions that subjects must not perform on target objects. 

Delegation Policies (positive and negative), which specify which actions subjects are allowed to 
delegate to others. 
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[Moff93] discusses the issue of the refinement of a high level policy into a number of more specific 
lower level policies to form a policy hierarchy. Several different relationships can be identified 
between policies in a hierarchy: 

Partitioned Targets: The target set of a lower level policy may be a subset of the target set of the 
higher-level policy. 

Goal Refinement:  the goal of a higher-level policy may be refined into one or more lower level 
goals, referring to the same target. 

Arbitrary Refinement of Objectives: in this form of refinement of objectives, the goal and target are 
quite different from the higher-level objectives. 

Procedures: where a policy may be refined by an unordered set of lower ones 

Delegation of Responsibility: in this type of relationship, one subject delegates responsibility for the 
objective to another subject. 

Related work in the area of policy hierarchies has been presented by [Wies94], specifying a four level 
hierarchy: Corporate or high level policies, Task-oriented policies, Functional Policies and Low-level 
Policies. 

A declarative, object-oriented language has also been developed for specifying policies for the 
management of distributed systems, including constructs for specifying the basic types of policies 
described before [Ponder].  

2.2 IETF Policy-based Networking 

Two working groups in the IETF have considered policy management or policy-based networking: the 
Resource Allocation Protocol (RAP) Working Group (WG) and the Policy Framework WG.1 The 
purpose of the RAP WG is to establish a scalable policy control model for RSVP and specify a 
protocol for use among RSVP-capable network nodes and policy servers. The Policy WG has 
provided several drafts describing a general framework for representing, managing, sharing and 
reusing policies in a vendor independent, interoperable and scalable manner as well as defining an 
extensible information model for representing policies and an extension to this model to address the 
need for QoS management. 

The RAP WG has described a framework for policy-based admission control specifying the two main 
architectural elements [Yav00]: the Policy Enforcement Point (PEP) and the Policy Decision Point 
(PDP). PEP represents the component that always runs on the policy-aware node and it is the point 
where the policy decisions are actually enforced. The PDP is the point where  the policy decisions are 
made. When a PEP receives a notification or a message that requires a policy decision, it creates a 
request that includes information which describes the admission control request. Then, the PEP may 
consult a local configuration database to identify which policy elements can be evaluated locally, 
passes the request with this set to the Local Policy Decision Point (LPDP) and receives the result. The 
PEP then passes all the policy elements and the partial result to the PDP which combines its result 
with the partial result from the LPDP and returns the final policy decision to the PEP. 

                                                      
1See: www.ietf.org/html.charters/rap-charter.html and  http://www.ietf.org/html.charters/policy-charter.html 
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Figure 2 a) RAP WG Policy Framework for Admission Control, b) Policy WG Framework. 

The Policy Framework WG defines policy as an aggregation of Policy Rules. Each policy rule 
comprises a set of conditions and a corresponding set of actions that are intended to be device- and 
vendor-independent. Policy Rules are of the form: if <condition> then < action>. The <condition> 
expression may be a compound expression and it may be related to entities such as hosts, applications, 
protocols, users, etc. The <action> expression may be a set of actions that specify services to grant or 
deny or other parameters to be input to the provision of one or more services. 

The four major functional elements of the Policy Framework described by this group are: 

• A Policy Management Tool to enable an entity to define, update and optionally monitor the 
deployment of Policy Rules. 

• A Policy Repository to store and retrieve Policy Rules. 

• A Policy Consumer which is a convenient grouping of functions, responsible for acquiring, 
deploying and optionally translating Policy Rules into a form useable for Policy Targets. 

• A Policy Target which is an element whose behaviour is dictated by Policy Rules carrying 
out the action indicated by the Policy Rule. 

A detailed description of the functionality of each element can be found in [Stev99]. 

3. Considerations on Policy-based Network Management 

3.1 Policies as Means for Programmable, Extensible Management Systems 

One of the key motivations behind policy-based management is flexibility and graceful evolution of 
the management system so that it can adapt to changing requirements over a long period of time. This 
is achieved by disabling / modifying old policies and by introducing new ones in order to meet 
changing requirements. A key aspect of a policy-based management system is that changes to targets 
should be performed in a consistent fashion, avoiding policy conflicts that may leave the managed 
system in an inconsistent state. Conflicting actions do not occur only in policy-based management 
systems but are potentially possible in any control system which performs intrusive management 
actions by modifying targets rather than simply observing them. Below we consider aspects of 
policies, intrusive management and conflicts in different management frameworks. 

Enterprise networks are typically managed with SNMP, using a relatively simple management 
architecture consisting of a single, centralised “network management centre (NMC)”. The latter 
supervises network elements located typically in a cluster of local / metropolitan area networks. In 
this architecture, the elements are typically configured one-by-one, in an isolated fashion, through the 
supervision of a human network manager and according to an overall network operation policy, which 
is worked out beforehand. This means that (re-)configuration is infrequent and takes place manually. 
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In an evolution of this scheme, configuration parameters for every device are stored in a repository 
e.g. a directory, which is contacted by the devices upon cold or warm starts so that a device picks up 
necessary parameters and configures itself; this makes the system more scalable. 

The NMC supervises, i.e. monitors, the managed devices, provides a view of the current network 
state, alerts the human manager in case of abnormal changes but does not attempt to reconfigure the 
network using automated logic. Reconfiguration is typically left to human managers who may modify 
first the network operation policy using their intelligence in order to overcome the problem. There are 
no conflicts in this architecture, they might only occur because of a wrong human-derived 
configuration policy but, with the right precautions, this should not happen. While this simple, 
centralised architecture with emphasis in monitoring rather than control, works adequately for best-
effort IP networks, it cannot meet the needs of emerging multiservice networks with QoS guarantees. 
The latter require frequent, automated configuration changes according to a network-wide view, as 
presented in section 4. 

Telecommunication networks are managed according to the hierarchically distributed 
Telecommunications Management Network (TMN) model. Initial and subsequent (re-)configuration 
of network elements occurs through element managers, which are orchestrated by a logically 
centralised but physically distributed, network manager. The latter has a view of the network-wide 
policy and implements it through automated logic by supervising the network elements and 
reconfiguring them in order to introduce new services or to recover from performance, fault and other 
problems. This management logic can be altered to a limited extent by modifying managed objects 
that model its operation. An example of TMN-influenced proactive and reactive management systems 
for ATM management can be found in [Georg99]. 

All configuration changes occur through a configuration manager, which holds the physical and 
logical network topology and partitioning. Requests coming from service, performance, fault and 
other managers are carefully validated, in order to maintain network consistence and integrity. Despite 
this validation, it is possible that different managers have conflicting configuration requirements. This 
can lead to inconsistent network state which satisfies only one of them, or to race conditions, in which 
the managers keep requesting changes to their preferred configuration state when they sense it has 
been changed back. Such conflicts can be avoided by careful modelling, design and testing of the 
management system, but conflicts may still occur at run-time when the system is stressed by real-
world conditions not previously anticipated. This is rare though and also points to system integrity 
issues which are outside the scope of the paper. 

Policy-based may be applied to both enterprise and telecommunication networks. The view taken by 
IETF seems to be compatible with the centralised model used in managing enterprise networks, 
though policy work in the research community has previously pointed to distributed models. In this 
discussion we will consider the centralised model to demonstrate the points and we will examine 
policies in distributed hierarchical systems in the next section. 

The key aspect of a policy-based system is that management logic is expressed through declarative 
policies, evaluated in policy consumers. In the IETF model, the policy consumer can be thought as a 
centralised manager, with the execution of provisioning policies resulting in configuration operations 
on managed objects within network elements. In [Slom99], the policy consumer is seen as a hybrid 
manager-agent where the policies express the manager intelligence and access the co-located managed 
objects of the agent part; we consider and extend this model in the next section. The essence though is 
that management intelligence can be modified, added and removed by manipulating policies as 
requirements change. In policy-based systems, management intelligence does not follow the rigid 
analysis, design, implementation, testing and deployment cycle, and as such, conflicts may be the 
norm rather than the exception. Conflict analysis and detection is required both statically, at policy 
introduction and deployment time, and also dynamically, at run time. Policies are often associated 
with interpreted logic but we believe their salient characteristic to be the composition of a system 
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from building blocks which can be introduced, modified and withdrawn at any time, without having 
rigorously tested the resulting system in every such modification. 

Taking the policy approach to the extreme, all management intelligence could be policy-based, 
starting with a system which comprises only manageable network elements and policy consumer 
capabilities in the role of an “empty” centralised manager. This is the complete opposite of the rigid, 
hierarchical TMN approach, but results in a pretty undefined and fluid system, which will be very 
difficult to protect against conflicts, or to even realise it with declarative policies in the first place. We 
see policies mostly as a means to “late bind” functionality to an existing management system, which 
is hierarchically distributed in order to meet the management needs of multiservice networks. In this 
case, policies can be seen as a means to achieve “programmability” of the system with new 
functionality and lead to a flexible system that can cope with evolving requirements. We feel this is a 
much more realistic proposition than a purely policy-based approach for complex management 
systems. Until now it is not clear how policies can be used in the context of a hierarchical system. In 
the next section we consider policies that follow and mirror the hierarchical system decomposition. 

3.2 Hierarchical Policies 

In hierarchical management systems, hybrid agent-manager applications exist at different levels of the 
hierarchy, managing ultimately network elements at the lowest level. Manager-agent or managing-
managed interactions occur top-down and possibly peer-to-peer but never bottom-up. A hierarchy may 
be strict, in which case the management layer N+1 builds on the functionality and services of layer N, 
or relaxed, in which case layers may be bypassed. In the following discussion we will assume a strict 
hierarchy for simplicity. 

At layer N of the hierarchy, an agent-manager application comprises: 

• Managed objects presenting the management capabilities of the application to the layer N+1 
(or to the same layer N for peer-to-peer interactions). 

• Management logic accessing managed objects of the layer N-1 (or of the same layer N for 
peer-to-peer interactions). 
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M’Os
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M’Os
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Policy
Consumer

Policy
Consumer

Policy
Consumer

Policy
Consumer
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Figure 3 Hierarchical management with loosely (left) and tightly-coupled (right) policy consumers. 
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The managed objects constitute the top, i.e. agent, part of the application (see Figure 3), which is why 
we prefer the term agent-manager as opposed to manager-agent used in the literature. The managed 
objects and associated managing logic or managing objects represent “static” management 
intelligence, following a rigorous analysis, design, implementation, testing and deployment cycle. 
Parametrisation of the functionality of such an agent-manager application is possible to a limited 
extent by configuring managed object values. The deployment of such a hierarchy takes place bottom-
up but the decomposition and design of the whole system takes place top-down, according to the 
management services to be provided. 

The simplest form of introducing policies in such a system is through a separate policy consumer 
point where policies execute and access managed object at various different layers of the management 
hierarchy. In other words, the policies manipulate targets, i.e. managed objects, at all the layers of the 
hierarchy. The problem with this approach is that the policies are monolithic, logically and physically 
centralised, operating on a hierarchical distributed system. A better approach would be to structure the 
policies hierarchically, mirroring the system hierarchy, as explored next. 

In a hierarchical policy system, policies at layer N+1 operate on managed objects of layer N. This 
implies in fact that these policies may be considered as part of the managing intelligence of layer 
N+1, in addition to the static intelligence of agent-manager applications. This approach is shown in 
the left of Figure 3. If these policies access managed objects in more than one layer N agent-
managers, they could execute at a layer N+1 consumer point which complements the managing 
intelligence in this layer. If though they access managed objects in a single subordinate agent-
manager, they could execute at that agent-manager, having local access to managed objects. In this 
case, the manager-agent at layer N is programmed with policy logic that belongs conceptually to the 
layer N+1 but since it relates to a particular agent-manager of the layer below, it has actually 
“migrated” there. This is shown in the right part of Figure 3 where the two policy consumers have 
migrated and now form an integral part of the agent-manager they relate to. In this paradigm, every 
agent-manager may potentially become a policy consumer, including of course ultimately the agents 
within network elements. 

We view policies as complementing the static management system intelligence. One key aspect when 
designing a policy-capable hierarchical system is how much intelligence should be realised in a static 
fashion. Static intelligence should offer enough functionality to allow relatively easy extension of the 
system through policy logic but not too much so that there is still flexibility in terms of changing 
requirements. In principle, higher amount of static intelligence leads to a more rigid, less extensible 
but potentially more stable system while less amount of static intelligence leaves the system fluid, 
easily extensible but may result in instability as more and more functionality is realised through 
policies (more frequent conflicts etc.) 

A key aspect in such a hierarchical system is policy refinement and this should naturally follow the 
hierarchical composition of the system. Policies may be introduced at any level but higher-level 
policies may possibly result in the introduction of related policies at lower levels. In a similar fashion 
to the bottom-up deployment of a static hierarchical system, policy hierarchies should be introduced 
in a bottom-up fashion, maintaining the completeness and integrity of the policy space. Policy 
refinement and transformation is a process analogous to software system analysis and design but in 
the context of a hierarchical system of a specific nature, e.g. IP Differentiated Services (DiffServ) 
network management, guidelines may be devised and followed. 

We are thinking in particular of policy classification specific to a problem domain, going further than 
the general-purpose classification encountered in the literature. For specific classes of policies, we are 
thinking of policy refinement guidelines and rules that will assist and possibly automate refinement of 
policy instances. We are in fact envisaging situations in which changing parameters of a high level 
policy will result in changes throughout the policy hierarchy. 

In the next section we present first the functional architecture of a distributed hierarchical system for 
IP DiffServ; this is designed from the beginning with policy extensibility in mind. In this system we 
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are thinking of network dimensioning, resource management and admission control policies. We then 
explore further the hierarchical nature of dimensioning and resource management aspects, presenting 
an elementary example of hierarchical policy decomposition. 

4. Hierarchical Policy-Enabled IP Network Management 

4.1 The TEQUILA Functional Architecture 

The objective of the TEQUILA project (Traffic Engineering for QUality of Service in the Internet, at 
LArge Scale)2 is to study, specify, implement and validate a set of service definition and traffic 
engineering tools in order to obtain quantitative end-to-end Quality of Service guarantees through 
careful dimensioning, admission control and dynamic resource management in Differentiated Services  
[Blake98] IP networks. The technical areas addressed by the project are: (a) the specification of static 
and dynamic, intra- and inter-domain Service Level Specifications (SLSs), (b) protocols and 
mechanisms for managing (negotiating, monitoring and enforcing) SLSs, and (c) intra- and inter-
domain traffic engineering schemes to ensure that the network can cope with the contracted SLSs – 
both within domains, and in the Internet at large. The rest of this paper assumes a basic understanding 
of the DiffServ architectural framework and terminology. 
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Figure 4 The TEQUILA functional architecture. 

In order to achieve its technical goals the project has defined a functional architecture shown in 
Figure 4 [D1.1]. There are two main parts in this architecture, the SLS-related part and the Resource 
Management part. The first includes the SLS Management Functional Block (FB), which can be 
further decomposed to the Subscription, Admission Control and Interdomain SLS Request blocks. It 
also includes the SLS-related part of Monitoring and the Traffic Conditioning block. This part of the 
overall functional model is responsible for subscribing and negotiating long-term SLSs with users or 
other peer Autonomous Systems (ASs) and it performs admission control of dynamic SLSs. The 

                                                      
2 http://www.ist-tequila.org 
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Traffic Conditioning FB classifies and marks packets according to negotiated SLS, as well as 
performs metering policing and shaping. 

The other major part of the architecture concerns resource management. The Planning FB is 
responsible for long-term (order of months or years) planning of physical resources. Network 
Dimensioning works in order of days or weeks. This functional block is responsible for mapping the 
traffic onto the physical network resources and it configures the network in order to accommodate the 
forecasted traffic demands. The Network Dimensioning FB defines Multi-Protocol Label Switching 
(MPLS) paths at layer 2 and uses pure layer 3 capabilities in order to accommodate the expected 
traffic. The Traffic Forecast FB gets information from the current SLS subscriptions, traffic 
projections and historical data provided by the Monitoring FB, and uses traffic and economic models 
in order to provide the appropriate forecasted traffic matrices to the Dimensioning and Planning FBs. 
Based on constraints/rules provided by Network Dimensioning, the Dynamic Route Management FB 
modifies (in a timescale of minutes or hours) routing parameters in routers. If MPLS is used it 
dynamically adds/merges/splits/reroutes paths while there is an equivalent behaviour in the case of 
pure layer 3 routing. This functional block adjusts routing parameters (weights, load distribution on 
equal multi-paths) or modifies MPLS paths. The Dynamic Resource Management FB sets buffer and 
scheduling parameters on links according to network dimensioning directives and constraints. It also 
allocates capacity to existing/newly created paths. The Routing FB is Constraint-based, DiffServ 
class-aware and uses constraints to reduce algorithm complexity and hence reduce the convergence 
time. The Scheduling and Forwarding FB implements Per-Hop-Behaviours (PHBs), e.g. 
Expedited/Assured/Default Forwarding (EF/AF/DE), using buffer management and scheduling 
mechanisms. The Monitoring FB performs monitoring and measurements in various levels of 
abstraction. This FB has both network-wide and detailed per node view of the network, and operates 
as an agent to other FBs of the architecture, providing the necessary monitoring information they 
request. 

The Policy Management FB is an essential part of the TEQUILA system and is described in more 
detail in the following section. 

4.2 Hierarchical Policy Management in the Tequila System 

The policy functional block in the functional architecture includes (see Figure 5) the Policy 
Management Tool, the Policy Storing Service and the Policy Consumers which correspond to their 
associated functional blocks (note “A Tequila Functional Block” in Figure 5), e.g. SLS related 
admission policies for the SLS Management block, dimensioning policies for the Dimensioning block, 
dynamic resource/route management policies for the Dynamic Resource Management block, etc. 

In this model there exist many Policy Consumers, associated with particular functional blocks of the 
hierarchical management structure. Targets can be the managed objects of the associated functional 
block or of lower-level functional blocks (but never of higher-level blocks). Policy Consumers need 
also to have direct communication with the Monitoring functional block in order to get information 
about traffic-based policy-triggering events. Note that triggering events may be also other than traffic-
related, in which case it is typically generated by the specific functional block with which the Policy 
Consumer is associated. 

Policies are defined in the Policy Management Tool, which provides a “policy creation environment”. 
Policies are defined in a high-level language, are translated to object-oriented policy representation 
(information objects) and stored in the policy repository (Policy Storing Service). New policies are 
checked for conflicts with existing policies, although some conflicts may only be detected during 
execution time. After the policies are stored, activation information may be passed to the associated 
Policy Consumer. 
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Figure 5 Decomposition of the Policy Management Functional Block. 

 

Every time the operator enters a high level policy, this should be refined into policies for each layer of 
the TEQUILA functional architecture forming a policy hierarchy that reflects the management 
hierarchy. As mentioned in the literature [Moff93], it is very difficult to support an automated 
decomposition of a policy without human intervention. The administrator should define generic 
classes of policies and provide some refinement logic/rules for the policy classes that will help the 
automated decomposition of instances of these classes into policies for each level of the hierarchical 
management system shown in Figure 4. These generated policies can be interpreted and enforced by 
the Policy Consumer associated with the responsible functional block (agent-manager). The Policy 
Consumers will retrieve the policies from the Policy Storing Service in a format so that all the 
necessary information can be mapped to the specific set of functions of the FB (agent-manager). This 
is done by setting the appropriate parameters to influence or modify the agent-manager’s behaviour 
and by registering the appropriate events in order to be notified about when this Policy must be 
enforced. This refinement logic can be stored in the Policy Management Tool and all the policies of 
the hierarchy will be generated at the tool, stored in the repository and then retrieved by the 
responsible policy consumers. Another possibility could be to distribute the refinement rules in the 
appropriate consumers so that each one will be responsible for generating and sending the next lower-
level policies to the consumers that reside in the next lower layer of the management system. 

4.3 An Example of Hierarchical Policy Decomposition 

Let’s assume that the administrator of an AS wants to ensure availability of a specific traffic class for 
a time period, for example s/he wants to enforce the following policy3: 

“At least 10% of Network Resources should always be available for EF traffic”   (1) 

In order for this policy to be enforced, it must be refined into policies that apply to each layer of the 
management architecture. Before specifying this policy the operator must go through the following 
three steps so that automated refinement can be supported: 

1. Define the template of the generic policy class. 

2. Define the range of parameters/attributes of the policy class. 

                                                      
3 We do not assume any specific Policy Definition Language in this example. 
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3. Provide the guidelines and rules for the refinement. 

Policy (1) is an instance of a generic policy class. This resource management policy class has four 
parameters and has the following generic form: 

<bound> <percentage> of Network Resources <period> available for <traffic type>  (2) 

As described above, the human operator should first define the template of the generic class (2) and 
then the range of the parameters/attributes that can be specified for a valid instance of this policy class 
(see Table 1). In order to create an instance of this class, such as (1), the operator has to edit the above 
template and set the required parameters to specific values (e.g. bound = “≥ ”, percentage = “10%”, 
period = “from 9am to 2pm”, traffic type = “EF”). If the parameters specified are in the previously 
defined range of values then the procedure for enforcing this policy will normally proceed, otherwise 
the validation function of the Policy Management Tool will return an error. Table 1 shows the valid 
range of values of the parameters in the above resource management policy class: 

 

Table 1 Range of values for policy parameters of the resource management policy class. 

Parameter – Attribute Range of Values 

Bound ≥≤,  

Percentage 0-100 

Period Any time period expression 

Traffic type EF, AFxy, BE, CS1-8 

 

The final step is to provide some refinement rules and logic that will assist the automated 
decomposition of every instance of the resource management policy class (2) to policies for each level 
of the hierarchical management system as shown in Figure 6. 
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Figure 6  Enforcement of the Resource management policy at each level of the Tequila 
Functional Architecture. 
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The functional blocks that are responsible for enforcing any instance of policy class (2), are 
Dimensioning and Dynamic Resource Management. Assuming a strict management hierarchy in the 
Tequila functional architecture, any function of the Dimensioning functional block will operate on 
managed objects of the Dynamic Resource Management functional block. Consequently, high-level 
resource management policies will be decomposed into dimensioning and dynamic resource 
management policies. In this architecture, the policy consumers will be eventually tightly coupled 
with their respective functional blocks (or agent-managers), in a similar fashion to the model depicted 
in the right part of Figure 3. 

More specifically, in the Dimensioning functional block, every instance of the resource management 
policy class (2) is enforced as follows: when the generated policy for this layer of the management 
architecture is downloaded to the Policy Consumer, at the time <period> when this policy is active, it 
must first check the current configuration, i.e. how the network is already dimensioned. This is done 
by passing the appropriate parameters taken from the policy instance regarding the <bound>, 
<percentage> and <traffic type> to a check_current_configuration() method that will 
trigger a re-dimensioning of the network if it is needed. Then, when re-dimensioning is required, i.e. 
when network/traffic conditions are such that Dynamic Route and Resource Management algorithms 
are no longer able to operate effectively, at the time <period> the policy instance is enforced by 
passing the parameters to the check_forecast()method that will check the traffic matrices 
retrieved from the traffic forecast functional block, and are input to the dimensioning algorithm. If the 
<percentage> allocated to the traffic type specified in the policy instance does not violate the policy, 
then there is no need to influence the dimensioning algorithm. Otherwise, if the traffic matrices are 
not compatible with the policy then the dimensioning algorithm function must be executed with a 
different/modified traffic matrix. For the specific policy instance (1), the 
check_current_configuration()method will trigger a re-dimensioning only if the current 
configuration is such that less than 10% of resources are allocated to the EF traffic class. Moreover, at 
re-dimensioning, the check_forecast()method will modify the traffic matrices so that at least 
10% of resources are allocated to EF. 

After the network is configured according to the dimensioning output, Dynamic Resource 
Management is responsible for adjusting the resources according to the dynamic changes in traffic 
demand. The dynamic adjustment of resources might result into situations where the policy is no 
longer enforced; therefore we need to make this functional block policy aware.  

The generated policy for this layer of the functional management architecture is enforced in the 
Dynamic Resource Management block as follows: at the time <period> that the policy is active, the 
Policy Consumer should pass the needed parameters (<bound>, <traffic type>) to the 
check_set_operation() method and this will indicate whether the operation performed by the 
Dynamic Resource Management block is allowed or not. Actually, this will check through the 
set_resources()method if the addition or removal of resources allocated to the <traffic type> 
violates the specified policy. For example, assuming the policy instance (1) of the resource 
management class (2), additional resources allocated to the EF traffic will always be allowed and 
deletion of resources will only be performed if the overall allocation of resources for EF is greater 
than 10%. 

In the previous example we have assumed that the Dynamic Resource Management Block is logically 
and physically centralised. If the functionality of the block is physically distributed to reflect the 
distribution of the network being managed, agent-managers will contain replicas of functions. This 
makes the enforcement of the above policy instance more complex since an overall knowledge of the 
modifications of the allocated resources to the traffic type is needed. This can be done either by 
adding some cooperation ability to the distributed agent managers or by enforcing the policy in a non-
optimal way, restricting each agent-manager to cause a less than 10% allocation of resources to EF 
traffic in the local managed area of the network. 
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From the above example one may observe that if the functional architecture was not designed to be 
policy aware, some methods of the functional blocks such as 
check_current_configuration()and check_forecast() in Dimensioning and 
check_set_operation()in Dynamic Resource Management would be redundant. Though 
obvious, it should be mentioned that these methods are part of the computational interface of the 
respective block or may be derived from other methods, which are part of that interface. It is for 
further investigation whether this logic could be automatically generated and downloaded to the 
appropriate blocks or it should be hardwired beforehand in the agent-managers. The whole area of 
hierarchical “policy-aware” system specification/design and the subsequent population of that system 
through hierarchical policies with (some) automated support in policy-refinement constitute the core 
of our future research in this area. 

5. Summary and Future Work 
While most research work on policies has concentrated in necessary fundamental aspects such as 
classification, policy language, conflict detection and most recently in policy representation and 
storage, little work has been done in the area of the harmonic coexistence of policies and traditional, 
possibly hierarchical, management systems. Policies, apart from their high-level declarative nature, 
can be also seen as a vehicle for “late binding” functionality to management systems, allowing for 
their graceful evolution as requirements change. It is this aspect of policies we find most interesting 
and we have been exploring the potentiality of designing “policy-aware” management systems, in 
which a line has to be carefully drawn between “hard-wired” functionality and policy logic. 

In this paper we first described the salient characteristics of policy-based management and we 
explored their coexistence with hierarchical management systems, presenting first an initial version of 
a generic framework and showing then how a system for IP Differentiated Services management can 
be designed and built using such a framework. There are many issues that are still unresolved but the 
fundamental target is to be able to come up with a system that will be able to sustain requirement 
changes and evolve gracefully through policies without any changes to its carefully thought-out, 
“hard-wired” initial logic. We are interested in deriving generic guidelines on how this can be done 
and also guidelines on hierarchical policy decomposition and refinement. We are not sure if such 
guidelines can be problem domain independent but we hope at least to produce such guidelines in the 
context of IP Differentiated Services management. 

As a continuation of the work presented in this paper, we will be concentrating in the definition of an 
object-oriented information model representing the capabilities of each layer of the hierarchical 
functional architecture that was described in section 4.1. This information model will assist us in the 
definition of QoS policies. Realisation of this model will be done by parametrising the management 
functions of the hierarchical management system, following, initially in a bottom-up approach to 
capture each layer's functionality and then in a top-down analysis to record the policy-management 
requirements. Moreover, we will be focusing on the specification of dimensioning, resource and route 
management policies, by defining generic policy classes for specific resource management cases. We 
will further explore the concept of the automated decomposition and transformation of instances of 
these policy classes by providing specific guidelines. Finally a realisation of the above concepts will 
be demonstrated by using a prototype implementation. We will report our findings in the future. 
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