

Abstract—Given the emergence of IP networks and the Inter-

net as the multi-service network of the future, it is plausible to
consider its use for transporting demanding traffic with high
bandwidth and low delay and packet loss requirements. Emerg-
ing technologies for scalable quality of service such as Differen-
tiated Services and MPLS can be used for premium quality traf-
fic. We are looking at the problem of intra-domain provisioning
in an automated manner from an Internet Service Provider’s
(ISPs) point of view, i.e. we want to satisfy the contracts with our
customers while optimizing the use of the network resources. We
also need to be able to dynamically guide the behavior of such an
automated provisioning system in order to be able to meet the
high-level business objectives. The emerging policy-based man-
agement paradigm is the means to achieve this requirement. In
this paper we devise first a non-linear programming formulation
of the traffic engineering problem and show that we can achieve
the objectives and meet the requirements of demanding cus-
tomer traffic through the means of an automated provisioning
system. We extend the functionality of the automated system
through policies. Finally, we present example scenarios of the
enforcement of network dimensioning policies.
Keywords— IP, Differentiated Services, Network Dimensioning,
Policy-based Networking.

I. INTRODUCTION
IFFERENTIATED Services (DiffServ) [1] is seen as the
emerging technology to support Quality of Service (QoS)

in IP backbone networks in a scalable fashion. Multi-Protocol
Label Switching (MPLS) [2] can be used as the underlying
technology to support traffic engineering. We use these tech-
nologies to support premium traffic with stringent QoS re-
quirements, through careful traffic forecasting based on con-
tracted premium services with customers and subsequent net-
work provisioning in terms of routing and resource manage-
ment strategies. In this paper we show that there is a feasible
solution for guaranteeing QoS for demanding premium traffic.
In order to provide adequate quality guarantees for demanding
traffic over an IP Autonomous System (AS), customers should
have contractual Service Level Agreements (SLAs). ISPs on
the other hand want to meet the customers’ demands as these
are described in the Service Level Specification (SLS) [3],

which is technical part of an SLA, while at the same time
optimizing the use of network resources.

Policy-based Management has been the subject of extensive
research over the last decade [4]. Policies are seen as a way to
guide the behavior of a distributed system through high-level,
declarative directives. We view policy-based management as a
means of extending the functionality of management systems
dynamically, in conjunction with pre-existing “hard-wired”
logic [5]. Policies are defined in a high-level declarative man-
ner and are mapped to low-level system parameters and func-
tions, while the system intelligence can be dynamically modi-
fied added and removed by manipulating policies.

The rest of the paper is organized as follows. Section II pre-
sents the resource provisioning system architecture together
with the policy-based extensions. In section III we present the
proposed network dimensioning algorithm and simulation
results. In section IV we present policy enforcement examples
for network dimensioning. Finally section V, concludes this
work and provides suggestions for extending this work.

II. RESOURCE MANAGEMENT ARCHITECTURE
In [6] we have presented a system for supporting QoS in IP

DiffServ Networks. This architecture can be seen as a decom-
position of a Bandwidth Broker (BB) realized as a hierarchi-
cal, logically and physically distributed system.

distributed,
one per router

distributed,
one per edgerouter

Network
Dimensioning

(ND)

centralised

Map expected traffic to
network resources – produce
Traffic Trunks and
bandwidth

Dynamic Route
Management

(DRtM)

Dynamic Resource
Management

(DRsM)

Traffic Matrix

Traffic Trunks and
associated bandwidth OA/PHB performance targets

and anticipated loadalarms alarms

Set LSPs and load-balancing
on LSPs

Manage dynamic link partitioning
(PHB configuration) to meet
local performance targets

distributed,
one per router

distributed,
one per edgerouter

Network
Dimensioning

(ND)

centralised

Map expected traffic to
network resources – produce
Traffic Trunks and
bandwidth

Dynamic Route
Management

(DRtM)

Dynamic Resource
Management

(DRsM)

Traffic Matrix

Traffic Trunks and
associated bandwidth OA/PHB performance targets

and anticipated loadalarms alarms

Set LSPs and load-balancing
on LSPs

Manage dynamic link partitioning
(PHB configuration) to meet
local performance targets

Figure 1 Resource management architecture components
The TE aspects of this architecture are shown in Figure 1.

The Network Dimensioning (ND) is responsible for mapping

Policy-based Network Dimensioning for IP
Differentiated Services Networks

D

Panos Trimintzios†, Paris Flegkas† , George Pavlou† , Leonidas Georgiadis‡ , and David Griffin§

†Centre for Communication Systems
 Research, University of Surrey,
Guildford, Surrey, GU2 7XH,

United Kingdom
Correspondence to: p.trimintzios@ieee.org

‡School of Electrical and Computer
Engineering,

Aristotle University of Thessaloniki,
P.O. Box 435, Thessaloniki, 54 124,

Greece

§Department of Electrical and
Electronic Engineering,

University College London,
Torrington Place, London, WC1E 7JE,

United Kingdom

0-7803-7658-7/02/$17.00 (C) 2002 IEEE 171

traffic requirements to the physical network resources and for
providing provisioning directives in order to accommodate the
predicted traffic demands.

The lower levels intend to manage the resources allocated
by ND during the system operation in real-time, in order to
react to statistical traffic fluctuations and special arising con-
ditions. They are realized as the Dynamic Route (DRtM) and
Dynamic Resource Management (DRsM), which both monitor
the network resources and act to medium to short term fluc-
tuations. DRtM operates at the edge nodes and is responsible
for managing the routing processes in the network. It influ-
ences the parameters based on which the selection of one of
the established MPLS Labeled Switched Paths (LSPs) is ef-
fected at an edge node with the purpose of load balancing. An
instance of DRsM operates at each router and aims to ensure
that link capacity is appropriately distributed among the
PHBs. It does so by managing the buffer and scheduling pa-
rameters. We forecast the anticipated traffic based on the cur-
rently subscribed SLSs and on data from measurements. Thus,
the provisioning of the network is effectively achieved by both
taking into account the long-term service level subscriptions
in a time dependent manner (ND) and the dynamic network
state (DRtM, DRsM).

Policy
Repository

Policy
Consumer

Network
Dimensioning

High-Level
Specification

O-O Format
LDAP Schema

Policy
Management
Tool

Policy-scripts
Execution of
Policies ND Policies

DRtM/DRsM Policies

High-level Policies may
result in the introduction
of related policies at
lower layers, mirroring
the system’s hierarchy:

Dynamic Resource
Management

Policy
Consumer

Dynamic Route
Management

Policy
Consumer

Policy
Repository

Policy
Consumer

Network
Dimensioning

Policy
Consumer

Network
Dimensioning

High-Level
Specification

O-O Format
LDAP Schema

Policy
Management
Tool

Policy-scripts
Execution of
Policies ND Policies

DRtM/DRsM Policies

High-level Policies may
result in the introduction
of related policies at
lower layers, mirroring
the system’s hierarchy:

Dynamic Resource
Management

Policy
Consumer

Dynamic Resource
Management

Policy
Consumer

Dynamic Route
Management

Policy
Consumer

Dynamic Route
Management

Policy
Consumer

Figure 2 Extensions for enabling policy-based resource man-

agement
We extended the traffic engineering system architecture to

be able to drive its behavior through policies. The resulting
extended system architecture is depicted in Figure 2. The Pol-
icy Management extensions include components such as the
Policy Management Tool, Policy Repository, and the Policy
Consumers. A single Policy Management Tool provides a
policy creation environment to the administrator where poli-
cies are defined in a high-level declarative language and after
validation and static conflict detection tests, they are trans-
lated into information objects and stored in a repository. The
Policy Repository is a logically centralized component but
physically distributed since the technology for implementing
this component is the LDAP (Lightweight Directory Access
Protocol) Directory. Activation information is passed to the

responsible Policy Consumer in order to retrieve and enforce
them.

III. NETWORK DIMENSIONING
ND is responsible for the long to medium term configura-

tion of the network resources. By configuration we mean the
definition of LSPs as well as the anticipated loading for each
PHB on all interfaces, which are subsequently being translated
by DRsM into the appropriate scheduling parameters (e.g.
priority, weight, rate limits) of the underlying PHB
implementation. ND does not provide absolute values but they
are in the form of ranges, constituting directives for the func-
tion of the PHBs, while for LSPs they are in the form of multi-
ple paths to enable multi-path load balancing. The exact PHB
configuration values and the load distribution on the multiple
paths are determined by DRsM and DRtM respectively, based
on the state of the network, but should always adhere to ND
directives.

ND runs periodically, first requesting the predictions for
the expected traffic per Ordered Aggregate [7] (OA) in order
to be able to compute the provisioning directives. The dimen-
sioning period is in the time scale of a week while the fore-
casting period is in the time scale of hours. The latter is a pe-
riod in which we have considerably different predictions as a
result of the time schedule of the subscribed SLSs.

The objectives are both traffic and resource-oriented. The
former relate to the obligation towards customers, through the
SLSs. These obligations induce a number of restrictions about
the treatment of traffic. The resource-oriented objectives are
related to the network operation as results of the high-level
business policy that dictates the network to be used optimally.
The dimensioning functionality is summarized in Figure 3.
Input:
• Topology and link properties (capacity, propagation delay, PHBs)
Pre-processing:
• Request traffic forecast, i.e. the potential traffic trunks (TT)
• Obtain statistics for the performance of each PHB at each link
• Determine the maximum allowable hop count K per TT according to the

PHB statistics

Optimisation phase:
• Start with an initial allocation (e.g. using shortest path for each TT)
• Iteratively improve the solution: for each TT find a set of paths:
o The minimum bandwidth requirements of the TT are met
o The hop-count constraintK is met
o The overall cost function is minimized

Post-processing:
• Allocate any extra capacity to the resulted paths of each OA according to re-

source allocation policies
• Sum the path requirements per link per OA, give minimum (optimisation

phase) and maximum (post-processing phase) allocation directives to DRsM
• Give the paths calculated in the optimisation phase to DRtM
• Store the configuration into the Network Repository

Figure 3 Network Dimensioning algorithm overview

A. Network Dimensioning Algorithm
The network is modeled as a directed graph (),G V E= ,

172

where V is a set of nodes and E a set of links. With each
link l E∈ we associate the following parameters: the link
physical capacity lC , the link propagation delay prop

ld , the set
of the physical queues K , i.e. Ordered Aggregates (OAs),
supported by the link. For each OA, k K∈ we associate a
bound k

ld (deterministic or probabilistic depending on the
OA) on the maximum delay incurred by traffic entering link
l and belonging to the k K∈ , and a loss probability k

lp of
the same traffic.

The basic traffic model of ND is the traffic trunk (TT),
which is an aggregation of a set of traffic flows characterized
by similar edge-to-edge performance requirements [8]. Each
traffic trunk is associated with an ingress and one egress node,
and is unidirectional. The set of all traffic trunks is denoted by
T .

The primary objective of such an allocation is to ensure
that the requirements of each traffic trunk are met as long as
the traffic carried by each trunk is at its specified minimum
bandwidth. However, with the possible exception of heavily
loaded conditions, there will generally be multiple feasible
solutions. The design objectives are further refined to incorpo-
rate other requirements such as: a) avoid overloading parts of
the network while other parts are under loaded, b) provide
overall low network load (cost).

The last two requirements do not lead to the same optimiza-
tion objective. In any case, in order to make the last two re-
quirements more concrete, the notion of “load” has to be
quantified. In general, the load (or cost) on a given link is an
increasing function of the amount of traffic the link carries.
This function may refer to link utilization or may express an
average delay, or loss probability on the link. Let k

lx denote
the capacity demand for OA k K∈ satisfied by link l and

/k k
l l lu x C= the link utilisation. Then the link cost induced

by the load on OA k K∈ is a convex function, ()k k
l lf u , in-

creasing in k
lu . The total cost per link is defined as

() ()k k
l l l l

k K
F u f u

∈
= ∑ , where { }kl l k Ku u ∈= is the vector of

demands for all OAs of link l . The total cost per link is an
approximate function, e.g. ()k k k k

l l l lf u a u= .
We provide an objective that compromises between the two

a) and b), that is avoid overloading parts of the network and
minimize overall network cost:

()minimize () () , 1
n

n k k
l l l l

l E l E k K
F u f u n

∈ ∈ ∈

 =  ≥   ∑ ∑ ∑ (1)

When 1n = , the objective (1) reduces to objective a),
while when n → ∞ it reduces to b).

Each traffic trunk is associated with an end-to-end delay
and loss probability constraint of the traffic belonging to the
trunk. Hence, the trunk routes must be designed so that these

two constraints are satisfied. Both the constraints above are
constraints on additive path costs under specific link costs.
However the problem of finding routes satisfying these con-
straints is, in general, NP-complete [9]. Given that this is only
part of the problem we need to address, the problem in its
generality is rather complex.

Usually, loss probabilities and delay for the same PHB on
different nodes are of similar order. We simplify the optimiza-
tion problem by transforming the delay and loss requirements
into constraints for the maximum hop count for each traffic
trunk (TT). This transformation is possible by keeping statis-
tics for the delay and loss rate of the PHBs per link, and by
using the maximum, average or n -th quantile in order to
derive the maximum hop count constraint.

For each traffic trunk t T∈ we denote as tR the set of (ex-
plicit) routes defined to serve this trunk. For each t tr R∈ we
denote as

trb the capacity we have assigned to this explicit
route. We seek to maximize (1), such that the hop-count con-
straints are met, the explicit routes per traffic trunk should be
equal to the trunks’ capacity requirements.

This is a network flow problem and considering the non-
linear formulation, for the solution we use the general gradi-
ent projection method [10]. This is an iterative method, where
we start from an initial feasible solution, and at each step we
find the minimum first derivative of the cost function path
and we shift part of the flow from the other paths to the new
path, improving our objective function (1). If the path flow
becomes negative, the path flow simply becomes zero. This
method is based on the classic unconstraint non-linear opti-
mization theory, and the general point is that we try to de-
crease the cost function through incremental changes in the
path flows.

B. Simulation results
The topologies used for experimentation were random, ac-

cording to the models for random topology generation pre-
sented in [11]. For the final results presented bellow we opted
for 90% confidence level, whereas the confidence interval was
8-10% of the corresponding values. The initial solution (step
0) of the iterative procedure is set to be the same as if the traf-
fic trunks were to be routed with a shortest path first (SPF)
algorithm. That corresponds to the case that all the traffic of a
particular class from ingress to an egress is routed through the
same shortest path. The routing metric used for the SPF was
set to be inversely proportional to the physical link capacity.

The edge nodes were 40-60% of the total network nodes.
We defined as the total throughput of a network the sum of
the capacities of the first-hop links emanating from all edge
nodes. We used 70% load of the total throughput, as the
highly loaded condition, and a 40% for medium load.

Figure 4 shows the maximum of the link load distribution
for the different topology and traffic loading profiles. We

173

show the results after the first step and the final step algo-
rithm. It is clear that at step 0 solution, which corresponds to
the SPF, parts of the network are over-utilized while others
have no traffic at all. After the final step, which corresponds
to the final output of our dimensioning algorithm, the traffic
is balanced over the network.

We can see that the algorithm manages to reduce the maxi-
mum link load below 100% for all the cases, while the SPF
algorithm gives solutions with more than 300% maximum
link load utilization. In these experiments, the standard
deviation of the link load utilization from the average reduces
to more than half of that in the case of SPF.

medium load (40%)

0

50

100

150

200

250

300

350

50 100 200 300

number of nodes

m
ax

im
um

 li
nk

 u
ti

lis
at

io
n

fi rst step (SPF)

final step

high load (70%)

0

50

100

150

200

250

300

350

400

50 100 200 300

number of nodes

m
ax

im
um

 li
nk

 u
ti

lis
at

io
n

first step (SPF)

final step

Figure 4. Maximum link load utilisation for medium and

highly loaded traffic profile conditions
We run those experiments with the exponent in (1) being

2n = . This value compromises between minimizing the
total (sum) of link costs and minimizing the maximum link
load. In section IV we are going to look at the effect of expo-
nent n of the cost function.

Finally, in Table I we show the average running time of the
various experiments conducted. We can see that even for quite
large networks the running times are relatively low. For ex-
ample for 300 node networks, for medium load the running
time is about 17 minutes, and for high load about 25 minutes.
These times are perfectly acceptable taking into account the
timescales of the ND system operation.

TABLE I: AVERAGE RUNNING TIME IN SECONDS FOR THE VARIOUS
NETWORK SIZES

Network Size Medium load High load

10 0.055 0.061
50 9.761 10.164

100 123.989 302.079
200 529.532 1002.245
300 981.175 1541.937

IV. POLICY-DRIVEN NETWORK DIMENSIONING
In the architecture shown in Figure 1, ND besides provid-

ing long-term guidelines for sharing the network resources, it
can also be policy influenced so that its behavior can be modi-
fied dynamically at run-time reflecting high-level, business
objectives. The critical issue for designing a policy capable
resource management component is to specify the parameters
influenced by the enforcement of a policy that will result in
different allocation of resources in terms of business decisions.
These policies that are in fact management logic, are not
hard-wired in the component but are downloaded on the fly
while the system is operating. The full range of network di-
mensioning policies can be found in [5]. In the next subsec-
tion, we present two examples of the policies demonstrating
the way they are being realized by the policy consumer, at-
tached to ND as shown in Figure 2.

In order to demonstrate the results of the enforcement of
policies we used a 10-node 36-link random topology and a
traffic load of 70 % of the total throughput of the network.

Our first example (P1) concerns a policy rule that wants to
create an explicit LSP following the nodes 4, 9, 7, 6 with the
bandwidth of the TT being 2 Mbps that is associated with this
LSP. The administrator enters the policy rule in the Policy
Management Tool using our proprietary policy language,
which is then translated in LDAP objects according to an
LDAP schema based on the Policy Core LDAP Schema [12]
and stored in the Policy Repository. The syntax of our lan-
guage as well as the extension to the Policy Core Information
Model [13] with specific classes that reflect the policies de-
scribed in the previous section are presented in [5]. The policy
rule is entered with the following syntax:
If OA==EF and Ingress==4 and Egress==6 then

Setup_LSP 4-9-7-6 2Mbps
(P1)

After this rule is correctly translated and stored in the re-
pository, the Policy Management Tool notifies the Policy Con-
sumer associated with ND that a new policy rule is added in
the repository, which then goes and retrieves all the associated
objects with this policy rule. From the policy objects the con-
sumer generates code that is interpreted and executed on the
fly representing the logic added in our system by the new pol-
icy rule. In our implementation, we have chosen TCL as the
scripting language due to the ease with which it interfaces
with C, since the ND component is implemented in C. Details
on the implementation of the Policy Consumer can be found
in [5]. The pseudo code of how the above policy is realized by
the Policy Consumer is shown in Figure 5.

174

TTOA: the set of TTs belonging to OA
For each tti є TTOA we get the following:
 vingress, vegress : ingress, egress nodes
 b(tti): bandwidth requirement of tti
for each tti є TTEF do
 If ((vingress == 4) and (vegress == 6))
 add_LSP (“4-9-7-6”, 2000)
 b(tti) = b(tti) – 2000
 Else
 Policy not executed – TT not found

Figure 5. Pseudo-code produced for enforcing (P1)
As it can be seen from the above pseudo-code, it first

searches for a TT in the traffic matrix that matches the crite-
ria specified in the conditions of the policy rule regarding the
OA, the ingress and egress node. If a TT is found then it exe-
cutes the action that creates an LSP with the parameters speci-
fied and subtracts the bandwidth requirement of the new LSP
from the TT in the traffic matrix file so that the ND algorithm
will run for the remaining resources. Note that if the adminis-
trator had in mind a particular customer for this LSP then this
policy should be refined into a lower level policy enforced on
the DRtM component, mapping the address of this customer
onto the LSP.

The second example (P2) of a policy rule concerns the ef-
fect of the cost function exponent in the capacity allocation of
the network. When increasing the cost function exponent the
optimization objective that avoids overloading parts of the
network is favored. If the administrator would like to keep
the load of every link below a certain point then he/she should
enter the following policy rule using again our policy nota-
tion:
If maxLinkLoad>80% then IncreaseExponent 1 (P2)

The same procedure explained in the previous example is
followed again and the policy consumer enforces this policy
by generating a script, which is shown in Figure 6.

maxLinkLoad: maximum link load utilization
after the end of the optimization algorithm

n: cost function exponent (initially = 1)
optimization_algorithm n
while (maxLinkLoad > 80)

 n = n+1

 optimization_algorithm n

Figure 6 Pseudo-code produced for enforcing (P2)
As it can be observed from Figure 7 the enforcement of the

policy rule caused the optimization algorithm to run for 4
times until the maximum link load utilisation at the final step
drops below 80%. The exponent value that achieved the policy
objective was 4n = .

70

72

74

76

78

80

82

84

86

88

90

92

1 2 3 4 5 6

cost function exponent n

M
ax

 L
in

k
Lo

ad
 (%

)

Figure 7 Effect of the cost function exponent on the maximum

link load utilisation

V. CONCLUSIONS
Supporting demanding services requires dedicated networks

with high switching capacity. In this paper we investigate the
possibility of using common IP packet networks, with Diff-
Serv and MPLS, as the key QoS technologies, in order to pro-
vision the network for such traffic. We proposed an automated
provisioning system, targeting to support demanding SLSs
while at the same time optimizing the use of network re-
sources. We seek to place the traffic demands to the network
in such a way as to avoid overloading parts of the networks
and minimize the overall network cost. We devised a non-
linear programming formulation and we proved though simu-
lation that we achieve our objectives. Moreover, we presented
how this system can be policy-driven and described the com-
ponents of necessary policy-based system extensions that need
to be deployed in order to enhance or modify the functionality
of policy influenced components reflecting high-level business
decisions.

As a continuation of this work, we are focusing on defining
policies for the rest of the components of the TE system and
explore the refinement of policies entered at ND to lower level
policies that apply to DRsM/DRtM forming a policy hierar-
chy.

ACKNOWLEDGMENT
This work was partially supported by the EC IST Project

IST-1999-11253 “Traffic Engineering for Quality of Service
in the Internet at Large” (TEQUILA) and the EPSRC/LINK
Project GR/M84169 “Production of Broadcast Content in and
object-oriented IP-based Network” (PRO-NET). The authors
would like to thank their project partners for the constructive
discussions while working on this paper.

REFERENCES
[1] S. Blake, et al. “An Architecture for Differentiated Services”, IETF Infor-

mational RFC-2475, December 1998

175

[2] E. Rosen, A. Viswanathan, R. Callon, "Multiprotocol Label Switching

Architecture", IETF Standards Track RFC-3031, January 2001
[3] D. Goderis, et al. “Service Level Specification Semantics and Parameters”,

IETF draft-tequila-sls-01.txt, December 2001 (available at: www.ist-
tequia.org/sls)

[4] M. Sloman, “Policy Driven Management For Distributed Systems”, Jour-
nal of Network and Systems Management, vol. 2, no. 4, pp. 333-360, Ple-
num Publishing, December 1994.

[5] P. Flegkas, P. Trimintzios, G. Pavlou, “A Policy-based Quality of Service
Management Architecture for IP DiffServ Networks”, IEEE Network
Magazine, vol. 16, no. 2, pp. 50-56, March/April 2002.

[6] P. Trimintzios, et al. “A Management and Control Architecture for Provid-
ing IP Differentiated Services in MPLS-based Networks”, IEEE Communi-
cations Magazine, vol. 39, no. 5, May 2001

[7] D. Grossman “New Terminology and Clarifications for DiffServ”, IETF
Informational RFC 3260, April, 2002

[8] T. Li, and Y. Rekhter, “Provider Architecture for Differentiated Services
and Traffic Engineering (PASTE)” IETF RFC-2430, October 1998

[9] Z. Wang, and J. Crowcroft, “Quality of Service Routing for Supporting
Multimedia Applications”, IEEE Journal of Selected Areas in Communi-
cations, vol. 14, no. 7, pp. 1228-1234, September 1996

[10] D. Bertsekas, Nonlinear Programming, Athena Scientific, 1999
[11] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an

internetwork”, In Proceedings of IEEE INFOCOM 96, vol.2, pp. 594-602,
San Francisco, March 1996

[12] J. Strassner, et al., “Policy Core LDAP Schema”, IETF draft-ietf-policy-
core-schema-14.txt, January 2002

[13] B. Moore, et al., “Policy Core Information Model – Version 1 Specifica-
tion”, IETF Standards Track RFC-3060, February 2001.

176

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

