Considerations on Policy-based Network Management

P. Flegkas, P. Trimintzios, I. Andrikopoulos, G. Pavlou
Centre for Communication Systems Research, University of Surrey
{P.Flegkas, P.Trimintzios, I. Andrikopoulos, G.Pavlou}@eim.surrey.ac.uk

Abstract: Policy-based Management has been the subject of extensive
research over the last decade. Most research work on policies has
concentrated in necessary fundamental aspects such as classification, policy
language, conflict detection and most recently in policy representation and
storage. Little work has been done in the area of the harmonic coexistence of
policies and traditional, possibly hierarchical, management systems. Policies,
apart from their high-level declarative nature, can be also seen as a vehicle for
“late binding” functionality to management systems, allowing for their
graceful evolution as requirements change. In this paper we are exploring the
potentiality of designing “policy-aware” management systems, in which a line
has to be carefully drawn between “hard-wired” functionality and policy logic.

1. Introduction.

One of the key motivations behind policy-based management is flexibility and graceful
evolution of the management system so that it can adapt to changing requirements over a
long period of time. This is achieved by disabling / modifying old policies and by
introducing new ones in order to meet changing requirements. A key aspect of a policy-
based management system is that changes to targets should be performed in a consistent
fashion, avoiding policy conflicts that may leave the managed system in an inconsistent
state. Conflicting actions do not occur only in policy-based management systems but are
potentially possible in any control system, which performs intrusive management actions
by modifying targets rather than simply observing them. Below we consider aspects of
policies, intrusive management and conflicts in different management frameworks.

2. Policies as Means for Programmable, Extensible Management Systems.

Enterprise networks are typically managed with SNMP, using a relatively simple
management architecture consisting of a single, centralised “network management centre
(NMC)”. The latter supervises network elements located typically in a cluster of local /
metropolitan area networks. In this architecture, the elements are typically configured one-
by-one, in an isolated fashion, through the supervision of a human network manager and
according to an overall network operation policy, which is worked out beforehand. This
means that (re-)configuration is infrequent and takes place manually. In an evolution of
this scheme, configuration parameters for every device are stored in a repository e.g. a
directory, which is contacted by the devices upon cold or warm starts so that a device picks
up necessary parameters and configures itself; this makes the system more scalable.

The NMC supervises, i.e. monitors, the managed devices, provides a view of the current
network state, alerts the human manager in case of abnormal changes but does not attempt
to reconfigure the network using automated logic. Reconfiguration is typically left to
human managers who may modify first the network operation policy using their
intelligence in order to overcome the problem. There are no conflicts in this architecture,
they might only occur because of a wrong human-derived configuration policy but, with
the right precautions, this should not happen. While this simple, centralised architecture
with emphasis in monitoring rather than control, works adequately for best-effort IP
networks, it cannot meet the needs of emerging multiservice networks with QoS



guarantees. The latter require frequent, automated configuration changes according to a
network-wide view.

Telecommunication networks are managed according to the hierarchically distributed
Telecommunications Management Network (TMN) model. Initial and subsequent (re-
)configuration of network elements occurs through element managers, which are
orchestrated by a logically centralised but physically distributed, network manager. The
latter has a view of the network-wide policy and implements it through automated logic by
supervising the network elements and reconfiguring them in order to introduce new
services or to recover from performance, fault and other problems. This management logic
can be altered to a limited extent by modifying managed objects that model its operation.
An example of TMN-influenced proactive and reactive management systems for ATM
management can be found in [1].

All configuration changes occur through a configuration manager, which holds the
physical and logical network topology and partitioning. Requests coming from service,
performance, fault and other managers are carefully validated, in order to maintain network
consistence and integrity. Despite this validation, it is possible that different managers have
conflicting configuration requirements. This can lead to inconsistent network state which
satisfies only one of them, or to race conditions, in which the managers keep requesting
changes to their preferred configuration state when they sense it has been changed back.
Such conflicts can be avoided by careful modelling, design and testing of the management
system, but conflicts may still occur at run-time when the system is stressed by real-world
conditions not previously anticipated. This is rare though and also points to system
integrity issues which are outside the scope of the paper.

Policy-based may be applied to both enterprise and telecommunication networks. The
view taken by IETF seems to be compatible with the centralised model used in managing
enterprise networks, though policy work in the research community has previously pointed
to distributed models. In this discussion we will consider the centralised model to
demonstrate the points and we will examine policies in distributed hierarchical systems in
the next section.

The key aspect of a policy-based system is that management logic is expressed through
declarative policies, evaluated in policy consumers. In the IETF model, the policy
consumer can be thought as a centralised manager, with the execution of provisioning
policies resulting in configuration operations on managed objects within network elements
[2]. In [3], the policy consumer is seen as a hybrid manager-agent where the policies
express the manager intelligence and access the co-located managed objects of the agent
part; we consider and extend this model in the next section. The essence though is that
management intelligence can be modified, added and removed by manipulating policies as
requirements change. In policy-based systems, management intelligence does not follow
the rigid analysis, design, implementation, testing and deployment cycle, and as such,
conflicts may be the norm rather than the exception. Conflict analysis and detection is
required both statically, at policy introduction and deployment time, and also dynamically,
at run time. Policies are often associated with interpreted logic but we believe their salient
characteristic to be the composition of a system from building blocks, which can be
introduced, modified and withdrawn at any time, without having rigorously tested the
resulting system in every such modification.

Taking the policy approach to the extreme, all management intelligence could be
policy-based, starting with a system, which comprises only manageable network elements
and policy consumer capabilities in the role of an “empty” centralised manager. This is the
complete opposite of the rigid, hierarchical TMN approach, but results in a pretty
undefined and fluid system, which will be very difficult to protect against conflicts, or to



even realise it with declarative policies in the first place. We see policies mostly as a
means to “late bind” functionality to an existing management system, which is
hierarchically distributed in order to meet the management needs of multiservice networks.
In this case, policies can be seen as a means to achieve “programmability” of the system
with new functionality and lead to a flexible system that can cope with evolving
requirements. We feel this is a much more realistic proposition than a purely policy-based
approach for complex management systems. Until now it is not clear how policies can be
used in the context of a hierarchical system. In the next section we consider policies that
follow and mirror the hierarchical system decomposition.

3. Hierarchical Policies.

In hierarchical management systems, hybrid agent-manager applications exist at
different levels of the hierarchy, managing ultimately network elements at the lowest level.
Manager-agent or managing-managed interactions occur top-down and possibly peer-to-
peer but never bottom-up. A hierarchy may be strict, in which case the management layer
N+1 builds on the functionality and services of layer N, or relaxed, in which case layers
may be bypassed. In the following discussion we will assume a strict hierarchy for
simplicity.

At layer N of the hierarchy, an agent-manager application comprises:

e Managed objects presenting the management capabilities of the application to the layer

N+1 (or to the same layer N for peer-to-peer interactions).

e Management logic accessing managed objects of the layer N-1 (or of the same layer N
for peer-to-peer interactions).

The managed objects constitute the top, i.e. agent, part of the application (see Figure 1),
which is why we prefer the term agent-manager as opposed to manager-agent used in the
literature. The managed objects and associated managing logic or managing objects
represent “static” management intelligence, following a rigorous analysis, design,
implementation, testing and deployment cycle. Parametrisation of the functionality of such
an agent-manager application is possible to a limited extent by configuring managed object
values. The deployment of such a hierarchy takes place bottom-up but the decomposition
and design of the whole system takes place top-down, according to the management
services to be provided.

The simplest form of introducing policies in such a system is through a separate policy
consumer point where policies execute and access managed object at various different
layers of the management hierarchy. In other words, the policies manipulate targets, i.e.
managed objects, at all the layers of the hierarchy. The problem with this approach is that
the policies are monolithic, logically and physically centralised, operating on a hierarchical
distributed system. A better approach would be to structure the policies hierarchically,
mirroring the system hierarchy, as explored next.



Policy MOs: Managed Objects

Consumer M’Os: Managing Objects
Policy
Consumer
QD o A wos
amy o amp wos | AN
Policy
Consumer
\ Policy
Consumer
QD yos A mos
Layer N
) Mos I wos

Figure 1: Hierarchical management with loosely (left) and tightly-coupled
(right) policy consumers.

In a hierarchical policy system, policies at layer N+1 operate on managed objects of
layer N. This implies in fact that these policies may be considered as part of the managing
intelligence of layer N+1, in addition to the static intelligence of agent-manager
applications. This approach is shown in the left of Figure 1. If these policies access
managed objects in more than one layer N agent-managers, they could execute at a layer
N+1 consumer point which complements the managing intelligence in this layer. If though
they access managed objects in a single subordinate agent-manager, they could execute at
that agent-manager, having local access to managed objects. In this case, the manager-
agent at layer N is programmed with policy logic that belongs conceptually to the layer
N+1 but since it relates to a particular agent-manager of the layer below, it has actually
“migrated” there. This is shown in the right part of Figure 1 where the two policy
consumers have migrated and now form an integral part of the agent-manager they relate
to. In this paradigm, every agent-manager may potentially become a policy consumer,
including of course ultimately the agents within network elements.

We view policies as complementing the static management system intelligence. One
key aspect when designing a policy-capable hierarchical system is how much intelligence
should be realised in a static fashion. Static intelligence should offer enough functionality
to allow relatively easy extension of the system through policy logic but not too much so
that there is still flexibility in terms of changing requirements. In principle, higher amount
of static intelligence leads to a more rigid, less extensible but potentially more stable
system while less amount of static intelligence leaves the system fluid, easily extensible
but may result in instability as more and more functionality is realised through policies
(more frequent conflicts etc.)

A key aspect in such a hierarchical system is policy refinement and this should naturally
follow the hierarchical composition of the system. Policies may be introduced at any level
but higher-level policies may possibly result in the introduction of related policies at lower
levels. In a similar fashion to the bottom-up deployment of a static hierarchical system,
policy hierarchies should be introduced in a bottom-up fashion, maintaining the
completeness and integrity of the policy space. Policy refinement and transformation is a
process analogous to software system analysis and design but in the context of a



hierarchical system of a specific nature, e.g. IP Differentiated Services (DiffServ) network
management, guidelines may be devised and followed.

We are thinking in particular of policy classification specific to a problem domain,
going further than the general-purpose classification encountered in the literature. For
specific classes of policies, we are thinking of policy refinement guidelines and rules that
will assist and possibly automate refinement of policy instances. We are in fact envisaging
situations in which changing parameters of a high level policy will result in changes
throughout the policy hierarchy.

4. Summary.

In this paper we first described the salient characteristics of policy-based management
and we explored their coexistence with hierarchical management systems, presenting an
initial version of a generic framework. There are many issues that are still unresolved but
the fundamental target is to be able to come up with a system that will be able to sustain
requirement changes and evolve gracefully through policies without any changes to its
carefully thought-out, “hard-wired” initial logic. We are interested in deriving generic
guidelines on how this can be done and also guidelines on hierarchical policy
decomposition and refinement. We are not sure if such guidelines can be problem domain
independent but we hope at least to produce such guidelines in the context of IP
Differentiated Services management.

References

[1] P. Georgatsos, D. Makris, D. Griffin, G. Pavlou, S. Sartzetakis, Y. T Joens, D. Ranc,
Technology Interoperation in ATM Networks: the REFORM System, IEEE
Communications, Vol. 37, No. 5, pp. 112-118, IEEE, May 1999.

[2] M. Stevens et al., Policy Framework, Internet Draft, draft-ietf-policy-framework-00.txt,
September 1999.

[3] M. Sloman, E. Lupu, Policy Specification for Programmable Networks, Proc. of the 1*
International Conference on Active Networks, Berlin, Germany, ed. S. Covaci, Springer
Verlag, June 1999.



