
Using Linear Temporal Model Checking for Goal-oriented Policy Refinement
Frameworks

Javier Rubio-Loyola1, Joan Serrat1, Marinos Charalambides2, Paris Flegkas2,
George Pavlou2, Alberto Lluch Lafuente3

1Universitat Politècnica de Catalunya, 2University of Surrey, 3Università di Pisa
1{jrloyola, serrat}@tsc.upc.edu, 2{M.Charalambides, P.Flegkas, G.Pavlou}@eim.surrey.ac.uk

 3lafuente@di.unipi.it

Abstract

Policy refinement is meant to derive lower-level

policies from higher-level ones so that these more
specific policies are better suited for use in different
execution environments. Although it has been
recognized as crucial, it has received relatively little
attention. We present a policy refinement framework
grounded in goal-elaboration methodologies and
reactive systems analysis. Through Linear-Time Model
Checking, we obtain system trace executions aimed at
fulfilling lower-level goals refined with the KAOS
goal-elaboration method. From system executions, we
abstract managed entities, conditions and actions to
encode the refined policies. We present our framework
and provide a refinement scenario applied to the
DiffServ QoS Management domain.

1. Introduction

A Policy-Based Network Management (PBNM)
system should allow the description of high-level
policies, enable their refinement into lower-level ones
and map them to commands that ultimately configure
the managed devices. Despite the enormous research
done on languages for specifying policies and
architectures for managing and deploying such policies
into distributed environments for different application
domains, policy refinement is a key area that still
remains scarcely studied.

Goal-oriented Requirements Engineering has been
proposed as a feasible alternative to formalize policy
refinement [1]. Goal-elaboration assisted by domain-
independent refinement patterns [2] has opened a new
and promising research area for policy analysis.

The representation of individual or several managed
objects is possible by defining finite state machines
that describe the multiple states in which such

managed objects can be [3], being possible to relate the
behavior of an object or a set of objects to the value of
one or more attributes that are used to characterize the
states of the system. State transitions are directly
related to changes of attributes, which policies
configure and control. The general "on-event and if-
condition then action" structure of policy rules makes
it possible to consider policy-based systems as
event/state-driven systems and use formal methods to
analyze their behavior. Model checking [4] is a formal
automated approach to exhaustively analyze whether
event/state-based systems satisfy specific behavioral
claims characterizing safety and reliability
requirements. After modeling a system and its
requirements in suitable formalisms, verification
algorithms check whether the system satisfies its
requirements by exhaustively testing all possible
combinations. One of the keys in the success of model
checking remains in its ability to find and report
counterexamples as execution traces that show the
processes, conditions, actions and states that make a
requirement not to hold.

In this paper, we present a policy refinement
approach based on Goal-oriented Requirements
Engineering and Model Checking techniques. As
initially proposed in [1], through goal-elaboration
methods, we refine lower-level goals that logically
entail high-level administrative guidelines. After this,
making use of linear temporal logic formulae and
model checking capabilities, we obtain execution
traces aimed at fulfilling the refined lower-level goals.
From system executions, relevant policy information is
abstracted and eventually encoded into a set of refined
policies. The novelty of the approach presented in this
paper is the introduction of formal verification
techniques in the context of goal-oriented policy
refinement frameworks.

The main issue behind policy refinement is to
abstract generic policy refinement patterns.
Nevertheless, abstracting patterns applicable to all
management domains is too difficult and probably
impossible. We start our study towards this direction
for a Differentiated Services (DiffServ) Quality of
Service (QoS) Management domain and present a
refinement scenario for this domain.

After this introduction, Section 2 provides the
formalisms used in our approach. Section 3 reviews
our policy refinement framework. Section 4 presents a
refinement scenario and Section 5 discusses some
important issues and future work as well. Section 6
presents the related work to conclude in Section 7.

2. Background

2.1. Pattern-driven goal elaboration

Goals capture, at different levels of abstraction, the
various objectives a system should achieve [5]. They
provide the rationale for requirements elaboration.
Many goal classifications have been presented in the
literature and different approaches for goal-oriented
elaboration and reasoning techniques have been
developed in the Requirements Engineering (RE) area
[5]. A temporal classification of goals is based on the
behavior prescribed by the goal. The following are
identified:

• Achieve and Cease goals obey to system
behaviors that require some target property to
be eventually satisfied or denied respectively,
in some future state.

• Maintain and Avoid goals restrict behaviors,
in that they require some target property to be
permanently satisfied or denied respectively,
in every future state.

We will follow the above classification for
reasoning analysis since it can be related to the
obligation, refrain, authorization and negation
concepts, widely used in policy-based management.

Several approaches have been proposed to
formalize goal elaboration [5]. For the reasons
expressed above, we propose to use support provided
by goal refinement methodologies grounded in
temporal logic. As initially proposed by [1], we use
KAOS [2], a formal technique to elaborate goals
inspired by the classic linear temporal logic of Manna
and Pnueli [6]. In the remaining of this section we
briefly outline KAOS.

By definition, a set of goal assertions G1, G2,…,Gn
is a complete refinement of a goal assertion G iff the
following conditions hold:

1. G1∧G2∧…∧Gn |= G (entailment)
2. ∀ i,j: j≠i → Gj |≠ Gi (minimality)
3. G1∧G2∧…∧Gn |≠ false (consistency)
4. n > 1 (nonequivalence)

The KAOS method contains two essential operators

to relate goals: AND and OR refinement. The former
relates a goal to a set of subgoals in which satisfying
all subgoals in the refinement is a sufficient condition
for satisfying the high-level goal. OR-refinement
relates a goal to an alternative set, satisfying a
refinement is a sufficient condition for satisfying the
goal.

In KAOS, a refinement pattern is a one-level AND-
tree of abstract goal assertions such that the set of leaf
assertions is a complete refinement of the root
assertion. The KAOS method proposes the general
principle of reusing domain-independent refinement
patterns. These patterns have been included in a set of
libraries [7] that have been previously proved to be
correct. The libraries are grouped by the behavior
prescription of the high-level goals, namely Achieve,
Cease, Maintain and Avoid. Due to space limitations
and to the nature of the scenario proposed in Section 4,
we limit our study to Achieve refinement patterns; the
interested reader might consult [7] for an extended
description. Table 1 shows some AND-decomposition
patterns for high-level Achieve parent goals.

Table 1.Some prepositional patterns for achieve goals
RP Subgoals

RP1 P∧ R→◊Q P →◊R P→ P W Q
RP2 P → ◊R R→ R U Q
RP3 P → ◊R R → ◊Q
RP4 P∧ P1→◊Q1 P∧ P2→◊Q2 □(P1∨ P2)

 Q1 ∨ Q2 →Q
RP5 P ¬∧ R→◊R P∧ R→ ◊Q P→□P
RP6 ¬R→ ◊R P∧ R→ ◊Q P→□P

Table 1 presents different refinement patterns (RPs)
that represent different possibilities to decompose the
high-level goal into the respective subgoals. The
Achieve goal is formally expressed as P→◊Q: If P then
eventually Q in the future. We use the classical
temporal operators: ◊ eventually in the future, □
always in the future, U always in the future until and W
always in the future unless. RP3 for instance, defines a
milestone-driven tactic where an intermediate state
satisfying R must first be reached, from which a final
state satisfying Q must be reached. RP4 proposes
decomposition by cases. KAOS provides the necessary
support to hierarchically structure goals as graphs by

using different tactics in which the lower-level
subgoals logically entail the higher-level goal.

2.2. Linear temporal model checking

Model Checking [4] is a formal and automated

application of computational logic with high relevance
in concurrent and distributed systems verification. As
shown in Figure 1, it consists of three main processes:
modeling system behavior, modeling the requirements
specification of the system and verifying whether the
system satisfies its specification.

Figure 1. Model checking basic steps

Different formalisms have been proposed to model

system behavior, each tailored for specific domains.
Amongst the most common, labeled transition systems
(LTSs) are typically used. An LTS is a set of states
together with a transition set, modeling how a system
changes its state. Additionally, a labeling function is
used to relate states and transitions with observations.

The second process corresponds to the requirements
specifications' modeling. At this stage, system
observables like events, state of variables or the
processes responsible of the transitions are the subject
of interest. In fact, observations of a system are crucial
to specify the requirements for the correctness of an
event/state-based system. A fundamental dimension is
time and how observables are time-related. This is
precisely the aim of temporal logics. The use of a
specific logic depends on the type of verification to be
performed. Different model checkers have been
developed for different temporal logics. Different
temporal logics and model checkers can be found in
[6] and [4] respectively.

The third process is the verification of the
requirements specifications under "all" circumstances
of system execution. It attempts to span the entire state
space and verify every possible combination of inputs
(events and conditions). If a requirement (i.e. a

property) does not hold, model checkers can help to
identify the input sequence that triggers the failure (i.e.
conditions, events and states that made the property
not to hold). This ability has made model checking so
successful for reactive systems verification.

In our study, we need to have a mechanism that
allows one to express the ordering of events in time
where observations are extended with temporal
connections such as “eventually in the future” or
“always in the future”. We will then focus our work on
Linear Temporal Logic (LTL) Model Checking
verification. LTL formulae are interpreted over
computations of a system with sequences of states
representing executions of a system. If we let P be a set
of observable predicates, and f and g be LTL formulae
on P, then the representations shown on Table 2 are
also LTL formulae. The predicates and boolean
connectives expressed in the first row formulae have
the usual meaning. For the second row formulae,
operator ○ next state is used in addition to those
described in Section 2.1, formula ○f would be satisfied
if the next state of the computation satisfies f. The
interested reader might consult [6] for extended
description of LTL formulae.

Table 2. Different LTL formulae
¬ f f || g f && g f → g f ↔ g
○f □f ◊f f U g f W g

Broadly speaking, with LTL model checking we

can design and verify typical temporal properties that
express absence, universality, existence, precedence
and response of observable predicates and any
combination of these. A guide of how to design
formulas using temporal descriptions can be found at
[8].

If we were to verify a property of an event/state-
based system in which P is globally absent (formally
expressed as □!P), we could get a counterexample
trace indicating the conditions, states, events and
transitions that make such absence not to hold, namely
the occurrence of P. From the counterexample, it is
also possible to identify the managed entities that
collaborate to make the absence not to hold. In other
words, we can use LTL formulae to obtain the
conditions, states, events and transitions and the
managed entities’ collaboration that make P to hold.
This is the basic idea behind the approach presented in
this paper; counterexamples traces can be interpreted
as plans that make the system satisfy determined
properties using a fully automated formal method.

As a model checking tool we use SPIN [9], a LTL
model checker that focuses on the verification of
concurrent software systems. It uses Promela [9] as the

D om ainrequestR eceived
requestN otA ccepted

requestR eceived
requestA ccep ted

T em pora l form ula

requestR eceived & requ estN otA ccepted ->
even tua lly (requ estR eceived & r equestA ccep ted)

M ode l
C hecker

Y es

N o!!

C ounterexam ple trace

System behaviour

R equirem ents Spec ifica tion

V erifica tion o f
requ irem ents

requestR eceived

requestA ccep ted

modeling language. Promela specifications are
basically state machines that communicate via
message-passing or shared variables. Requirement
specification can be done using some ad-hoc
mechanism to express deadlock-freedom or validity of
assertions, but, more generally, LTL is used. Not only
does SPIN provide the possibility to verify properties
but also to simulate the system and obtain/reproduce
counterexamples. As we will see, these capabilities are
relevant for our refinement analysis.

3. Policy Refinement Framework

Goal refinement must eventually result in the

identification and specification of requirements whose
responsibility must be assigned to agents [2]. Our
approach to policy refinement is shown in Figure 2.

Figure 2: Overall process for policy refinement

The following steps may be followed to

systematically deploy policies from high-level goals:

• Goal graph elaboration
• Responsibility assignment to managed entities
• Operationalization (both part of the Counter-

example Management)
• Policy encoding

In the Goal graph elaboration step, AND/OR

structures are built, defining goal hierarchies and their
refinement links. High-level goals are decomposed
using domain-independent refinement pattern libraries
following the KAOS elaboration method. The desired
outcome of this step is a set of lower-level goals that
logically entail higher-level ones. From the many
options of the structured goal graph, the administrator
selects the lower level goals that better satisfy his

requirements: lower-level goal selection sub step of
Figure 2. While the KAOS elaboration method
provides support for this first step, it does not provide
support to relate system behavior to goal fulfillment
finding. Nevertheless, in order to carry out the
following steps, this gap needs to be filled.

As described in Section 2.2, the inputs of model
checking are the specification of system behavior and
that of requirements. For the former, we propose
graphical representation, as depicted in Figure 2. As
mentioned, the modeling language of SPIN is
PROMELA [9] whose specifications are expressed
basically as state machines that communicate via
message passing or shared variables. The procedure to
translate graphic state charts or other visual modeling
languages into PROMELA is out of the scope of this
paper, this issue has been widely studied in the
literature [10]. Regarding the other input of Model
checking, i.e. the specification of requirements, the
Property formulation step shown in Figure 2 is aimed
at designing property formulae that characterize lower-
level goals. As in plan-based techniques [5], lower-
level goals are identified by state predicates, hence the
requirements must be characterized by such lower-
level goals. The Property formulation step takes into
account temporal information in which the lower-level
goals have been constructed. As described in Section
2.2, a very important issue here is that the requirements
are encoded into LTL formulae that basically describe
the absence of the behavior prescribed by the low-level
goal predicates. For example, if the low-level goals
G11 and G31 must be fulfilled to satisfy a high-level
goal G, and their temporal behavior is such that G11
must be fulfilled before G31, we might encode a
temporal formula specifying that G31 is never fulfilled
after G11. That way, the execution trace might indicate
system behavior to achieve G13 after G11 and
consequently G.

The property management process inside the MC
Management module is aimed at coordinating the
query to the model checker (SPIN). When the model
checker is queried with LTL formulae, it generates
counterexample traces that might be interpreted further
for the following refinement steps. Due to the nature of
the requirement specification (absence-based), the
counterexample will display the execution trace that
results as a consequence of the presence of the
predicates and the desired temporal behavior.

For the Managed entities responsibility assignment
and Operationalization steps, a systematic
interpretation of the counterexample trace generated by
SPIN is necessary. Both steps are part of the
Counterexample management process shown in Figure
2. One of the outputs of SPIN is a sequence chart. For

High-level goals

System behavior

Object
distribution

Refinement
pattern

database

Goal graph elaboration
preProcessing

G9: delayLoss
Estimation

G13:delayLossEstimation
AndResAllocatedG10:

conservative
G11:

optimistic

G14: delayLoss
Estimation G18: explicitRes

Allocated

G12:
average

G15:
conservative

G16:
optimistic

G17:
average

G19: resourceAnd
LinkAllocated

G25: rescourceAnd
LSPAllocated

G31: explicit
Allocation

G32: LSP
ExpSetUp

G37: LinkBW
ExplicitlySetUp

G33: rangeRes
Allocated

G30: LSP
ExplicitlySetUp

G26: resources
Allocated

G24: Link
Explicitly SetUp

G20: resources
Allocated

G27: minRes
Allocated

G28: max
ResAllocated

G29: range
ResAllocated

G21: minRes
Allocated

G22: maxRes
Allocated

G23: range
ResAllocated

RP4’

RP4

RP3

RP4’

RP4’

RP3

RP3

RP4’
RP3

RP3

G34: minRes
Allocated

G35: maxRes
Allocated

G36: range
ResAllocated

RP3

[] (G15 -> [] (! G32))
¦¦ [] (G78 -> [] (! G92))

MC Management

Property formulation

SPIN

Property
mgmt

Counter-
example mgmt

Policy encoding
inst oblig busyHoursNDDelayLossEstimation {
on doRPC();
subject managers/TrafficEngineering/ND;
target CountDerivationManager;
do calculate_hop_count(EF, maxDelayLink);
when time.between (“0800” and “1200”); }

Policy deployment

Lower-level
goal selection

the responsibility step, we take this message sequence
chart to select the managed entities responsible to
achieve the administrative decisions. This information
and the object distribution information are used in the
final step of refinement as shown later.

Undoubtedly, the Operationalization process is
crucial for policy refinement. It implicitly includes the
responsibility assignment in the sense that the
operationalization step goes into the details of the
counterexample trace to identify the actions that the
managed entities may take. For our refinement
problem, the Operationalization step is particularly
focused at finding the processes that imply decisions in
order to identify the conditions, transitions and
operations that are meaningful for policy encoding. For
this step of the refinement we rely on the SPIN
capabilities to generate detailed traces from which this
valuable information is obtained.

Finally, the Policy encoding step takes as input the
information described above and the object distribution
in order to encode the policies in a policy specification
language. We have considered Ponder [11]. Following
its deployment model, the refined policies can be
compiled and deployed in the policy-based system.

4. Policy Refinement Application Scenario

The specialization of refinement patterns applicable
to all management domains is very difficult. In
practice, specialization patterns might be abstracted
from specific policy applicability areas. We present a
policy refinement scenario applied to DiffServ QoS
management. We describe the steps of the refinement
process applied to this domain and the feasibility of
our approach.

4.1. Application domain

The application domain of our scenario relies on the

framework developed in the context of the EU IST
TEQUILA project [12]. TEQUILA provides a policy-
based functional architecture for supporting QoS in IP
DiffServ networks. The generic architecture of the
TEQUILA framework is shown in Figure 3. It is
decomposed into three major subsystems, namely; the
Service Level Specification (SLS) management, the
Traffic Engineering (TE) and Monitoring system. The
former is responsible for agreeing QoS services (SLSs)
with customers and handling respective requests while
the TE subsystem is responsible for fulfilling the
contracted SLSs by appropriately engineering the
network. Due to space limitations, we will focus on the
TE part of TEQUILA, particularly the Network

Dimensioning (ND), in order for the reader to better
understand the scenario proposed in Section 4.2. More
details about TEQUILA can be found at [12] and [13].

Figure 3: Generic architecture of TEQUILA

ND is responsible for mapping the traffic onto the

physical network resources in order to accommodate
the forecasted traffic demands. Configuration includes
the definition of Label Switched Paths (LSPs) and
anticipated loading for each Per Hop Behavior (PHB)
on all interfaces. The output of ND is provided to
DRtM and DRsM, and also to SLS Management in
order to base the admission control decisions for future
SLS subscriptions. ND is decomposed in the following
subcomponents: Traffic Matrix Manipulation: this is
responsible for retrieving the Traffic Matrix (TM)
from Traffic Forecast and also provides functions for
manipulating entries in the TM. Network topology: this
holds the objects describing the physical network
topology together with the physical capacity of the
network links. Explicit LSP and BW allocation: this
offers methods that can explicitly define the MPLS
Labeled Switched Paths (LSPs) that Traffic Trunks
(TTs, aggregates of traffic flows with the same origin-
destination pair and same performance requirements)
should follow (expLSP state in Fig. 4). This
subcomponent also offers methods that can explicitly
define the way bandwidth (BW) should be allocated to
different traffic classes Ordered Aggregates (OAs,
minResAlloc and masResAlloc states in Fig. 4). Hop
Count Derivation: this provides functionality to handle
the QoS requirements of the expected traffic in terms
of delay and loss requirements by transforming them
into maximum hop count constraints (see
minDelayLoss, maxDelayLoss and avgDelayLoss
states in Fig. 4). Optimization Algorithm: its objective
is to find a set of paths for which the BW requirements

SLS
subscription

SLS
invocation

Traffic
Forecast

Traffic
Matrix

Network
Dimensioning

Dynamic
Resource Mgmt

Dynamic
Route Mgmt

Subscribed
SLSs

Resource
Availability

Matrix

Resource Provisioning Cycle

RI3

RI4

RI6

RI1

RI2
RI7

RI5 RI8

RE3

RE1

RE2

L1

L2
L3

L4

L5 L7 L8

L9

L10L11
L12 L13

L6

L14

L15

Network Monitoring

Traffic
Engineering

SLS
Mgmt

OFFLINE
ONLINE

Customer Traffic

Invocation

SLS

of the TTs are met as well as the requirements for
delay and loss by using the hop count constraint as an
upper bound and at the same time optimize the use of
network resources. ND allows setting upper bounds on
the number of hops the calculated paths are permitted
to have and on the number of alternative paths for
every TT for load balancing purposes (hopBalancing
and pathBalancing states in Fig. 4). It provides
functions to customize the BW allocation by setting
importance guidelines for a particular OA (cost
function settings; min/max/expCostResAlloc states in
Fig. 4). It also supports two optimization objectives: i)
avoid overloading parts of the network while other
parts are under loaded (minLinkLoad state in Fig. 4) or
ii) provide overall low network load (maxNetLoad
state in Fig. 4) . A compromise between these two
options is also possible (netCompromised state in Fig.
4). Spare/over-provisioned BW treatment: this assigns
residual physical capacity to the various classes
(spareCap states in Fig. 4) or reduces the allocated
capacity (OverCapacity states in Fig. 4) when link
capacity cannot satisfy the predicted traffic
requirements. Due to the complexity of the ND
component, we consider the summarized behavior
specification shown in Figure 4.

Figure 4: Simplified behavior of ND module

4.2. Scenario description

Consider the case where a set of subscribed SLSs

includes one from the "AOL" client for which the
administrator wants to ensure that specific
dimensioning directives be enforced especially during
specific periods of time, namely during busy hours
(8:00 to 12:00hrs and 15:00 to 17:00hrs). Consider
also that the AOL client in the network of Figure 3 has

contracted an SLS with the following technical
parameters:

• A pipe between routers RE1 and RE2 with EF
PHB, 5ms delay, zero packet loss and assured
throughput of 5Mbps.

We consider that pipe defines the boundaries of the
QoS to be enforced as a “one-to-one” ingress-egress
SLS model. During busy hours, the administrator
wants to ensure that traffic entering the domain from
the node RE1 and exits from the node RE2 belonging
to such Ordered Aggregate (OA), follows the route
RE1-RI1-RI3-RI6-RE2. Additionally, due to the strict
requirements of delay and packet loss, the
administrator wants to be extremely conservative for
the hop-count estimation for traffic of the same QoS-
class as that of the “AOL” client. During busy hours,
the administrator wants to avoid under-loaded parts of
the network when other parts are overloaded and wants
to make sure that any spare capacity is equally split
amongst the PHBs.

The administrator will need to encode these
administrative goals into policies, considering the
managed entities that would enforce them, the actions,
conditions and constraints for their execution.
Considering that not only might the administrator
design policies for the ND module but for other
components in the TEQUILA framework, this task
might become extremely difficult.

4.3. Proposed solution

4.3.1 Step 1: Goal graph elaboration

Since the requirement of the administrator in the
above scenario is to ensure a given behavior, we use
the Achieve goal refinement patterns described in
Section 2.1. The final goal of the administrator is that
appropriate administrative directives are stored and
propagated to the underlying components. This high-
level goal can be formulated using the following
Linear Temporal specification:
G1 busyHoursDimensioning:

TM_busyHours → ◊ configStored&Propagated

G1 is interpreted as: "when retrieving the traffic
matrix, appropriate ND directives for busy hours

should eventually be configured, stored and
propagated to the underlying components". Applying
the case-driven refinement pattern RP4 of Table 1, we
derive the subgoals G2 and G3, formally expressed as
follows:
G2 preProcessing&Calculation:

TM_busyHours /\ preProcessed&Calculated →
◊ configStored&Propagated

idle

getting
Forecast

avgDelay
Loss

maxDelay
Loss

minDelay
Loss

expLSP

pre-processing

DRsM

maxRes
Alloc

minRes
Alloc

doRPC()

calcHopCountMin()
calcHopCountMax()

calcHopCountAvg() setupLSP()
setMinBW() setMaxBW()

calculating

Path
Balancing

Hop
Balancing

maxNet
Load

minLink
Load

maxCost
resAlloc

net
Compromised

minCost
resAlloc

expCost
resAlloc

equallySplit
SpareCap

propSplit
SpareCap

expSplit
SpareCap

equallySplit
OverCapacity

propSplit
OverCapacity

expSplit
OverCapacity

Post
processing

store&
propagate

setCompE()

setMaxNetE()
setMinLinkE()

setExpCost()

deployConfig()

deployConfig()

setMaxCost()
setMinCost()

setMaxAltPath()
setMaxHops()

redBWExpl()redBWProp()

redBWEqually()
spareCapExplicitly()

spareCapProp()

spareCapEqually()

doRPC

G3 preProcessingAndPostProcessing:
TM_busyHours /\ pre&PostProcessed →

◊ configStored&Propagated
For each of these sub-goals (G2 and G3), we apply a
milestone-driven refinement tactic (RP3 of Table 1).
For G3, this has to be extended since RP3 is only
applicable for a single milestone refinement pattern.
We propose to extend RP3 and RP4 to make them
suitable for a multiple milestone-driven and case-
driven fashion respectively. RP3 and RP4 are modified
as depicted in Table 2.

Table 2. Some extended refinement patterns
RP Subgoals

RP3’ P → ◊ R R → ◊ S S → ◊ Q
RP4’ P /\ P1 → Q1, P /\ P2 → Q2, P /\ P3 → Q3,

□(P1\/P2\/P3), Q1\/Q2\/Q3 → Q

Applying RP3 and RP3' to G2 and G3 respectively, we
elaborate the goal graph shown in Figure 5.

Figure 5: Initial high-level goal elaboration

Lower-level goals preProcessing (G4), calculation
(G5), preProcessing (G6), calculation (G7) and
postProcessing (G8) are represented as follows:
G4: TM_busyHours /\ preProcessed&CalculatedReq/\
preProcessedReq → ◊ calculated
G5: calculatedReq → ◊ configStored&Propagated
G6: TM_busyHours /\ pre&PostProcessedReq /\
preProcessedReq → ◊ calculated
G7: calculatedReq → ◊ postProcessing
G8: postProcessingReq→ ◊configStored&Propagated

From this initial goal-decomposition, it is not feasible
for the administrator to select the sub-goals that best
satisfy the high-level goals, so further decomposition is
needed for these lower-lever goals (G4 to G8).
Applying similar refinement guidelines, we elaborate
the goal graph for the preProcessing subgoal (G4 and
G6) as shown on Figure 6. In order to compose this

goal graph, RP3 and RP4 have been used. We have
used the extended RP4’ shown in Table 2 to refine G9,
G14 and G18 into their respective subgoals. Taking
delayLossEstimation (G9) as a high-level goal,
subgoals conservative (G10), optimistic (G11) and
average (G12) are refined. They are formally
represented as follows:
G9: preProcessReq/\delayLossEstReq→ ◊ calculated
G10: preProcessedReq/\delayLossEstReq/\
conservativeReq → ◊ calculated
G11: preProcessedReq/\delayLossEstReq/\
optimisticReq → ◊ calculated
G12: preProcessedReq/\delayLossEstReq/\
averageReq → ◊ calculated

Similar temporal representations can be obtained for
the remaining subgoals. Regarding the calculation and
postProcessing sub goals shown in Figure 5, they are
refined similarly and their goal elaboration hierarchies
are shown in Figures 7 and 8 respectively.

Figure 6: Pre processing goal graph

Figure 7: Calculation goal graph

G1: busyHours
Dimensioning

G2: preProcessing
andCalculation

G3: preProcessing
AndPostProcessing

G4:
preProcessing

G5:
calculation

G6:
preProcessing

G7:
calculation

G8:
postProcessing

OR decomposition
AND decompositionRP4

RP3 RP3’

G5, G7:
calculation

G53:
Optimised

G54: costFct
Configured

G55: min
Importance

G56: max
Importance

G57: expl
Importance

G58: costAndLoad
Compromised

G59: costFct
Configured

G63: loadNet
Compromised

G67: loadNet
Compromised

G69: maxNet
LowLoaded

G70: expLoad
Compromised

G68: mnLink
Overloaded

G47: balanced

G51: hop
Limtied

G52: path
Limited

G48: hop&
pathBalanced

G50: path
Limited

G49: hop
Limited

G29: Optimised

G30: costFct
Configured

G31: min
Importance

G32: max
Importance

G33: expl
Importance

G34:costAndLoad
Compromised

G35: costFct
Configured

G36: min
Importance G37: max

Importance

G38: expl
Importance

G39: loadNet
Compromised

G40: minLink
OverLoaded

G41: maxNet
LowLoaded

G42: expLoad
Compromised

G43: loadNet
Compromised

G45: maxNet
LowLoaded

G46: expLoad
Compromised

G44: mnLink
Overloaded

G28: balanced
&Optimised

G60: min
Importance

G61: max
Importance

G62: expl
Importance

G64: minLink
OverLoaded

G65: maxNet
LowLoaded

G66: expLoad
Compromised

OR decomposition
AND decomposition

G4, G6:
preProcessing

G9: delayLoss
Estimation

G13:delayLossEstimation
AndResAllocated

G10:
conservative

G11:
optimistic

G18: Res
Allocated

G12:
average

RP4

RP3
RP4’

G19: LSP
ExpSetUp

G20: res
Allocated

G21: minRes
Allocated

G22: maxRes
Allocated

RP3

G23: rescourceAnd
LSPAllocated

G27: LSP
ExplicitlySetUp

G24: resources
Allocated

G25: minRes
Allocated

G26: max
ResAllocated

RP3

RP3

RP4’

G14: delayLoss
Estimation

G15:
conservative

G16:
optimistic

G17:
average

RP4’

OR decomposition
AND decomposition

G8:

postProcessing

G84: overProvisioning
Treatment

G85: red
Proportionally

G86: red
Equally

G87: red
Explicitly

G81: split
Proportionally

G71: spare&Over
Treatment

G72: spare
Configured

G73: split
Proportionally

G74: split
Equally

G75: split
Explicitly

G76: overProvisioning
Configured

G78: red
Equally

G79: red
Explicitly

G77: red
Proportionally

G82: split
Equally

G83: split
Explicitly

G80: spare
Treatment

OR decomposition

AND decomposition

Figure 8: Post processing goal graph

Analyzing the description of the administrative

high-level goal, we consider that the administrator's
requirements are fulfilled by satisfying the subgoals
G15, G19, G68 and G82.

4.3.2 Step 2: Responsibility assignment and
operationalization of goals

Due to the distribution of modules in the TEQUILA
architecture, as in any distributed system, fulfilling a
high-level goal may require the cooperation of a
combination of multiple components. The fist step
towards Responsibility assignment in our framework is
to design a temporal property that characterizes
absence of the system behavior that could make the
lower-level goals be fulfilled. For this purpose, we
design the following LTL property:

□(G15 → □(¬G19)) || □(G68 → □(¬G82)) …. (P1)

The interpretation of P1 is: “there is no system

behavior in which either, state G19 is true after G15 or
G82 is not fulfilled after G68”. By querying SPIN with
P1, the counterexample generated would give the
opposite: “system behavior in which both G19 is
fulfilled after G15 and G82 after G68 respectively”.
For a detailed description of how to make up similar
specification patterns the reader may consult [8]. One
of the outputs of the counterexample generation
process is a message sequence chart from which the
managed entities in charge of enforcing the
administrative guidelines are easily identified. The
abstract message chart of our scenario is shown in
Figure 9. From this chart, we identify the following
components responsible to enforce the administrative
guidelines: hop Count Option module, explicit

Route/BW Selection, optimisation and
spare/overprovisioning treatment modules.

Figure 9: SPIN abstract message chart

For the operationalization step, we go into the

detailed counterexample trace generated by SPIN. This
implicitly includes the responsibility assignment step
in the sense that operationalization goes into the details
of the trace to identify the actions that the managed
entities may take to achieve the administrative
guidelines. In Figure 10 we show the counterexample
trace for our ND scenario after a basic filtering
process. The first bracket corresponds to the condition
that enables the system behavior of our
counterexample. The subsequent brackets indicate
which actions the managed entities may take to fulfill
the high-level guidelines. The first three lines of each
of these brackets indicate that the managed entity
needs to be invoked and the invocation needs to be
attended (values from 1 to 0). The fourth line indicates
what action the managed entity needs to take. Finally,
the 5th line sets the attributes of the managed entity
that determine the desired state goal.

Figure 10: SPIN Detailed trace

Hop count derivation entity
Action:
calculate_hop_count(OA, max)

Explicit LSP/BW allocation
entity
Action:
setup_LSP(OA, {nodes}, bw)

Optimisation entity
Action:

set_exponent(max)

Spare and Over provisioning
entity
Action:
alloc_spare_bw(OA, equally)

|>(_doRPCAction)
|>dm_fine.dmState_fine = GettingForecast

| |>_hopcountConsideration = 1
| |>(_hopcountConsideration)
| |>_hopcountConsideration = 0
| |>calculate_hop_count_max = 1
| |>dm_fine.dmState_fine = maxDelayLoss

| | |>_explicitRoute_BWSelection = 1
| | |>(_explicitRoute_BWSelection)
| | |>_explicitRoute_BWSelection = 0
| | |>setup_LSP = 1
| | |>dm_fine.dmState_fine = expLSP

| | | |>_optimisationProcess = 1
| | | |>(_optimisationProcess)
| | | |>_optimisationProcess = 0
| | | |>set_exponent_Max = 1
| | | |>dm_fine.dmState_fine = minLinkLoad

| |>_spareAndOverprovisioningTreatment = 1
| |>(_spareAndOverprovisioningTreatment)
| |>_spareAndOverprovisioningTreatment = 0
| |>Alloc_spare_bw_equally = 1
| |>dm_fine.dmState_fine = equallySplitSpareCap
| |>_storeAndPropagation = 1

Condition: doRPC()

72

DMinvocation:1

72

hopCountOptionModule:2

72

explicitRoute_BWSelection:3

72

optimisationProcess:4

72

spareAndOverprovisioningTreatment:5

72

storingAndPropagation:6
Decision-based
components
Of ND Module

4.3.3 Step 3: Policy encoding

Once conditions, managed entities and actions have
been identified, we need to encode the policies whose
enforcement might reproduce the counterexample
traces obtained in the previous step. In Ponder [11],
Obligation policies are event-triggered and define the
activities (actions) that subjects must perform on
targets. The event triggering our policies is the
condition identified in the last section (doRPC). The
subject is the automated manager component in charge
of enforcing the ND policies (ND_PMA). The targets
are the managed entities and the actions are identified
in the last section (hop Count Derivation Manager,
Explicit Allocation Manager, Optimisation Manager
and Spare/Over Provisioning BW Manager). It is
evident that the applicability of these policies is
restricted by administrative decisions (only during
busy hours), hence these constraints are directly
mapped to the obligation policy constraints. The
resulting set of the refined policies for our scenario is
shown in Figure 11.

inst oblig busyHoursNDDelayLossEstimation {
on doRPC();
subject ND_PMA;
target managers/TE/ND/hopCountDerivationManager;
do calculate_hop_count(EF, maxDelayLink);
when time.between ("08:00", "12:00") and time.between ("15:00",
"17:00"); }

inst oblig busyHoursNDAllocation {
on doRPC();
subject ND_PMA;
target managers/TE/ND/ExplicitAllocationManager;
do setup_LSP(EF, {RE1, RI1, RI3, RI6, RE2}, 5000);
when time.between ("08:00", "12:00") and time.between ("15:00",
"17:00"); }

inst oblig busyHoursNDOptimisation {
on doRPC();
subject ND_PMA;
target managers/TE/ND/OptimisationManager;
do set_exponent(maxValue);
when time.between ("08:00", "12:00") and time.between ("15:00",
"17:00"); }

inst oblig busyHoursNDOverProvisioning {
on doRPC();
subject ND_PMA;
target managers/TE/ND/SpareOverProvisioningBWManager;
do alloc_spare_bw(EF, equally);
when time.between ("08:00", "12:00") and time.between ("15:00",
"17:00"); }

Figure 11: Set of policies resulting from the

refinement process

5. Discussion and future work

Two issues about counterexample generation
deserve discussion. The first is when no
counterexamples are found. Two options might cause
this problem additional to exhaustion of the time and
space available to the model checker: 1; Wrong goal
refinement patterns applied to elaborate the goal-
graph. 2; The behavior of the system mismatches the
temporal goal elaboration. To overcome these
problems, an additional activity of Requirements
Engineering is needed, namely Alternative selection of
goals [5]. An additional alternative would be to extend
the system specification. A potential compromise
between these two options needs to be studied further.

The second issue is when more than one
counterexample is found. This might imply that the
administrator could choose between different options,
corresponding to different policy encodings, possibly
for different conditions. A comparative notion of
multiple counterexamples will also be part of our
future work.

The core of our work will be directed to provide
tool support to automate the processes presented in this
paper. We have envisaged the use of Objectiver [14]
for goal-elaboration/management and ArgoUML and
Hugo/RT [10] for behavior and PROMELA translation
processes respectively. Additionally, for large-scale
systems, work by Edelkamp and Lluch [15] will be
included to provide support with guided search
techniques additional to those provided by SPIN.

Additionally, we will study other temporal formulae
and goal elaboration patterns aimed at formalizing
inconsistencies between goals and between policies.
Additionally, the verification of other temporal
behavior prescription like universality, existence,
precedence and response would be used to explore
system behavior aimed at verifying such properties to
find inconsistencies or potential conflicting behaviors.

6. Related work

POWER [16] is one of the few policy refinement
approaches hitherto implemented. Our approach differs
to POWER in the sense that the latter is an
environment in which the user is guided to choose
policies from pre-designed policy templates designed
by an expert, tailored for specific use. Instead, we use
space exploration to find system behavior that satisfies
pre-refined high-level goals in a goal-oriented
framework. We consider reactive system analysis
through temporal verification and model checking.

More recently, work by Bandara et al [17] propose
an approach for transforming both policy and system
behavior specifications into a formal notation based on
Event Calculus (EC). The authors use goal elaboration
and abductive reasoning to derive strategies that would
achieve high-level goals. Our approach and the EC-
based approach differ in the way system behavior is
analyzed and in how policy information is abstracted.
While Event Calculus and abduction is used in the
former to infer the sequences of actions that achieve
particular goals, our approach goes through state
exploration to obtain system behavior that fulfils
lower-lever goals elaborated through temporal
refinement patterns. We encode policies using the
information abstracted from the execution trace while
in the EC-based approach these are encoded using the
generated strategies. The main advantage of the model
checking-based framework over the EC-based
framework is that the former can be used in situations
where it is necessary to account for an explicit
temporal execution of the goals when performing
refinement. This has not been addressed in the EC-
based approach [17]. At the time of this publication,
there is no evidence of performance evaluation of any
refinement approach. Future work will also address
comparative evaluations between the EC-based
approach and our framework.

7. Conclusions

We have presented an approach to policy
refinement based on Requirements Engineering and
model checking techniques. It allows find system
executions aimed at fulfilling low-level goals that
logically entail high-level administrative guidelines.
From system executions, policy information is
abstracted and eventually encoded into a set of refined
policies specified in Ponder [11]. We have described
the foundations, the reasoning of our approach and the
refinement process through a scenario applied to the
DiffServ QoS Management domain.

The main contribution of our work is the
introduction of formal verification techniques in the
context of policy refinement. This approach is novel
and opens a new front of study for policy analysis. We
hope that our proposal may contribute to solve the
policy refinement problem, so many times recognized
as crucial but at the same time so much dismissed.

Several outstanding issues have been identified.
Amongst the most important, we can mention the lack
or the existence of more than one solution (i.e. none or
more than one counterexample), the partial or total
automation of the involved processes and finally, the

scalability of framework directly related to “state
explosion” problem. All these issues have been
assessed and will be the focus of our work.

8. References

[1] A.K. Bandara, E.C. Lupu, J. Moffett, A. Russo; "A goal-
based approach to policy refinement" Fifth IEEE
International Workshop on Policies for Distributed Systems
and Networks, 2004
[2] R. Darimont and A. van Lamsweerde, "Formal
Refinement Patterns for Goal-Driven Requirements
Elaboration," 4th ACM Symposium on the Foundations of
Software Engineering (FSE4) No. 179-190, 1996.
[3] C.J. Strassner. Policy-based Network Management,
Solutions for the Next Generation. Elsevier, Morgan
Kaufmann Publishers 2004. ISBN: 1-55860-859-1
[4] E.M. Clarke, O. Grumberg, and D.A. Peled. Model
Checking. The MIT Press, 1999.
[5] A. van Lamsweerde “Goal-Oriented Requirements
Engineering: A Guided Tour”. 5th IEEE International
Symposium on Requirements Engineering, Toronto, August,
2001, pp. 249-263.
[6] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Specification. Springer, 1992
[7] R. Darimont, Process Support for Requirements
Elaboration, PhD Thesis, Université Catholique de Louvain,
Louvain-la-Neuve, Belgium, 1995.
[8] M. B. Dwyer, G. S. Avrunin and J. C. Corbett. “Property
Specification Patterns for Finite-State Verification”
Workshop on Formal Methods in Software Practice 1998.
[9] G. Holzmann. The SPIN Model Checker: Primer and
Reference Manua". A. Wesley. ISBN 0-321-22862-6. 2004
[10] M. Balser, S. Bäumler, A. Knapp, W. Reif, A. Thums.
“Interactive Verification of UML State Machines”. Proc. 6th
Int. Conf. Formal Engineering Methods (ICFEM'04)
[11] N. Damianou, T. Tonouchi, N. Dulay, E. Lupu, and M.
Sloman. "Tools for Doamin-based Policy Management of
Distributed Systems", (NOMS2002), Friorence, Italy, 2002
[12] P. Flegkas, P. Trimintzios, and G. Pavlou, "A Policy-
based Quality of Service Management Architecture for IP
DiffServ Networks," IEEE Network Magazine, 2002.
[13] P.Trimintzios etal. "A Management and Control
Architecture for Providing IP Differentiated Services in
MPLS-based Networks". IEEE Communications s Magazine,
2001.
[14] E. Delor, R. Darimont, A. Rifaut. “Software Quality
Starts with the Modelling of Goal-Oriented Requirements”.
(ICSSEA 2003), December 2-4, 2003
[15] S. Edelkamp, A. Lluch , S. Leue. “Directed explicit-
state model checking in the validation of communication
protocols”, Software Tools for Technology Transfer, 2003.
[16] M. Casassa, et al “POWER prototype: towards
integrated policy-based management”. NOMS 2000
[17] A. Bandara et al. "Policy refinement for DiffServ
Quality of Service Management". To appear in International
Symposium on Integrated Network Management (IM 2005).

