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Abstract 

 
Policy refinement is meant to derive lower-level 

policies from higher-level ones so that these more 
specific policies are better suited for use in different 
execution environments. Although it has been 
recognized as crucial, it has received relatively little 
attention. We present a policy refinement framework 
grounded in goal-elaboration methodologies and 
reactive systems analysis. Through Linear-Time Model 
Checking, we obtain system trace executions aimed at 
fulfilling lower-level goals refined with the KAOS 
goal-elaboration method. From system executions, we 
abstract managed entities, conditions and actions to 
encode the refined policies. We present our framework 
and provide a refinement scenario applied to the 
DiffServ QoS Management domain.  
 
1. Introduction 
 

A Policy-Based Network Management (PBNM) 
system should allow the description of high-level 
policies, enable their refinement into lower-level ones 
and map them to commands that ultimately configure 
the managed devices. Despite the enormous research 
done on languages for specifying policies and 
architectures for managing and deploying such policies 
into distributed environments for different application 
domains, policy refinement is a key area that still 
remains scarcely studied. 

Goal-oriented Requirements Engineering has been 
proposed as a feasible alternative to formalize policy 
refinement [1]. Goal-elaboration assisted by domain-
independent refinement patterns [2] has opened a new 
and promising research area for policy analysis.  

The representation of individual or several managed 
objects is possible by defining finite state machines 
that describe the multiple states in which such 

managed objects can be [3], being possible to relate the 
behavior of an object or a set of objects to the value of 
one or more attributes that are used to characterize the 
states of the system. State transitions are directly 
related to changes of attributes, which policies 
configure and control. The general "on-event and if-
condition then action" structure of policy rules makes 
it possible to consider policy-based systems as 
event/state-driven systems and use formal methods to 
analyze their behavior. Model checking [4] is a formal 
automated approach to exhaustively analyze whether 
event/state-based systems satisfy specific behavioral 
claims characterizing safety and reliability 
requirements. After modeling a system and its 
requirements in suitable formalisms, verification 
algorithms check whether the system satisfies its 
requirements by exhaustively testing all possible 
combinations. One of the keys in the success of model 
checking remains in its ability to find and report 
counterexamples as execution traces that show the 
processes, conditions, actions and states that make a 
requirement not to hold. 

In this paper, we present a policy refinement 
approach based on Goal-oriented Requirements 
Engineering and Model Checking techniques. As 
initially proposed in [1], through goal-elaboration 
methods, we refine lower-level goals that logically 
entail high-level administrative guidelines. After this, 
making use of linear temporal logic formulae and 
model checking capabilities, we obtain execution 
traces aimed at fulfilling the refined lower-level goals. 
From system executions, relevant policy information is 
abstracted and eventually encoded into a set of refined 
policies. The novelty of the approach presented in this 
paper is the introduction of formal verification 
techniques in the context of goal-oriented policy 
refinement frameworks. 



The main issue behind policy refinement is to 
abstract generic policy refinement patterns. 
Nevertheless, abstracting patterns applicable to all 
management domains is too difficult and probably 
impossible. We start our study towards this direction 
for a Differentiated Services (DiffServ) Quality of 
Service (QoS) Management domain and present a 
refinement scenario for this domain. 

After this introduction, Section 2 provides the 
formalisms used in our approach. Section 3 reviews 
our policy refinement framework. Section 4 presents a 
refinement scenario and Section 5 discusses some 
important issues and future work as well. Section 6 
presents the related work to conclude in Section 7. 
 
2. Background 
 
2.1. Pattern-driven goal elaboration 
 

Goals capture, at different levels of abstraction, the 
various objectives a system should achieve [5]. They 
provide the rationale for requirements elaboration. 
Many goal classifications have been presented in the 
literature and different approaches for goal-oriented 
elaboration and reasoning techniques have been 
developed in the Requirements Engineering (RE) area 
[5]. A temporal classification of goals is based on the 
behavior prescribed by the goal. The following are 
identified: 

• Achieve and Cease goals obey to system 
behaviors that require some target property to 
be eventually satisfied or denied respectively, 
in some future state.  

• Maintain and Avoid goals restrict behaviors, 
in that they require some target property to be 
permanently satisfied or denied respectively, 
in every future state. 

We will follow the above classification for 
reasoning analysis since it can be related to the 
obligation, refrain, authorization and negation 
concepts, widely used in policy-based management. 

Several approaches have been proposed to 
formalize goal elaboration [5]. For the reasons 
expressed above, we propose to use support provided 
by goal refinement methodologies grounded in 
temporal logic. As initially proposed by [1], we use 
KAOS [2], a formal technique to elaborate goals 
inspired by the classic linear temporal logic of Manna 
and Pnueli [6]. In the remaining of this section we 
briefly outline KAOS. 

By definition, a set of goal assertions G1, G2,…,Gn 
is a complete refinement of a goal assertion G iff the 
following conditions hold: 

1. G1∧G2∧…∧Gn |= G  (entailment) 
2. ∀ i,j: j≠i → Gj |≠ Gi  (minimality) 
3. G1∧G2∧…∧Gn |≠ false  (consistency) 
4. n > 1    (nonequivalence) 
 
The KAOS method contains two essential operators 

to relate goals: AND and OR refinement. The former 
relates a goal to a set of subgoals in which satisfying 
all subgoals in the refinement is a sufficient condition 
for satisfying the high-level goal. OR-refinement 
relates a goal to an alternative set, satisfying a 
refinement is a sufficient condition for satisfying the 
goal. 

In KAOS, a refinement pattern is a one-level AND-
tree of abstract goal assertions such that the set of leaf 
assertions is a complete refinement of the root 
assertion. The KAOS method proposes the general 
principle of reusing domain-independent refinement 
patterns. These patterns have been included in a set of 
libraries [7] that have been previously proved to be 
correct. The libraries are grouped by the behavior 
prescription of the high-level goals, namely Achieve, 
Cease, Maintain and Avoid. Due to space limitations 
and to the nature of the scenario proposed in Section 4, 
we limit our study to Achieve refinement patterns; the 
interested reader might consult [7] for an extended 
description. Table 1 shows some AND-decomposition 
patterns for high-level Achieve parent goals.  

 
Table 1.Some prepositional patterns for achieve goals 
RP Subgoals 

RP1 P∧ R→◊Q      P →◊R                P→ P W Q 
RP2 P → ◊R           R→ R U Q  
RP3 P → ◊R           R → ◊Q 
RP4 P∧ P1→◊Q1  P∧ P2→◊Q2    □(P1∨ P2) 

                                                 Q1 ∨ Q2 →Q 
RP5 P ¬∧ R→◊R   P∧ R→ ◊Q      P→□P 
RP6 ¬R→ ◊R        P∧ R→ ◊Q      P→□P 
 

Table 1 presents different refinement patterns (RPs) 
that represent different possibilities to decompose the 
high-level goal into the respective subgoals. The 
Achieve goal is formally expressed as P→◊Q: If P then 
eventually Q in the future. We use the classical 
temporal operators: ◊ eventually in the future, □ 
always in the future, U always in the future until and W 
always in the future unless. RP3 for instance, defines a 
milestone-driven tactic where an intermediate state 
satisfying R must first be reached, from which a final 
state satisfying Q must be reached. RP4 proposes 
decomposition by cases. KAOS provides the necessary 
support to hierarchically structure goals as graphs by 



using different tactics in which the lower-level 
subgoals logically entail the higher-level goal. 
 
2.2. Linear temporal model checking 

 
Model Checking [4] is a formal and automated 

application of computational logic with high relevance 
in concurrent and distributed systems verification. As 
shown in Figure 1, it consists of three main processes: 
modeling system behavior, modeling the requirements 
specification of the system and verifying whether the 
system satisfies its specification.  

 
Figure 1. Model checking basic steps 

 
Different formalisms have been proposed to model 

system behavior, each tailored for specific domains. 
Amongst the most common, labeled transition systems 
(LTSs) are typically used. An LTS is a set of states 
together with a transition set, modeling how a system 
changes its state. Additionally, a labeling function is 
used to relate states and transitions with observations.  

The second process corresponds to the requirements 
specifications' modeling. At this stage, system 
observables like events, state of variables or the 
processes responsible of the transitions are the subject 
of interest. In fact, observations of a system are crucial 
to specify the requirements for the correctness of an 
event/state-based system. A fundamental dimension is 
time and how observables are time-related. This is 
precisely the aim of temporal logics. The use of a 
specific logic depends on the type of verification to be 
performed. Different model checkers have been 
developed for different temporal logics. Different 
temporal logics and model checkers can be found in 
[6] and [4] respectively. 

The third process is the verification of the 
requirements specifications under "all" circumstances 
of system execution. It attempts to span the entire state 
space and verify every possible combination of inputs 
(events and conditions). If a requirement (i.e. a 

property) does not hold, model checkers can help to 
identify the input sequence that triggers the failure (i.e. 
conditions, events and states that made the property 
not to hold). This ability has made model checking so 
successful for reactive systems verification. 

In our study, we need to have a mechanism that 
allows one to express the ordering of events in time 
where observations are extended with temporal 
connections such as “eventually in the future” or 
“always in the future”. We will then focus our work on 
Linear Temporal Logic (LTL) Model Checking 
verification. LTL formulae are interpreted over 
computations of a system with sequences of states 
representing executions of a system. If we let P be a set 
of observable predicates, and f and g be LTL formulae 
on P, then the representations shown on Table 2 are 
also LTL formulae. The predicates and boolean 
connectives expressed in the first row formulae have 
the usual meaning. For the second row formulae, 
operator ○ next state is used in addition to those 
described in Section 2.1, formula ○f would be satisfied 
if the next state of the computation satisfies f. The 
interested reader might consult [6] for extended 
description of LTL formulae. 
 

Table 2. Different LTL formulae 
¬ f f || g f && g f → g f ↔ g 
○f □f ◊f f U g f W g 

 
Broadly speaking, with LTL model checking we 

can design and verify typical temporal properties that 
express absence, universality, existence, precedence 
and response of observable predicates and any 
combination of these. A guide of how to design 
formulas using temporal descriptions can be found at 
[8].  

If we were to verify a property of an event/state-
based system in which P is globally absent (formally 
expressed as □!P), we could get a counterexample 
trace indicating the conditions, states, events and 
transitions that make such absence not to hold, namely 
the occurrence of P. From the counterexample, it is 
also possible to identify the managed entities that 
collaborate to make the absence not to hold. In other 
words, we can use LTL formulae to obtain the 
conditions, states, events and transitions and the 
managed entities’ collaboration that make P to hold. 
This is the basic idea behind the approach presented in 
this paper; counterexamples traces can be interpreted 
as plans that make the system satisfy determined 
properties using a fully automated formal method.  

As a model checking tool we use SPIN [9], a LTL 
model checker that focuses on the verification of 
concurrent software systems. It uses Promela [9] as the 
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modeling language. Promela specifications are 
basically state machines that communicate via 
message-passing or shared variables. Requirement 
specification can be done using some ad-hoc 
mechanism to express deadlock-freedom or validity of 
assertions, but, more generally, LTL is used. Not only 
does SPIN provide the possibility to verify properties 
but also to simulate the system and obtain/reproduce 
counterexamples. As we will see, these capabilities are 
relevant for our refinement analysis. 
 
3. Policy Refinement Framework 

 
Goal refinement must eventually result in the 

identification and specification of requirements whose 
responsibility must be assigned to agents [2]. Our 
approach to policy refinement is shown in Figure 2.  

 
Figure 2: Overall process for policy refinement 

 
The following steps may be followed to 

systematically deploy policies from high-level goals: 
 
• Goal graph elaboration 
• Responsibility assignment to managed entities 
• Operationalization (both part of the Counter-

example Management)  
• Policy encoding 

 
In the Goal graph elaboration step, AND/OR 

structures are built, defining goal hierarchies and their 
refinement links. High-level goals are decomposed 
using domain-independent refinement pattern libraries 
following the KAOS elaboration method. The desired 
outcome of this step is a set of lower-level goals that 
logically entail higher-level ones. From the many 
options of the structured goal graph, the administrator 
selects the lower level goals that better satisfy his 

requirements: lower-level goal selection sub step of 
Figure 2. While the KAOS elaboration method 
provides support for this first step, it does not provide 
support to relate system behavior to goal fulfillment 
finding. Nevertheless, in order to carry out the 
following steps, this gap needs to be filled. 

As described in Section 2.2, the inputs of model 
checking are the specification of system behavior and 
that of requirements. For the former, we propose 
graphical representation, as depicted in Figure 2. As 
mentioned, the modeling language of SPIN is 
PROMELA [9] whose specifications are expressed 
basically as state machines that communicate via 
message passing or shared variables. The procedure to 
translate graphic state charts or other visual modeling 
languages into PROMELA is out of the scope of this 
paper, this issue has been widely studied in the 
literature [10]. Regarding the other input of Model 
checking, i.e. the specification of requirements, the 
Property formulation step shown in Figure 2 is aimed 
at designing property formulae that characterize lower-
level goals. As in plan-based techniques [5], lower-
level goals are identified by state predicates, hence the 
requirements must be characterized by such lower-
level goals. The Property formulation step takes into 
account temporal information in which the lower-level 
goals have been constructed. As described in Section 
2.2, a very important issue here is that the requirements 
are encoded into LTL formulae that basically describe 
the absence of the behavior prescribed by the low-level 
goal predicates. For example, if the low-level goals 
G11 and G31 must be fulfilled to satisfy a high-level 
goal G, and their temporal behavior is such that G11 
must be fulfilled before G31, we might encode a 
temporal formula specifying that G31 is never fulfilled 
after G11. That way, the execution trace might indicate 
system behavior to achieve G13 after G11 and 
consequently G. 

The property management process inside the MC 
Management module is aimed at coordinating the 
query to the model checker (SPIN). When the model 
checker is queried with LTL formulae, it generates 
counterexample traces that might be interpreted further 
for the following refinement steps. Due to the nature of 
the requirement specification (absence-based), the 
counterexample will display the execution trace that 
results as a consequence of the presence of the 
predicates and the desired temporal behavior.  

For the Managed entities responsibility assignment 
and Operationalization steps, a systematic 
interpretation of the counterexample trace generated by 
SPIN is necessary. Both steps are part of the 
Counterexample management process shown in Figure 
2. One of the outputs of SPIN is a sequence chart. For 
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the responsibility step, we take this message sequence 
chart to select the managed entities responsible to 
achieve the administrative decisions. This information 
and the object distribution information are used in the 
final step of refinement as shown later. 

Undoubtedly, the Operationalization process is 
crucial for policy refinement. It implicitly includes the 
responsibility assignment in the sense that the 
operationalization step goes into the details of the 
counterexample trace to identify the actions that the 
managed entities may take. For our refinement 
problem, the Operationalization step is particularly 
focused at finding the processes that imply decisions in 
order to identify the conditions, transitions and 
operations that are meaningful for policy encoding. For 
this step of the refinement we rely on the SPIN 
capabilities to generate detailed traces from which this 
valuable information is obtained.  

Finally, the Policy encoding step takes as input the 
information described above and the object distribution 
in order to encode the policies in a policy specification 
language. We have considered Ponder [11]. Following 
its deployment model, the refined policies can be 
compiled and deployed in the policy-based system. 
 
4. Policy Refinement Application Scenario 
 

The specialization of refinement patterns applicable 
to all management domains is very difficult. In 
practice, specialization patterns might be abstracted 
from specific policy applicability areas. We present a 
policy refinement scenario applied to DiffServ QoS 
management. We describe the steps of the refinement 
process applied to this domain and the feasibility of 
our approach. 
 
4.1. Application domain 

 
The application domain of our scenario relies on the 

framework developed in the context of the EU IST 
TEQUILA project [12]. TEQUILA provides a policy-
based functional architecture for supporting QoS in IP 
DiffServ networks. The generic architecture of the 
TEQUILA framework is shown in Figure 3. It is 
decomposed into three major subsystems, namely; the 
Service Level Specification (SLS) management, the 
Traffic Engineering (TE) and Monitoring system. The 
former is responsible for agreeing QoS services (SLSs) 
with customers and handling respective requests while 
the TE subsystem is responsible for fulfilling the 
contracted SLSs by appropriately engineering the 
network. Due to space limitations, we will focus on the 
TE part of TEQUILA, particularly the Network 

Dimensioning (ND), in order for the reader to better 
understand the scenario proposed in Section 4.2. More 
details about TEQUILA can be found at [12] and [13]. 

 

Figure 3: Generic architecture of TEQUILA  
 
ND is responsible for mapping the traffic onto the 

physical network resources in order to accommodate 
the forecasted traffic demands. Configuration includes 
the definition of Label Switched Paths (LSPs) and 
anticipated loading for each Per Hop Behavior (PHB) 
on all interfaces. The output of ND is provided to 
DRtM and DRsM, and also to SLS Management in 
order to base the admission control decisions for future 
SLS subscriptions. ND is decomposed in the following 
subcomponents: Traffic Matrix Manipulation: this is 
responsible for retrieving the Traffic Matrix (TM) 
from Traffic Forecast and also provides functions for 
manipulating entries in the TM. Network topology: this 
holds the objects describing the physical network 
topology together with the physical capacity of the 
network links. Explicit LSP and BW allocation: this 
offers methods that can explicitly define the MPLS 
Labeled Switched Paths (LSPs) that Traffic Trunks 
(TTs, aggregates of traffic flows with the same origin-
destination pair and same performance requirements) 
should follow (expLSP state in Fig. 4). This 
subcomponent also offers methods that can explicitly 
define the way bandwidth (BW) should be allocated to 
different traffic classes Ordered Aggregates (OAs, 
minResAlloc and masResAlloc states in Fig. 4). Hop 
Count Derivation: this provides functionality to handle 
the QoS requirements of the expected traffic in terms 
of delay and loss requirements by transforming them 
into maximum hop count constraints (see 
minDelayLoss, maxDelayLoss and avgDelayLoss 
states in Fig. 4). Optimization Algorithm: its objective 
is to find a set of paths for which the BW requirements 
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of the TTs are met as well as the requirements for 
delay and loss by using the hop count constraint as an 
upper bound and at the same time optimize the use of 
network resources. ND allows setting upper bounds on 
the number of hops the calculated paths are permitted 
to have and on the number of alternative paths for 
every TT for load balancing purposes (hopBalancing 
and pathBalancing states in Fig. 4). It provides 
functions to customize the BW allocation by setting 
importance guidelines for a particular OA (cost 
function settings; min/max/expCostResAlloc states in 
Fig. 4). It also supports two optimization objectives: i) 
avoid overloading parts of the network while other 
parts are under loaded (minLinkLoad state in Fig. 4) or 
ii) provide overall low network load (maxNetLoad 
state in Fig. 4) . A compromise between these two 
options is also possible (netCompromised state in Fig. 
4). Spare/over-provisioned BW treatment: this assigns 
residual physical capacity to the various classes 
(spareCap states in Fig. 4) or reduces the allocated 
capacity (OverCapacity states in Fig. 4) when link 
capacity cannot satisfy the predicted traffic 
requirements. Due to the complexity of the ND 
component, we consider the summarized behavior 
specification shown in Figure 4. 

 
Figure 4: Simplified behavior of ND module  

 
4.2. Scenario description 

 
Consider the case where a set of subscribed SLSs 

includes one from the "AOL" client for which the 
administrator wants to ensure that specific 
dimensioning directives be enforced especially during 
specific periods of time, namely during busy hours 
(8:00 to 12:00hrs and 15:00 to 17:00hrs). Consider 
also that the AOL client in the network of Figure 3 has 

contracted an SLS with the following technical 
parameters: 

• A pipe between routers RE1 and RE2 with EF 
PHB, 5ms delay, zero packet loss and assured 
throughput of 5Mbps. 

We consider that pipe defines the boundaries of the 
QoS to be enforced as a “one-to-one” ingress-egress 
SLS model. During busy hours, the administrator 
wants to ensure that traffic entering the domain from 
the node RE1 and exits from the node RE2 belonging 
to such Ordered Aggregate (OA), follows the route 
RE1-RI1-RI3-RI6-RE2. Additionally, due to the strict 
requirements of delay and packet loss, the 
administrator wants to be extremely conservative for 
the hop-count estimation for traffic of the same QoS-
class as that of the “AOL” client. During busy hours, 
the administrator wants to avoid under-loaded parts of 
the network when other parts are overloaded and wants 
to make sure that any spare capacity is equally split 
amongst the PHBs.  

The administrator will need to encode these 
administrative goals into policies, considering the 
managed entities that would enforce them, the actions, 
conditions and constraints for their execution. 
Considering that not only might the administrator 
design policies for the ND module but for other 
components in the TEQUILA framework, this task 
might become extremely difficult.  
 
4.3. Proposed solution 
 
4.3.1 Step 1: Goal graph elaboration 

Since the requirement of the administrator in the 
above scenario is to ensure a given behavior, we use 
the Achieve goal refinement patterns described in 
Section 2.1. The final goal of the administrator is that 
appropriate administrative directives are stored and 
propagated to the underlying components. This high- 
level goal can be formulated using the following 
Linear Temporal specification: 
G1 busyHoursDimensioning: 

TM_busyHours → ◊ configStored&Propagated 
 
G1 is interpreted as: "when retrieving the traffic 
matrix, appropriate ND directives for busy hours 

should eventually be configured, stored and 
propagated to the underlying components". Applying 
the case-driven refinement pattern RP4 of Table 1, we 
derive the subgoals G2 and G3, formally expressed as 
follows: 
G2  preProcessing&Calculation: 

TM_busyHours /\  preProcessed&Calculated →  
◊ configStored&Propagated 
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G3  preProcessingAndPostProcessing: 
TM_busyHours /\ pre&PostProcessed →  

◊ configStored&Propagated 
For each of these sub-goals (G2 and G3), we apply a 
milestone-driven refinement tactic (RP3 of Table 1). 
For G3, this has to be extended since RP3 is only 
applicable for a single milestone refinement pattern. 
We propose to extend RP3 and RP4 to make them 
suitable for a multiple milestone-driven and case-
driven fashion respectively. RP3 and RP4 are modified 
as depicted in Table 2. 
 

Table 2. Some extended refinement patterns 
RP Subgoals 

RP3’ P → ◊ R      R → ◊ S       S → ◊ Q 
RP4’ P /\ P1 → Q1,  P /\ P2 → Q2,  P /\ P3 → Q3, 

□(P1\/P2\/P3),     Q1\/Q2\/Q3 → Q 
 
Applying RP3 and RP3' to G2 and G3 respectively, we 
elaborate the goal graph shown in Figure 5. 

 
Figure 5: Initial high-level goal elaboration  

 
Lower-level goals preProcessing (G4), calculation 
(G5), preProcessing (G6), calculation (G7) and 
postProcessing (G8) are represented as follows: 
G4: TM_busyHours /\  preProcessed&CalculatedReq/\ 
preProcessedReq → ◊ calculated 
G5: calculatedReq → ◊ configStored&Propagated 
G6: TM_busyHours /\ pre&PostProcessedReq /\ 
preProcessedReq → ◊ calculated 
G7: calculatedReq → ◊ postProcessing 
G8: postProcessingReq→ ◊configStored&Propagated 
 
From this initial goal-decomposition, it is not feasible 
for the administrator to select the sub-goals that best 
satisfy the high-level goals, so further decomposition is 
needed for these lower-lever goals (G4 to G8).  
Applying similar refinement guidelines, we elaborate 
the goal graph for the preProcessing subgoal (G4 and 
G6) as shown on Figure 6. In order to compose this 

goal graph, RP3 and RP4 have been used. We have 
used the extended RP4’ shown in Table 2 to refine G9, 
G14 and G18 into their respective subgoals. Taking 
delayLossEstimation (G9) as a high-level goal, 
subgoals conservative (G10), optimistic (G11) and 
average (G12) are refined. They are formally 
represented as follows: 
G9:  preProcessReq/\delayLossEstReq→ ◊ calculated 
G10: preProcessedReq/\delayLossEstReq/\ 
conservativeReq → ◊ calculated 
G11: preProcessedReq/\delayLossEstReq/\ 
optimisticReq → ◊ calculated 
G12: preProcessedReq/\delayLossEstReq/\ 
averageReq → ◊ calculated 
 
Similar temporal representations can be obtained for 
the remaining subgoals. Regarding the calculation and 
postProcessing sub goals shown in Figure 5, they are 
refined similarly and their goal elaboration hierarchies 
are shown in Figures 7 and 8 respectively. 

 
Figure 6: Pre processing goal graph 

Figure 7: Calculation goal graph 
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Figure 8: Post processing goal graph 

 
Analyzing the description of the administrative 

high-level goal, we consider that the administrator's 
requirements are fulfilled by satisfying the subgoals 
G15, G19, G68 and G82. 
 
4.3.2 Step 2: Responsibility assignment and 
operationalization of goals 

Due to the distribution of modules in the TEQUILA 
architecture, as in any distributed system, fulfilling a 
high-level goal may require the cooperation of a 
combination of multiple components. The fist step 
towards Responsibility assignment in our framework is 
to design a temporal property that characterizes 
absence of the system behavior that could make the 
lower-level goals be fulfilled. For this purpose, we 
design the following LTL property:  

 
□(G15 → □(¬G19 )) || □(G68 → □(¬G82)) …. (P1) 

 
The interpretation of P1 is: “there is no system 

behavior in which either, state G19 is true after G15 or 
G82 is not fulfilled after G68”. By querying SPIN with 
P1, the counterexample generated would give the 
opposite: “system behavior in which both G19 is 
fulfilled after G15 and G82 after G68 respectively”. 
For a detailed description of how to make up similar 
specification patterns the reader may consult [8]. One 
of the outputs of the counterexample generation 
process is a message sequence chart from which the 
managed entities in charge of enforcing the 
administrative guidelines are easily identified. The 
abstract message chart of our scenario is shown in 
Figure 9. From this chart, we identify the following 
components responsible to enforce the administrative 
guidelines: hop Count Option module, explicit 

Route/BW Selection, optimisation and 
spare/overprovisioning treatment modules.  

 

 
Figure 9: SPIN abstract message chart 

 
For the operationalization step, we go into the 

detailed counterexample trace generated by SPIN. This 
implicitly includes the responsibility assignment step 
in the sense that operationalization goes into the details 
of the trace to identify the actions that the managed 
entities may take to achieve the administrative 
guidelines. In Figure 10 we show the counterexample 
trace for our ND scenario after a basic filtering 
process. The first bracket corresponds to the condition 
that enables the system behavior of our 
counterexample. The subsequent brackets indicate 
which actions the managed entities may take to fulfill 
the high-level guidelines. The first three lines of each 
of these brackets indicate that the managed entity 
needs to be invoked and the invocation needs to be 
attended (values from 1 to 0). The fourth line indicates 
what action the managed entity needs to take. Finally, 
the 5th line sets the attributes of the managed entity 
that determine the desired state goal. 

Figure 10: SPIN Detailed trace 
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4.3.3 Step 3: Policy encoding 
       
Once conditions, managed entities and actions have 
been identified, we need to encode the policies whose 
enforcement might reproduce the counterexample 
traces obtained in the previous step. In Ponder [11], 
Obligation policies are event-triggered and define the 
activities (actions) that subjects must perform on 
targets.  The event triggering our policies is the 
condition identified in the last section (doRPC). The 
subject is the automated manager component in charge 
of enforcing the ND policies (ND_PMA). The targets 
are the managed entities and the actions are identified 
in the last section (hop Count Derivation Manager, 
Explicit Allocation Manager, Optimisation Manager 
and Spare/Over Provisioning BW Manager). It is 
evident that the applicability of these policies is 
restricted by administrative decisions (only during 
busy hours), hence these constraints are directly 
mapped to the obligation policy constraints. The 
resulting set of the refined policies for our scenario is 
shown in Figure 11. 
 
inst oblig busyHoursNDDelayLossEstimation { 
on doRPC(); 
subject ND_PMA; 
target managers/TE/ND/hopCountDerivationManager; 
do calculate_hop_count(EF, maxDelayLink); 
when time.between ("08:00", "12:00") and time.between ("15:00",  
"17:00"); } 
 
inst oblig busyHoursNDAllocation { 
on doRPC(); 
subject ND_PMA; 
target managers/TE/ND/ExplicitAllocationManager; 
do setup_LSP(EF, {RE1, RI1, RI3, RI6, RE2},  5000); 
when time.between ("08:00", "12:00") and time.between ("15:00", 
"17:00"); } 
 
inst oblig busyHoursNDOptimisation { 
on doRPC(); 
subject ND_PMA; 
target managers/TE/ND/OptimisationManager; 
do set_exponent(maxValue); 
when time.between ("08:00", "12:00") and time.between ("15:00", 
"17:00"); } 
 
inst oblig busyHoursNDOverProvisioning { 
on doRPC(); 
subject ND_PMA; 
target managers/TE/ND/SpareOverProvisioningBWManager; 
do alloc_spare_bw(EF, equally); 
when time.between ("08:00", "12:00") and time.between ("15:00", 
"17:00"); } 

 
Figure 11: Set of policies resulting from the 

refinement process 
 

 
5. Discussion and future work 
 

Two issues about counterexample generation 
deserve discussion. The first is when no 
counterexamples are found. Two options might cause 
this problem additional to exhaustion of the time and 
space available to the model checker: 1; Wrong goal 
refinement patterns applied to elaborate the goal-
graph. 2; The behavior of the system mismatches the 
temporal goal elaboration. To overcome these 
problems, an additional activity of Requirements 
Engineering is needed, namely Alternative selection of 
goals [5]. An additional alternative would be to extend 
the system specification. A potential compromise 
between these two options needs to be studied further. 

The second issue is when more than one 
counterexample is found. This might imply that the 
administrator could choose between different options, 
corresponding to different policy encodings, possibly 
for different conditions. A comparative notion of 
multiple counterexamples will also be part of our 
future work. 

The core of our work will be directed to provide 
tool support to automate the processes presented in this 
paper. We have envisaged the use of Objectiver [14] 
for goal-elaboration/management and ArgoUML and 
Hugo/RT [10] for behavior and PROMELA translation 
processes respectively. Additionally, for large-scale 
systems, work by Edelkamp and Lluch [15] will be 
included to provide support with guided search 
techniques additional to those provided by SPIN. 

Additionally, we will study other temporal formulae 
and goal elaboration patterns aimed at formalizing 
inconsistencies between goals and between policies. 
Additionally, the verification of other temporal 
behavior prescription like universality, existence, 
precedence and response would be used to explore 
system behavior aimed at verifying such properties to 
find inconsistencies or potential conflicting behaviors.  

 
6. Related work 
 

POWER [16] is one of the few policy refinement 
approaches hitherto implemented. Our approach differs 
to POWER in the sense that the latter is an 
environment in which the user is guided to choose 
policies from pre-designed policy templates designed 
by an expert, tailored for specific use. Instead, we use 
space exploration to find system behavior that satisfies 
pre-refined high-level goals in a goal-oriented 
framework. We consider reactive system analysis 
through temporal verification and model checking. 



More recently, work by Bandara et al [17] propose 
an approach for transforming both policy and system 
behavior specifications into a formal notation based on 
Event Calculus (EC). The authors use goal elaboration 
and abductive reasoning to derive strategies that would 
achieve high-level goals. Our approach and the EC-
based approach differ in the way system behavior is 
analyzed and in how policy information is abstracted. 
While Event Calculus and abduction is used in the 
former to infer the sequences of actions that achieve 
particular goals, our approach goes through state 
exploration to obtain system behavior that fulfils 
lower-lever goals elaborated through temporal 
refinement patterns. We encode policies using the 
information abstracted from the execution trace while 
in the EC-based approach these are encoded using the 
generated strategies. The main advantage of the model 
checking-based framework over the EC-based 
framework is that the former can be used in situations 
where it is necessary to account for an explicit 
temporal execution of the goals when performing 
refinement. This has not been addressed in the EC-
based approach [17]. At the time of this publication, 
there is no evidence of performance evaluation of any 
refinement approach. Future work will also address 
comparative evaluations between the EC-based 
approach and our framework. 

 
7. Conclusions 
 

We have presented an approach to policy 
refinement based on Requirements Engineering and 
model checking techniques. It allows find system 
executions aimed at fulfilling low-level goals that 
logically entail high-level administrative guidelines. 
From system executions, policy information is 
abstracted and eventually encoded into a set of refined 
policies specified in Ponder [11].  We have described 
the foundations, the reasoning of our approach and the 
refinement process through a scenario applied to the 
DiffServ QoS Management domain. 

The main contribution of our work is the 
introduction of formal verification techniques in the 
context of policy refinement. This approach is novel 
and opens a new front of study for policy analysis. We 
hope that our proposal may contribute to solve the 
policy refinement problem, so many times recognized 
as crucial but at the same time so much dismissed. 

Several outstanding issues have been identified. 
Amongst the most important, we can mention the lack 
or the existence of more than one solution (i.e. none or 
more than one counterexample), the partial or total 
automation of the involved processes and finally, the 

scalability of framework directly related to “state 
explosion” problem. All these issues have been 
assessed and will be the focus of our work. 
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