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Abstract—In current publish/subscribe networks messages are
not stored and only active subscribers receive published messages.
However, in a dynamic scenario a user may be interested in
content published before the subscription time. In this paper, we
introduce a mechanism that enables storing in such networks,
while maintaining the main principle of loose-coupled and
asynchronous communication. Furthermore, we propose a new
storage placement and replication algorithm which differentiates
classes of content and minimize the clients response latency.
The performance of our proposed placement and replication
algorithm and the proposed storing mechanism is evaluated via
simulations and insights are given for future work.

I. INTRODUCTION

Applications that exploit a publish/subscribe (pub/sub) com-
munication paradigm (topic based or content based) are orga-
nized as a collection of autonomous components, the clients,
which interact by publishing events and by subscribing to
the classes of events they are interested in. A component of
the architecture, the event dispatcher (or rendezvous point or
event broker or simply broker), is responsible for collecting
subscriptions and forwarding events to subscribers. In pub/sub
networks, the selection of a message is determined entirely
by the client, which uses expressions (filters) that allow
sophisticated matching on the event content.

In a pub/sub network, any message is guaranteed to reach all
interested active clients whose subscriptions are known to the
network at publish time. However, in a dynamic distributed en-
vironment, clients join and leave the network during time, and
it is possible that a client joins the network after the publishing
of an interesting message. In current pub/sub systems, it is not
possible for a new subscriber to retrieve previously published
messages that match his/her subscription. Therefore, enabling
the retrieval of previously published content by means of
storing is one of the most challenging problems in pub/sub
networks.

Data storage servers or simply “storages” replicate the
whole content of a given server, unlike caches where misses
could occur. When a client is interested in the content of
that server, his/her request is redirected to one of the existing
storages (i.e. the closest one). Since storages serve only a
portion of the total requests and are placed closer to the client,
clients are served faster. A client’s request is redirected to a
storage only if that storage is a replica of the targeted server
otherwise the request is directed and served by the server itself.

In this paper we:

• Enhance the pub/sub paradigm with an advertisement
and a request/response mechanism so that storages can
advertise the class of the content (topic) that they have
stored and clients can retrieve that stored content.

• Propose a new algorithm for the selection of M storage
points among the N brokers (M < N ) based a) on the
locality of the interest for each topic, b) the targeted
replication degree of each topic (as replication degree
we name the number of replicas k ≤ M of the topic
among the storages) and c) the storage capacity SC of
each storage.

• Evaluate through simulations our design of the storing
technique and the new placement and replication algo-
rithm.

The objective function of our scheme is to minimize client’s
response latency subject to installing the minimum number of
storages in the network.

The rest of the paper is organized as follows. In section
II, a brief introduction of storing in pub/sub architectures
is given, followed by a brief description of the storage
placement problem. In section III, we shortly describe the
pub/sub architecture and present the proposed advertisement
and request/response mechanism. The new algorithm for the
selection of the storage location and the replication of the
content is presented in section IV while section V is devoted to
performance evaluation via simulations. Finally, we conclude
the paper and give insights for future work in section VI.

II. RELATED WORK

Despite the fact that there are several research efforts con-
cerned with the development of an event notification service,
like IBM’s Gryphon [1], Siena [2] and REDS [3], storing
data through replication has not received attention in the
literature. Only in [4], the authors propose a historic data
retrieval pub/sub system where databases are connected to
various brokers, each associated with a topic to store. In [4]
every message is stored only once and no placement strategies
have been examined while there is no description of the
mechanism for the retrieval of the stored data. Moreover in [5]
we introduced a new opportunistic caching scheme for pub/sub
networks where each broker of the network is a potential
caching point.

On the other hand the placement problem, especially in the
context of Content Delivery Networks and Web Proxies, is
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Fig. 1. Advertising and Storing of information (in red are the new entries of
STs and ATs created by the installation of the “str1”). Publisher at broker 1
publishes a message msg a that matches top a and is stored at “str1” and
“str2”.

a thoroughly investigated problem. Particularly in [6] authors
approached the placement problem with the assumption that
the underlying network topologies are trees. The placement
problem is in fact an NP-hard problem when striving for
optimality, but there is a number of studies [7]-[10] where
an approximate solution is pursued. Their work is also known
as network location or partitioning and involves the optimal
placement of k service facilities in a network of N nodes
targeting the minimization of a given objective function. This
work is also known as the k-median problem.

Finally, in [11] authors introduce a framework for evaluating
placement algorithms. Firstly, they classify and qualitatively
compare placement algorithms using a generic set of primitives
that capture several objective functions and near optimal
solutions, while secondly provide estimates for their decision
time using an analytic model. The model takes into account
not only computational complexity and message numbers but
also memory constraints (disk accesses and message sizes) to
produce good estimates.

III. ENABLING STORING IN PUB/SUB NETWORKS

We consider a pub/sub network which uses the subscription
forwarding routing strategy [2]. The routing paths for the
published messages are set by the subscriptions, which are
propagated throughout the network so as to form a tree that
connects the subscribers to all the brokers in the network.
Publishers join the network when they have something to
publish, therefore in our approach the entity of the server does
not exist.

In a pub/sub network when a client issues a subscription,
a message containing the subscription filter is sent to the
broker the client is attached to. The filter is inserted in a
Subscription Table (ST), together with the identifier of the
subscriber. Then, the subscription is propagated by the broker,
which now behaves as a subscriber with respect to the rest of
the dispatching network, to all of its neighboring brokers on
the network. In turn, the neighbors record the subscription and
re-propagate it towards all further neighboring brokers, except
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Fig. 2. Retrieval of stored information using the request/response mechanism
(in red are the new entries of STs created by the subscription of client A).

for the one that sent it. Finally, each broker in the network
has a ST, in which for every neighboring broker there is an
associated set of filters containing the subscriptions sent by
them.

A. Advertisement and Request/Response mechanism

By installing storages and introducing an advertisement and
a request/response mechanism, we aim to provide a pub/sub
system with the ability to store and retrieve information
published in the past and make it available for future clients.
We will present through the example of figures 1 and 2 the
new mechanism.

In order to retrieve old information, we add to the sys-
tem three additional types of messages, Advertise(),
Request() and Response(). When a new storage “str1”
is attached to broker 5 (fig. 1) issues a Subscribe()
message with the topics (class of events) that is willing to
store (top a and top b). In that way, it acts as a client to
future publications matching the subscribed topics and each
time a publication occurs (publisher attached to broker 1
publishes message msg a matching top a) stores the message
(the message is also stored to str2). The “str1” also issues an
Advertise() message which contains the topics that stores
and the distance in hops from the storage. Advertisements
are treated similarly to subscription messages so as to form a
tree that connects the “str1” to all the brokers in the network.
Advertisements are inserted in the Advertisement Table
(AT) a new feature similar to ST that we also added to
our approach. Coverage also occurs with advertisements, like
subscriptions, but in a slightly different way. Particularly, when
a broker receives an advertisement checks in the distance field
and if the distance is equal to another entry (for the same
topics) adds the advertisement to the AT and stops forwarding
the advertisement (broker 3 in fig. 1). Keeping more than one
entries for the same topic in an AT, enables load balancing
capabilities to requests passing from that particular broker.
On the other hand, when a broker receives an advertisement
for a storage which is closer compared to the other storages



already in the AT, adds the advertisement to the AT, removes
the previous entries and forwards it further (brokers 5 and 6 in
fig. 1). Finally, when a broker receives an advertisement for a
storage which is further compared to the other storages already
in the AT simply stops the forwarding of the advertisement
without changing the AT.

When a client node (client A in fig. 2), interested in old
(and probably new) content, appears in the network, apart
from subscribing (for future publications) also makes a request
by sending a Request() message containing the interested
filter (fltr a). The filter contains the topic that the client is
interested in. Filters are identical to topics but they can contain
more attributes to enable more sophisticated match than simply
using the topic. We use source routing for the forwarding of
the Request() (the path is being built hop by hop and is
included in the Request() header). Broker 6 upon receiving
the Request() message checks in its Advertisement Table
(AT) for entries matching the requested topic (top a in this
case). The broker forwards the Request() message to the
broker who had advertised the matching topic and is closer to
the client (in this example broker 5). Finally, “str1” receives
the Request() message, matches its stored content with the
whole filter (not just the topic) and initiates a Response()
message for each match (messages msg a in fig. 2).

A Response() message carries a stored message as
well as the sequence of nodes carried by the initiating
Request() message (source routing). When a broker re-
ceives a Response() message, pops off its identifier from
that sequence and forwards it to the first broker of the
remaining sequence. In the end, client A will receive every
stored message matching its filter.

IV. PLACEMENT/REPLICATION STRATEGY

Since storage placement and replication in pub/sub networks
has not received attention in literature we will use as the base
of our placement and replication scheme algorithms presented
in the context of CDN networks. Particularly in [7], authors
developed several placement algorithms that use workload
information, such as latency (distance from the storage points)
and request rates, to make the placement decision. Their main
conclusion is that the so called “greedy” algorithm that places
storages based upon both a distance metric and request load,
performs the best and very close to the optimal solution.

A. Greedy algorithm

In this section, we briefly describe the greedy algorithm
assuming that there exists only one class of content in our
system, or equivalently there is no distinction in the content.
We let ri be the traffic (in reqs/sec) from clients attached to
node i. We also let Pij be the percentage of the overall traffic
accessing the target server j (traditional placement algorithms
replicate a specific server) that passes through node i. Also
we let the propagation delay (hops) from node i to the target
server j as Dij . If a storage is placed at node i we define the
Gain to be Gij = Pij∗Dij . This means that the Pij percentage

of the traffic would not need to traverse the distance from node
i to server j.

The greedy algorithm chooses one storage at a time (we
need k storages out of N nodes). In the first round evaluates
each of the N nodes to determine its suitability to become a
storage (replication point of server j). It computes the Gain
associated with each node and selects the one that maximizes
the Gain. In the second round, searches for a second storage
which, in conjunction with the storage already picked, yields
the highest Gain. Each request uses a single storage, we
assume in other words full replication of the content among
the selected storages. The greedy algorithm iterates until k
storages have been chosen for the specific server j.

B. Modified greedy algorithm

In our work, we have no knowledge of the location of the
server, or differently there is no such a server. Publishers
join the network publish their content and disappear. So in
order to obtain the storages we modify the greedy algorithm.
Particularly we repeat the above procedure N times assuming
each time that the targeted server j is a different node (broker)
of the network. We get in that way N vectors of k possible
storages. Precisely each vector has N elements with k ones
in the index of the selected storages and N −k zeros in every
other place (for example vector [0 0 1 0 1] means that of the 5
nodes of the network the selected k = 2 possible storages are
nodes 3 and 5). In two different vectors there might be subsets
of possible storages present in both vectors. Finally, we select
as our storages those k nodes that appeared more times in the
per element summation of the N vectors and install at each
one a storage following the mechanism described in III-A.

C. Placement algorithm for pub/sub networks

In this section, we use the modified greedy algorithm
described above for the case where in our network exist T
different classes of content (topics). If we assume that each
storage has storage capacity equal to SC different topics and
each topic should be replicated k times, then our algorithm
should select M storages and assigns each topic at exactly
k different storages. The storage capacity usually refers to
TBytes but for simplicity we assume here that messages are
published with the same rate for each topic and messages
are of the same size. In other words at every time instance
in the network exist the same number of messages for each
topic. The SC parameter is a limitation introduced by the
storage providers and refers to the maximum storing capability
of each storage in the network. On the other hand the k
parameter (replication degree of each topic) is a limitation
introduced by the content providers of the network and refers
to the maximum number of replicas that the content provider
is willing to pay for. Finally, the M parameter refers to the
minimum number of storages that a storage provider should
install in the network to serve the storage demands. Our
algorithm is composed by the following steps:

1) For each topic t we execute the modified greedy algo-
rithm presented in IV-B and we get T vector of possible



rt
i : request rate for topic t in broker i

N : number of nodes (brokers) in the network
M : (M < N ) number of storages in the network
k : (k ≤M ) replication of each topic in the network
SC : storage capacity of each storage point in the network
T : number of classes of content (topics)
wt : weight of each topic in the network
SBV : storage brokers vector
PSt : possible stores vector for each topic t

TABLE I
PARAMETERS USED BY THE PLACEMENT/REPLICATION ALGORITHM

storages PSt.

2) Each vector (PSt) is weighted by wt =
∑N

i=1
rt

i∑N

i=1

∑T

t=1
rt

i

.

wt shows the significance regarding the traffic of each
topic in the network.

3) We select as our storages those M nodes that appeared
more times in the per element weighted summation of
the T vectors. We call that vector as storage brokers
vector SBV.

4) For each topic t starting from the most significant (based
on the weight) assign k storages following the procedure
below:
• For each entry in the PSt of topic t calculated in

step 1 assign a storage if that entry also appears in
the SBV calculated in step 3 and only if in that
storage has been assigned less than SC topics until
we get k storages (replication of topic t).

Below is an example of the placement algorithm for the
pub/sub network of figure 3 assuming k = 2, SC = 2 and
T = 3, meaning that we should select M = 3 storage points
out of the N = 6 brokers of the network.

• Step 1 produces vectors:
PSa = [0 3 5 0 2 2]
PSb = [0 2 5 0 5 0]
PSc = [0 2 5 0 5 0]
for the three topics accordingly (the [0 3 5 0 2 2] means
that out of the N = 6 executions of the modified greedy
algorithm node 2 appeared 3 times, node 3 appeared 5
times and so on).

• The weights regarding step 2 are:
wa = 17/50 = 0.34, wb = 27/50 = 0.54, wc = 6/50 =
0.12
So the vectors from step 1 are transformed to
PSa = [0 1.02 1.7 0 0.68 0.68]
PSb = [0 1.08 2.7 0 2.7 0]
PSc = [0 0.24 0.6 0 0.6 0]

• The per element summation of those three vectors into
a single vector for step 3 gives [0 2.34 5 0 3.98 0.68]
meaning that the final M = 3 storages in SBV are nodes
3, 5 and 2.

• For each topic, in step 4, starting from topic b then topic
a and finally topic c (based on their weights) we assign
them to k = 2 storages. Topic b is assigned to nodes 3
and 5 which were the nodes for topic b appeared more
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Fig. 3. Topology and workload information (requests/second) per each class
of content (T = 3 topics) together with k = 2, SC = 2 and M = 3 form
the inputs of the placement algorithm for the pub/sub network.

times by step 1. Topic a is also assigned to nodes that
were produced by step 1, nodes 2 and 3, while topic c
is assigned to nodes 2 and 5. Node 5 was among the
most popular selections produced by step 1 while node
2 was the only storage in SBV with less than SC = 2
assignments.

Step 4 of our algorithm is also known as the Generalized
Assignment Problem which even in its simplest form is re-
duced to the NP-complete multiple knapsack problem. In this
paper for the solution of the assignment problem we used the
heuristic approach described above, while more approaches
could be found in literature [12].

V. PERFORMANCE EVALUATION

In this section, we evaluate the proposed storing mechanism
using a discrete event simulator. N brokers are organized in a
tree topology (common topology in overlay pub/sub networks)
and clients dynamically request on each broker i for stored
content with rate rt

i different for each topic t. We assume
that in our network exist T topics that should be replicated
exactly k times and each storage has a storage capacity of SC
different topics. For the purpose of this paper, we assume that
there are no limits in the workload (in requests/second) that
each storage can serve. New publications occur to the network
with rate λmsg equal for every class of content, while stored
messages are removed from the storages with rate µmsg . The
removal of a message corresponds to the expiration of the life
time of that message which is typical in every data storage
scheme.

Having selected the M storages and assigned to them the
T topics using our placement algorithm for pub/sub networks
(“pub/sub”) we let the system operate under the dynamic
client environment. We compare it firstly to the case where
each topic is assigned to the k storages produced by the first
step of the placement algorithm (“grd opt”) described in IV-C
disregarding of the storage capacity and the total number M
of used storages, and secondly to the case where there is no
differentiation among topics during the selection of the M
storages and the final assignment of the topics to k storages
is random (“rnd”). The metric we are interested in is the
mean hop distance which corresponds to the mean number
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Fig. 4. Performance of the proposed placement algorithm compared to the “grd opt” and the “rnd”.

of hops between a responding storage and the client making
the request. This metric is indicative of the response latency
as a function of hops in the network.

We set three experiments, one varying the number of brokers
in the network, one varying the storage capacity of each
storage and one varying the replication degree of the content in
the network. We also assume that in our network exist T = 10
different topics, clients request rate per topic vary between 0-1
requests/second for each broker, new messages are published
in the network with rate 1 message/second per topic, while
finally the lifetime of each message is set to 1/µmsg = 1000
seconds.
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Frame 4 shows the mean hop distance for each one of the
three different experiments. The proposed “pub/sub” algorithm
behaves better than the “rnd” algorithm and close to the
“grd opt”, which does not have any constraints regarding the
storage capacity and the total number of installed storages
(also shown in figure 5). The mean hop distance increases
slower to the increase of the size of the network (left figure
of frame 4) while increasing the SC of every storage the
“pub/sub” and the “rnd” algorithms install more topics in
“privileged” brokers leading to smaller response delays (mean
hop distance) for every request (central figure of frame 4).
Moreover, the mean hop distance is decreasing as the number
of replicas (k) increases since now requests reach closer
storages (right figure of frame 4).

In the central figure of frame 4, we observe that when SC =
T our placement algorithm performs as good as the “grd opt”
but installing up to three times less storages in the network as
shown in figure 5.

VI. CONCLUSION AND FUTURE WORK

In this paper, we put forward a new mechanism for storing
in topic-based pub/sub networks. The proposed concept equips

the pub/sub with the ability to store and retrieve stored
information. Moreover, we presented a new placement and
replication algorithm that differentiates classes of content.
Evaluation via simulations that presents the performance of
the system regarding the clients response latency show that our
placement/replication algorithm is less than 1%-15% worse
than the greedy approach installing 50%-80% less storages in
the network. This work can be extended in many ways from
optimizing different objective functions and dynamic assign-
ment of topics among the storages to provide differentiation
among the classes of content.
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