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or years the Internet networking community has been
struggling to develop ways to manage networks. Ini-
tial attempts brought mechanisms and protocols that
focused on managing and configuring individual net-

working devices, such as the Simple Network Management
Protocol (SNMP). This model worked well in early deploy-
ments of IP management systems for local and metropolitan
area networks, but now, with the evolution of quality of ser-
vice (QoS) models such as the differentiated services (Diff-
Serv) framework, the complexity and overhead of operating
and administrating networks is increasing enormously. As
such, it is very difficult to build management systems that can
cope with growing network size, complexity, and multiservice
operation requirements. There is also a need to be able to
program management systems and network components to
adapt to emerging requirements and subsequently be able to
dynamically change the behavior of the whole system to sup-
port modified or additional functionality. The emerging poli-
cy-based network management paradigm claims to be a
solution to these requirements.

Policy-based management has been the subject of extensive
research over the last decade [2]. Policies are seen as a way to
guide the behavior of a network or distributed system through
high-level declarative directives. The Internet Engineering
Task Force (IETF) has been investigating policies as a means
for managing IP-based multiservice networks, focusing more
on the specification of protocols (e.g., COPS) and object-ori-
ented information models for representing policies. Inconsis-
tencies in policy-based systems are quite likely since
management logic is dynamically added, changed, or removed
without the rigid analysis, design, implementation, testing, and
deployment cycle of hard-wired long-term logic. Conflict
detection and resolution are required in order to avoid or
recover from such inconsistencies.

In this article we first discuss the policy management aspects
of an architecture for managing IP DiffServ networks as pre-
sented in [1]; we then focus on the functionality of the dimen-
sioning and resource management parts of the architecture, and
present an analysis of the policies that can influence the dimen-
sioning behavior as well as the inconsistencies that may be
caused by the introduction of such policies. We finally explore
further the design and implementation of the Policy Consumer
component and describe our current implementation.

A Policy-Based Quality of Service
Management Architecture
In order to support end-to-end quality of service based on ser-
vice level subscriptions (SLSs), besides the data plane function-
ality of DiffServ per-hop behavior (PHB) [3] and additional
explicit path functionality such as multiprotocol label switching
(MPLS), a need for management plane functionality has also
been identified. In order to achieve such functionality, the
notion of a bandwidth broker (BB) was introduced by [4] as the
entity required to perform management and control plane
operations on a DiffServ network. The main responsibilities of
BBs are to perform admission control, manage network
resources and configure leaf and edge devices of the network
being managed. In addition to that, BBs can be configured with
organizational policies, keep track of the current allocation of
marked traffic and interpret new requests to mark traffic in the
light of policies and current allocation. A BB may be consid-
ered a type of policy manager since it performs a subset of poli-
cy management functionality. Ideally, BBs and policy managers
should work together to provide an integrated policy services
environment [5].

A policy-based functional architecture for supporting QoS
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in IP DiffServ networks has been designed in
the context of the European collaborative
research project TEQUILA (Traffic Engineer-
ing for Quality of Service in the Internet at
Large scale). This architecture can be seen as a
detailed decomposition of the concept of BB
realized as a hierarchical logically and physical-
ly distributed system. We present below a brief
description of all the aspects of the architec-
ture; a more detailed analysis of the policy
aspects is presented in the rest of this section.
A detailed description can be found in [1].

Figure 1 shows the basic components of the
architecture that are influenced by policies
together with the specific policy management
components.

Starting from the SLS management part on
the left of the figure, the SLS subscription
(SLS-S) component includes processes for cus-
tomer registration and long-term SLS admis-
sion control. Customer subscription concerns
the service level agreement, containing prices,
terms, and conditions, as well as the technical
parameters also known as the SLS [6]. SLS-S
performs also aids static admission control in
the sense that it knows whether a requested long-term SLS can
be supported or not given the current network configuration
and granted resources. SLS invocation (SLS-I) is the functional
block that includes the process of dynamically dealing with a
flow; it is part of control plane functionality. It performs mea-
surement-based dynamic admission control by receiving input
from the SLS-S (e.g., for authentication purposes) and has a
limited view of current spare resources. This admission control
takes place at the edges of the network, and finally SLS-I dele-
gates the necessary rules to the traffic conditioner.

The traffic engineering aspects of the architecture are on
the right of the figure. The network dimensioning (ND) com-
ponent is responsible for mapping traffic requirements to the
physical network resources and providing network provision-
ing directives in order to accommodate the predicted traffic
demands. The lower level of the traffic engineering part
intends to manage the resources allocated by network dimen-
sioning during system operation in real time in order to react
to statistical traffic fluctuations and special conditions that
arise. This part is realized by the dynamic route (DRtM) and
dynamic resource management (DRsM). DRtM operates at
the edge nodes and is responsible for managing the routing
processes in the network. It mainly influences the parameters
based on which the selection of one of the established MPLS
label switched paths (LSPs) is affected at an edge node with
the purpose of load balancing. An instance of DRsM operates
at each router and aims to ensure that link capacity is appro-
priately distributed among the PHBs in that link. It does so by
managing the buffer and scheduling parameters according to
the guidelines provided by ND. Traffic forecast (TF) gener-
ates a traffic estimation matrix based on the currently sub-
scribed SLSs and historical data from measurements. This is
in fact the “glue” between the SLS management customer-ori-
ented framework and the traffic engineering resource-orient-
ed framework of the architecture. Thus, the provisioning of
the network is effectively achieved by taking into account both
the long-term SLSs in a time-dependent manner (ND) and
the dynamic network state (DRtM, DRsM).

Policy management includes components such as the policy
management tool (PolMT), policy storing service (PolSS), and
policy consumers (PolCs or PCs) or policy decision points
(PDPs). A single PolMT exists for providing a policy creation

environment to the administrator where policies are defined
in a high-level declarative language; after validation and static
conflict detection tests, they are translated into object-orient-
ed representation (information objects) and stored in the
repository (PolSS). PolSS is a logically centralized component
but may be physically distributed since the technology for
implementing this component is the Lightweight Directory
Access Protocol (LDAP) directory [7]. After the policies are
stored, activation information may be passed to the responsi-
ble PC/PDP in order to retrieve and enforce them.

The methodology for applying policies to a hierarchically dis-
tributed system like our architecture is described in detail in [8].
Although Fig. 1 shows a single PolC/PDP on top of all the
functional blocks for illustrative purposes, our model assumes
many instances of policy consumers. Every instance of the PC is
attached to the component that is influenced by the policies
this PC is responsible to enforce, complementing in this way
the static management intelligence of the above layer of the
hierarchy. For example, a policy enforced on the DRsM com-
ponent is actually enhanced management logic that conceptual-
ly belongs to the ND layer of our model. Policies may be
introduced at every layer of our system, but higher-level poli-
cies may possibly result in the introduction of related policies at
lower levels, mirroring the system hierarchy.

The components in the architecture can be categorized log-
ically by to which part they belong: SLS components on the
left side and TE components on the right (separated horizon-
tally) and hierarchically depending on which layer of the hier-
archy they belong (separated vertically). The traffic forecast
component has an SLS-aware part that belongs to the SLS
management part, and an SLS-unaware part that belongs to
the TE part. Components located in the lower level (i.e., SLS-
I, DRtM, and DRsM) are dynamic and measurement-based,
while those that reside in the upper level that is, ND and SLS-
S are static, time-based, and offline.

The same classification can be applied to policies enforced
in our system, based on the location of the component to
which they relate. So SLS management policies are those
enforced to the SLS-S and SLS-I component, and are related
mostly to directives and constraints regarding admission con-
trol decisions, while TE policies are those enforced to the
ND, DRsM, and DRtM components regarding allocation of

� Figure 1. Policy-based QoS management architecture.
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resources and routing processes. Categorization of policies
can also be done according to the layer of the hierarchy the
policy-influenced component belongs. Policies that apply to
the upper layer of the hierarchy that is, SLS-S and ND are
more time dependent and the trigger for their execution
depends mostly on the state of the component they apply to.
On the other hand, policies enforced to the lower level of the
hierarchy (i.e., SLS-I, DRtM, and DRsM) are more measure-
ment-based, meaning they are triggered not only by the com-
ponent they influence but also by certain conditions and
events in the network. Such network state dependent triggers
are registered by the correspondent policy consumers to a
monitoring component (Fig. 1). The latter notifies them when
an event has occurred so that the relevant policy consumer is
triggered to enforce the policy actions.

In the rest of the article we concentrate in the functionality
of the network dimensioning component and explore issues of
making this component policy-influenced by defining ND-spe-
cific policies.

Network Dimensioning
Network dimensioning (ND) performs the provisioning activi-
ties of the management system. It is responsible for the long- to
medium-term configuration of network resources. By configura-
tion we mean the setup of LSPs as well as the parameters (e.g.,
priority, weight, bandwidth) required for the operation of PHBs
on every link. The values provided by ND are not absolute but
are in the form of a range, constituting directives for the func-
tion of the PHBs, while for LSPs they are in the form of multi-
ple paths for the pipe model or multiple trees for the hose
model [1],1 in order to enable multipath load balancing. The
exact configuration values and the chosen path among the mul-
tiple paths to be used are determined by DRsM and DRtM,
respectively, based on the current state of the network.

ND runs periodically, by first requesting the predictions for
the expected traffic per PHB scheduling class (PSC)2 in order
to be able to compute the provisioning directives. The dimen-

sioning period is a week, while the forecasting
period is in the timescale of hours. The latter is a
period in which we have considerably different
predictions as a result of the time schedule of the
subscribed SLSs. For example, ND might run
every Sunday evening and provide multiple con-
figurations, one for each period of the day (morn-
ing, evening, night). So, effectively the
provisioning cycle is on the same timescale as the
forecasting period. The functionality of ND is
summarized in [1], but we also provide a descrip-
tion here in order to be able to explain the rele-
vant policies later.

Its goals are to optimally distribute the project-
ed traffic over the network resources by minimiz-
ing the overall cost and at the same time not
overloading parts of the network while others are
underloaded. In general, this problem can be for-
mulated as a network flow optimization problem
[9]. We defined the cost of each link as the sum of
linear functions fh(xl,h) per PHB, where xl,h is the
load on the link l from PHB h. The total cost
should be the sum of fh for all PHBs over all links;
this is the objective function to be minimized.

Another important function of ND is to handle the QoS
requirements of the expected traffic in terms of delay and loss
requirements. In our implementation of ND functionality, we
simplify our optimization problem by transforming the delay
and loss requirements into constraints for the maximum hop
count for each traffic trunk (TT); the latter is an abstract rep-
resentation of traffic with specific characteristics (e.g.,
ingress/egress, class), in fact an aggregation of traffic flows of
the same class. This transformation is possible by keeping
statistics for the delay and loss rate of the PHBs per link, and
by using the maximum, average, or nth quantile in order to
derive the maximum hop count constraint. We envisage that
by using the maximum we are too conservative (appropriate
for EF traffic), while by using an average we possibly underes-
timate the QoS requirements; for example, for AF traffic we
may use the 80th percentile. The accuracy of the statistics is
determined by the period used to obtain them; methods like
smoothing and exponential weighted moving average over
long periods must be used.

Finally, we have to configure the network by setting up
MPLS LSPs that will support pipe or hose traffic trunks and
by provisioning the PHBs for each link according to the sum
of the requirements of the paths passing through that link.

The ND functionality is depicted in Table 1 as a set of steps.

Policies for Network Dimensioning
Management standardization efforts in the IP community
have traditionally been concerned with management at the
network element level, known as element or device manage-
ment and realized in a centralized fashion. This approach is
also reflected in the work undertaken in the area of policy-
based management by the IETF: policies are specified for
controlling edge nodes, classifying traffic flows, and enforcing
decisions related to admission control without addressing the
problem of network-wide end-to-end resource management.

� Table 1. Main steps of the ND functionality.

Input:
Network topology, link properties (capacity, propagation delay, supported

PHBs)

Preprocessing:
• Request traffic forecast per PSC, i.e. traffic trunks  (TT) (bandwidth, end-to-

end delay, end-to-end loss probability requirements)
• Obtain statistics for the performance of each PHB at each link
• Determine the maximum allowable hop count K per TT according to the

above statistics.

Optimization phase:
For each TT find a set of paths (or trees for the hose model) for which:
• The bandwidth requirements of the TT are met
• The delay and loss requirements are met (by using the hop count constraint

as an upper bound)
• The overall cost function is minimized

Post-processing:
• Allocate any extra capacity to the paths up to the maximum link bandwidth

according to policy 
• Sum all the path requirements per link per PSC and configure the PHBs
• Configure the appropriate label switched paths calculated in the optimization

phase (note that trees are supported through multiple paths)

1 In [6] we used the terms pipe, hose, and funnel models for defining
SLSs. The current focus of our work is on supporting the pipe (one ingress
and one egress) and hose (one ingress and many egresses) models.

2 A PSC is a PHB group for which a common constraint is that ordering
of at least those packets belonging to the same microflow must be pre-
served. The set of PHBs that are applied to this set of behavior aggregates
constitutes a PHB scheduling class. The terms PSC and PHB will be used
interchangeably in the rest of this article.
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In the architecture shown in Fig. 1, ND, besides providing
long-term guidelines for sharing the network resources, can
also be policy influenced, so its behavior can be modified
dynamically at runtime, reflecting high-level business objec-
tives. The critical issue for designing a policy-capable resource
management component is to specify the parameters influ-
enced by the enforcement of a policy that will result in differ-
ent allocation of resources in terms of business decisions.
These policies, which are in fact management logic, are not
hard-wired in the component but downloaded on the fly while
the system is operating. However, this may cause inconsisten-
cies since policies have not been tested to coexist with the rest
of the system functionality without conflicts.

The ND block is triggered by time and not network state
events and as result policies that are enforced on this compo-
nent are not triggered from events that occur within the net-
work. There are only static dimensioning policies considered
ahead of time, and the policy influenced dimensioning func-
tion runs for the remaining resources. So two categories of
policies are identified for such a static offline resource man-
agement component. The first category concerns policies that
result in providing initial values to variables, which are essen-
tial for the functionality of ND and do not depend on any
state but just reflect decisions of the policy administrator. An
example of this kind of policies is the definition of the period
that ND calculates a new configuration. The second category
of ND policies concerns those that depend on the input from
the traffic forecast module concerning the predicted volume
of traffic the produced configuration should satisfy. Such poli-
cies are those whose execution is based on the type of traffic
and on the resulting configuration of the network, for exam-
ple, policies that are enforced if the traffic is EF and those
enforced if there is spare physical capacity after the configura-
tion is produced.

We discuss below the directives/constraints specified as
policies that should be taken into account when the dimen-
sioning component is calculating a new configuration and the
corresponding inconsistencies potentially caused by the
dynamic enforcement of such policies.

Since dimensioning runs in a periodic fashion, the policy
administrator should specify this period; consequently, ND
will ask from the traffic forecast the predicted volume of traf-
fic for this period. The priority of this policy should be speci-
fied in order not to cause any inconsistencies when
redimensioning is triggered by notifications sent from the
dynamic control parts of the system. For example, when
DRtM and DRsM are unable to perform an adaptation of the
network with the current configuration, and the SLS subscrip-
tion component has rejected a certain amount of SLSs. The
administrator should have the option to force ND either to
ignore or not these alarms by prioritizing these events accord-
ing to business decisions.

The policy administrator should be able to specify the
amount of network resources (giving a minimum, maximum,
or range) that should be allocated to each traffic type (i.e.,
expedited forwarding, assured forwarding, and best effort).
This will cause dimensioning to take into account this policy
when calculating the new configuration for this PSC togeth-
er with the information produced by the traffic forecast
component of the architecture. More specifically, ND
should allocate resources in a way that does not violate the
policy, and then calculate the configuration taking into
account the remaining resources. This again might result in
a conflicting situation where both traffic forecast require-
ments and policy cannot be satisfied. This means that by
enforcing this policy, the SLS requirements for this dimen-
sioning period will not be satisfied, so a conflict detection

mechanism should cater for notifying the administrator; the
latter should decide whether to proceed with the enforce-
ment of this policy despite the consequences of failing to
satisfy the SLS requirements or not. Another policy similar
to the previous one can influence the allocation of resources
to each PSC in every link belonging to the managed domain
in order to meet the requirements specified by this policy,
while the previous policy rule caters for overall networkwide
allocation. A more flexible option should be for the policy
administrator to indicate how the resources should be
shared in specific (critical) links.

After the dimensioning algorithm finishes, ND enters a
post-processing stage where it will try to assign the residual
physical capacity to the various traffic classes. In the case of
the MPLS-based approach, allocation of resources can be
done up to the point where it can be accommodated over the
recently calculated paths (LSPs) for every PSC. This distribu-
tion of spare capacity is left to be defined by policies that indi-
cate whether it should be done proportionally to the way
resources are already allocated or explicitly for every traffic
class. A similar policy to the previous one would be to specify
the way the capacity allocated to each PSC should be reduced
because the link capacity is not enough to satisfy the predicted
traffic requirements. Both these policies might conflict with
resource allocation policies explained in the previous para-
graph since this increase or reduction of allocated resources
to PSCs might result in a situation where the amount of net-
work/link resources specified in the previous policy is violated.

Policies that allow the administrator for a particular reason
to explicitly specify an LSP a traffic trunk (TT) should follow
can also be defined. Of course, this should override the algo-
rithm’s decision about the creation of the LSP for this TT,
and it should continue to run for the rest of the entries in the
traffic matrix. Inconsistencies might arise since this LSP is not
the “best” path to satisfy the objectives of the optimization
algorithm, but reflects only a business decision of the adminis-
trator. Another constraint related to the creation of trees is
the maximum number of alternative trees ND defines for
every traffic trunk for the purpose of load balancing.

Another constraint policies may add to the ND component
is that of the number of hops of the routes. The administrator
should have the flexibility to specify the maximum number of
hops routes are permitted to have. This number may vary
depending on the QoS class to which the traffic belongs. This
has an impact on the loss probability and delay constraint of
TTs because the dimensioning algorithm actually translates
these requirements on an upper bound on the number of hops
per route. Thus, this policy should override the default value
that ND calculates. Moreover, how this translation is done
can also be influenced by policy rules. For example, the safest
approach to satisfy the TT requirement would be to assume
that every link and node belonging to the route induces a
delay equal to the maximum delay caused by a link and node
along the route. So this policy rule will allow the administra-
tor to decide if the maximum, average, or minimum delay, or
loss induced by a node or link along the route should be used
to derive the hop count constraint according to the PSC to
which the TT belongs.

The approximate cost function used by ND is linear to the
bandwidth allocated to a PHB, that is, fl,h(xl,h) = al,h xl,h,
where xl,h is the bandwidth allocated to PHB h on link l and
al,h is a constant. The value of this constant belongs to a range
(e.g., 0.5–1.5) depending on the PHB. This policy provides the
flexibility to the policy administrator to specify this constant
depending on cost (i.e., importance) of a particular PHB. A
more flexible approach would be to allow the administrator to
specify with the policy the cost function to be used.
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Policy Information Model and Language

An object-oriented information model has been designed to
represent the network dimensioning policies described above,
based on the IETF Policy Core Information Model (PCIM) and
its extensions specified in [10, 11], respectively. One of the
major objectives of such information models is to bridge the gap
between the human policy administrator who enters the policies
and the actual enforcement commands executed at the compo-
nent in order to realize the business goal of the administrator.
Another goal is to facilitate interoperability among different sys-
tems so that PCs belonging to different systems understand the
same semantics of policy and have a mutual knowledge of how
policies are stored in the policy repository despite the fact that
each PC might interpret it differently. The IETF has described a
QoS Policy Information Model [12], representing QoS policies
that result in configuring network elements to enforce the poli-
cies, while our information model describes policies that are
applied at a higher level (network management level). Some of
these policies may possibly be refined into lower-level policies
mirroring our architecture’s hierarchy and finally result in poli-
cies configuring the network elements.

Figure 2 depicts a part of the inheritance hierarchy of our
information model representing the policies discussed in the
previous section, and also indicates its relationships to PCIM
and PCIMe. Note that some of the actions are not directly
modeled. Instead, they are modeled by using the class Simple-
PolicyAction with the appropriate associations, using instances
of the variable and value classes (“SET <variable> TO
<value>”).

For example, the maximum number of alternative trees is
represented by a pair of maxAltTree variable and IntegerVal-
ue classes as well as the definition of the constant used in the
link cost function. Conditions are also modeled by using the
class SimplePolicyCondition with instances of the variable and
value classes (IF <variable> matches <value>). For exam-

ple, when the condition of the policy is
based on the PSC to which the traffic
belongs, it is modeled by a simple condi-
tion where PSC is an implicit variable and
the corresponding value is an integer (EF
is 1, AF11 is 2, etc.). The DimensioningPe-
riodAction class models the policy action
that sets the period that ND is calculating a
new configuration, while the NwBwAlloca-
tionAction and LinkBwAllocationAction
classes represent the actions that indicate
the amount of bandwidth to be allocated to
every PSC (depending on the policy condi-
tion) at a networkwide level and in every
link, respectively. The SpareBwTreatment-
Action and OverBwTreatmentAction class-
es represent the policy actions that drive
the post-processing stage of ND as
explained in the previous section. The
SetLSPAction class models the setup of an
LSP that is defined by policy, and the Hop-
CountDerivationAction class represents the
action that influences the way the deriva-
tion of the delay and loss requirements to
an upper bound of number of hops is done.

A high-level definition language has also
been designed and implemented to provide
the administrator the ability to add,
retrieve, and update policies in the Policy
Storing Service. The administrator enters a
high-level specification of the policy, which

is then passed to a translation function that maps this format
to entries in an LDAP directory realizing the PolSS through
LDAP add operations, according to an LDAP schema of our
information model, which was produced following the guide-
lines described in [7]. The format of a policy rule specification
is shown below:

[Policy ID] [Group ID] [time period condition]
[if {condition [and] [or]}] then {action [and]}

The first two fields define the name of the policy rule and
the group to which this policy belongs, so the generated LDAP
entries should be placed under the correct policy group entry.
The time period condition field specifies the period the policy
rule is valid and supports a range of calendar dates, masks of
days and months, as well as a range of times. The following {if
then} clause represents the actual policy rule where the condi-
tion and action fields are based on the information model
described earlier in this section. Compound Policy Conditions
are also supported in both the Disjunctive Normal Form
(DNF) (an ORed set of ANDed conditions) and Conjunctive
Normal Form (CNF) (an ANDed set of ORed conditions) as
well as compound policy actions representing a sequence of
actions to be applied. Our implementation also caters for the
notion of rule-specific and reusable conditions and actions in
that every time a new policy rule is added, it first checks if its
conditions and actions are already stored in the repository as
reusable entries. If such entries exist, an entry is added with a
DN pointer to the reusable entry under the policy rule object; if
not, they are treated as rule-specific, placing the condition entry
below the policy rule entry.

An example of one of the policies described in this section
in our proprietary policy language is given below:

PolicyRule1: From Time=0900 to Time=1800
If (PSC == EF) and (spareBw == True)
then allocateSpareBw>30%

� Figure 2. Class inheritance hierarchy.

(PCIM)

(Abstract, PCIM)

ManagedElement

(PCIMe)SimplePolicyAction

SetLSPAction

HopCountDerivationAction

NwBwAllocationAction

LinkBwAllocationAction

(Abstract)BwAllocationAction

DimensioningPeriodAction

Policy

(Abstract, PCIM)PolicyAction

SpareBwTreatmentAction

OverBwTreatmentAction

(Abstract)BwTreatmentAction



IEEE Network • March/April 2002 55

This policy forces ND to allocate at least 30 percent of the
spare bandwidth to traffic that belongs to EF PSC if there is
spare physical capacity after the configuration of the network is
produced. A time period condition is also added that makes this
policy valid only between 09:00–18:00. The time period condi-
tion is mapped to an instance of ptpConditionAuxClass3 with
the attribute ptpConditionTimeOfDayMask set to T090000/
T180000, which is attached to an instance of a policyRuleValid-
ityAssociation3 structural class. The overall condition of the poli-
cy rule is considered of DNF type with the simple policy
conditions belonging to the same group. The corresponding pol-
icyVariable and policyValue auxiliary classes are attached to
policyRuleConditionAssociation3 structural classes so that each
can be retrieved with a single LDAP search operation. Finally,
the action of the policy rule is mapped to an instance of the
spareBwTreatmentAction (Fig. 2) auxiliary class, which is
attached to a policyRuleActionAssociation3 structural class, with
the attributes bwUnits set to 1 (%) and minBw set to 30.

We present below a description of the design and imple-
mentation of the generic PC as well as the overall implemen-
tation of our system.

Design and Implementation
Policy Consumers may be considered as the most critical com-
ponents of the policy management framework since they are
responsible for enforcing the policies on the fly while the sys-
tem is running. In the following figure a decomposition of the
Policy Consumer component is depicted and its interactions
with the other components of the architecture. A similar
approach was presented in [13] for implementing a policy
manager-agent.

The key aspect of policies apart from their high-level declar-
ative nature is that they can also be seen as a vehicle for “late
binding” functionality to management systems, allowing for
their graceful evolution as requirements
change. Thus, a policy-capable system should
provide the flexibility to add, change, or
remove management intelligence, while accord-
ing to traditional management models, man-
agement logic is of static nature, parameterized
only through managed objects’ (MOs’)
attributes and actions. In order to achieve such
functionality, a policy is eventually translated
to a script “evaluated” by an interpreter with
actions resulting in management operations.
This approach has also been followed by the
management by delegation (MbD) paradigm
[14] and the IETF Script management infor-
mation base (MIB) [15] specifying an imple-
mentation architecture. PCs can be attached to
the component they are associated with, having
local access to the MOs, or enforce the policies
remotely. The former approach is depicted in
Fig. 3.

As shown in Fig. 3, the PC component is
decomposed in three parts. The first part, the
repository client, provides access to the Policy
Storing Service, and is responsible for down-
loading the associated objects stored in PolSS
that make up the policy rules this specific PC
should enforce in order to influence the
behavior of the component to which it is

attached. The repository client has knowledge of how the poli-
cy information is stored in the PolSS. After a new policy is
stored, it receives a notification from the policy management
tool that a new policy for this consumer is stored in the repos-
itory by passing the appropriate information (i.e., the distin-
guished name of the “root” policy object); it then goes and
retrieves all the necessary entries from the PolSS. This part is
the same for every instance of the PC in our architecture.

The second part of the PC is the script generator, which is
responsible for creating the script that implements the policy.
It contains logic, specific to the component to which the PC is
attached, that automates the process of generating a script
from the higher-level representation of policies as they are
stored in the PolSS. The policy interpreter provides the “glue”
between the PC and the policy-based component, and inter-
prets a language, which includes functions that perform man-
agement operations. Two kinds of functions are identified:
those that provide access to local MOs and those that provide
access to MOs of remote components. Since a policy rule is
defined as a set of actions when certain conditions occur, the
purpose of accessing MOs is twofold. First, evaluating the
condition of a rule can be done by either polling attributes of
the MOs or following an event-driven paradigm where the
MOs send a notification that triggers the execution of the pol-
icy action. These MOs can be either local or remote, depend-
ing on whether the condition of the policy is based on the
state of the component to which this PC is attached or on
information that can be available from a remote component.
Second, policy actions are implemented by executing scripts
that result in setting attributes or invoking operations avail-
able at the object boundary of the local MOs.

An important consideration regarding the implementation
of a PC is related to the choice of the relevant scripting lan-
guage. Since in our architecture most of the components are
implemented in C++, the first important requirement for the

� Figure 3. Decomposition of a policy consumer.
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3 These classes are all defined in the policy core LDAP
schema [7].
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scripting language is to be extensible and able to interface
easily with C++. Tcl was chosen for this purpose due to the
ease with which it interfaces to C++. The interface between
Tcl and the C++ environment of the component is in two
directions: from Tcl to C++, for accessing local or remote
managed objects, and from C++ to Tcl for sending notifica-
tions and starting the execution of the policy scripts. In order
to support remote invocations on MOs, a Common Object
Request Broker Architecture (CORBA) environment is used.

The current implementation of our system includes only
one instance of the policy consumer attached to the ND com-
ponent. In addition to the policy notation presented in the
previous section, a directory browser has also been imple-
mented, providing the ability to browse through the stored
entries and evaluate that all the policies entered in the format
described above are correctly translated and represented as
LDAP entries in the directory. Since the system described in
an earlier section is a large-scale distributed system, it is valid
to consider CORBA as the technology to support the remote
interactions between the components. This was the key moti-
vation for mapping the LDAP functionality to CORBA realiz-
ing the Policy Storing Service as an LDAP directory offering a
CORBA IDL interface, identical to the LDAP specifications
[16], to the rest of the components.

It is our intention to use this system on top of a simulated
network using the ns simulator as well as on a Linux-based
DiffServ-capable testbed with the ND component producing
corresponding configuration commands reflecting the policies
entered using our policy notation.

Conclusions and Future Work
While most of the work on policies has focused on specifying
rules for configuring network elements, our work addresses
issues for defining higher-level (networkwide) policies that
apply to a hierarchical distributed management system. We
view policies as a means for enhancing or modifying the func-
tionality of policy-influenced components reflecting high-level
business decisions. When designing a policy-based system, it is
very important to identify the parameters that are influenced
by policies resulting in driving the behavior of a system to
realize the administrator’s business goals. This decision should
take into account the inconsistencies caused by the coexis-
tence of policies with hard-wired functionality.

In this article we describe the salient characteristics of poli-
cy-based management in a hierarchical system for IP DiffServ
management, presenting an initial categorization of policies
depending on the “location” of the components they influ-
ence. We then present the way the network dimension compo-
nent allocates the resources of the network and describe the
parameters influenced by policies focusing on conflicts that
may appear. We also briefly present an object-oriented infor-
mation model for representing these policies by extending the
IETF core information model and describe the format of a
policy rule in our policy notation. Finally, design and imple-
mentation issues of the policy consumer are discussed and the
status of our implementation is briefly presented.

As a continuation of the work described in this article, we
will be concentrating on defining policies for the rest of the
components of our architecture (Fig. 1) and study how they
can coexist with the rest of the static functionality of the sys-
tem. The refinement of policies entered at ND to lower-level
policies that apply to dynamic resource and route manage-
ment components will also be explored. Moreover, we will be

focusing on the specification of conflict detection and resolu-
tion mechanisms specific to our problem domain. We intend
to share our experiences with the overall policy-based QoS
management system in future papers.
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